summaryrefslogtreecommitdiffstats
path: root/Documentation/flexible-arrays.txt
diff options
context:
space:
mode:
authorJonathan Corbet <corbet@lwn.net>2009-09-08 17:49:37 -0600
committerJonathan Corbet <corbet@lwn.net>2009-09-10 14:33:36 -0600
commit6c19efb46aacf2c5043ad210b888ee58ffb848c0 (patch)
tree2d6ed1de6c8f3ed2df44a5d008ee2316284527bf /Documentation/flexible-arrays.txt
parente8188807b7cd14e0a001946005f0c58f9dd9dfe6 (diff)
downloadop-kernel-dev-6c19efb46aacf2c5043ad210b888ee58ffb848c0.zip
op-kernel-dev-6c19efb46aacf2c5043ad210b888ee58ffb848c0.tar.gz
Document the flex_array library.
A brief document on how to use flexible arrays, derived from an article first published on LWN. Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Diffstat (limited to 'Documentation/flexible-arrays.txt')
-rw-r--r--Documentation/flexible-arrays.txt99
1 files changed, 99 insertions, 0 deletions
diff --git a/Documentation/flexible-arrays.txt b/Documentation/flexible-arrays.txt
new file mode 100644
index 0000000..84eb268
--- /dev/null
+++ b/Documentation/flexible-arrays.txt
@@ -0,0 +1,99 @@
+Using flexible arrays in the kernel
+Last updated for 2.6.31
+Jonathan Corbet <corbet@lwn.net>
+
+Large contiguous memory allocations can be unreliable in the Linux kernel.
+Kernel programmers will sometimes respond to this problem by allocating
+pages with vmalloc(). This solution not ideal, though. On 32-bit systems,
+memory from vmalloc() must be mapped into a relatively small address space;
+it's easy to run out. On SMP systems, the page table changes required by
+vmalloc() allocations can require expensive cross-processor interrupts on
+all CPUs. And, on all systems, use of space in the vmalloc() range
+increases pressure on the translation lookaside buffer (TLB), reducing the
+performance of the system.
+
+In many cases, the need for memory from vmalloc() can be eliminated by
+piecing together an array from smaller parts; the flexible array library
+exists to make this task easier.
+
+A flexible array holds an arbitrary (within limits) number of fixed-sized
+objects, accessed via an integer index. Sparse arrays are handled
+reasonably well. Only single-page allocations are made, so memory
+allocation failures should be relatively rare. The down sides are that the
+arrays cannot be indexed directly, individual object size cannot exceed the
+system page size, and putting data into a flexible array requires a copy
+operation. It's also worth noting that flexible arrays do no internal
+locking at all; if concurrent access to an array is possible, then the
+caller must arrange for appropriate mutual exclusion.
+
+The creation of a flexible array is done with:
+
+ #include <linux/flex_array.h>
+
+ struct flex_array *flex_array_alloc(int element_size,
+ unsigned int total,
+ gfp_t flags);
+
+The individual object size is provided by element_size, while total is the
+maximum number of objects which can be stored in the array. The flags
+argument is passed directly to the internal memory allocation calls. With
+the current code, using flags to ask for high memory is likely to lead to
+notably unpleasant side effects.
+
+Storing data into a flexible array is accomplished with a call to:
+
+ int flex_array_put(struct flex_array *array, unsigned int element_nr,
+ void *src, gfp_t flags);
+
+This call will copy the data from src into the array, in the position
+indicated by element_nr (which must be less than the maximum specified when
+the array was created). If any memory allocations must be performed, flags
+will be used. The return value is zero on success, a negative error code
+otherwise.
+
+There might possibly be a need to store data into a flexible array while
+running in some sort of atomic context; in this situation, sleeping in the
+memory allocator would be a bad thing. That can be avoided by using
+GFP_ATOMIC for the flags value, but, often, there is a better way. The
+trick is to ensure that any needed memory allocations are done before
+entering atomic context, using:
+
+ int flex_array_prealloc(struct flex_array *array, unsigned int start,
+ unsigned int end, gfp_t flags);
+
+This function will ensure that memory for the elements indexed in the range
+defined by start and end has been allocated. Thereafter, a
+flex_array_put() call on an element in that range is guaranteed not to
+block.
+
+Getting data back out of the array is done with:
+
+ void *flex_array_get(struct flex_array *fa, unsigned int element_nr);
+
+The return value is a pointer to the data element, or NULL if that
+particular element has never been allocated.
+
+Note that it is possible to get back a valid pointer for an element which
+has never been stored in the array. Memory for array elements is allocated
+one page at a time; a single allocation could provide memory for several
+adjacent elements. The flexible array code does not know if a specific
+element has been written; it only knows if the associated memory is
+present. So a flex_array_get() call on an element which was never stored
+in the array has the potential to return a pointer to random data. If the
+caller does not have a separate way to know which elements were actually
+stored, it might be wise, at least, to add GFP_ZERO to the flags argument
+to ensure that all elements are zeroed.
+
+There is no way to remove a single element from the array. It is possible,
+though, to remove all elements with a call to:
+
+ void flex_array_free_parts(struct flex_array *array);
+
+This call frees all elements, but leaves the array itself in place.
+Freeing the entire array is done with:
+
+ void flex_array_free(struct flex_array *array);
+
+As of this writing, there are no users of flexible arrays in the mainline
+kernel. The functions described here are also not exported to modules;
+that will probably be fixed when somebody comes up with a need for it.
OpenPOWER on IntegriCloud