diff options
author | Mauro Carvalho Chehab <mchehab@s-opensource.com> | 2017-05-11 16:23:50 -0300 |
---|---|---|
committer | Mauro Carvalho Chehab <mchehab@s-opensource.com> | 2017-05-16 08:44:04 -0300 |
commit | 7fb2e8a49037099c56ea209aaa8527e5f3e742ba (patch) | |
tree | 8d5215fe298bbd25369b3d104e9eecd6bb39e0c7 /Documentation/DocBook | |
parent | dc89fca93ec05a2125b1dfa78efe0e8c7668c8fb (diff) | |
download | op-kernel-dev-7fb2e8a49037099c56ea209aaa8527e5f3e742ba.zip op-kernel-dev-7fb2e8a49037099c56ea209aaa8527e5f3e742ba.tar.gz |
docs-rst: convert kgdb DocBook to ReST
Use pandoc to convert documentation to ReST by calling
Documentation/sphinx/tmplcvt script.
Signed-off-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
Diffstat (limited to 'Documentation/DocBook')
-rw-r--r-- | Documentation/DocBook/Makefile | 2 | ||||
-rw-r--r-- | Documentation/DocBook/kgdb.tmpl | 918 |
2 files changed, 1 insertions, 919 deletions
diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile index 9df94f7..b9d2b88 100644 --- a/Documentation/DocBook/Makefile +++ b/Documentation/DocBook/Makefile @@ -8,7 +8,7 @@ DOCBOOKS := z8530book.xml \ networking.xml \ - filesystems.xml lsm.xml kgdb.xml \ + filesystems.xml lsm.xml \ libata.xml mtdnand.xml librs.xml rapidio.xml \ s390-drivers.xml scsi.xml \ sh.xml w1.xml diff --git a/Documentation/DocBook/kgdb.tmpl b/Documentation/DocBook/kgdb.tmpl deleted file mode 100644 index 856ac20..0000000 --- a/Documentation/DocBook/kgdb.tmpl +++ /dev/null @@ -1,918 +0,0 @@ -<?xml version="1.0" encoding="UTF-8"?> -<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" - "http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []> - -<book id="kgdbOnLinux"> - <bookinfo> - <title>Using kgdb, kdb and the kernel debugger internals</title> - - <authorgroup> - <author> - <firstname>Jason</firstname> - <surname>Wessel</surname> - <affiliation> - <address> - <email>jason.wessel@windriver.com</email> - </address> - </affiliation> - </author> - </authorgroup> - <copyright> - <year>2008,2010</year> - <holder>Wind River Systems, Inc.</holder> - </copyright> - <copyright> - <year>2004-2005</year> - <holder>MontaVista Software, Inc.</holder> - </copyright> - <copyright> - <year>2004</year> - <holder>Amit S. Kale</holder> - </copyright> - - <legalnotice> - <para> - This file is licensed under the terms of the GNU General Public License - version 2. This program is licensed "as is" without any warranty of any - kind, whether express or implied. - </para> - - </legalnotice> - </bookinfo> - -<toc></toc> - <chapter id="Introduction"> - <title>Introduction</title> - <para> - The kernel has two different debugger front ends (kdb and kgdb) - which interface to the debug core. It is possible to use either - of the debugger front ends and dynamically transition between them - if you configure the kernel properly at compile and runtime. - </para> - <para> - Kdb is simplistic shell-style interface which you can use on a - system console with a keyboard or serial console. You can use it - to inspect memory, registers, process lists, dmesg, and even set - breakpoints to stop in a certain location. Kdb is not a source - level debugger, although you can set breakpoints and execute some - basic kernel run control. Kdb is mainly aimed at doing some - analysis to aid in development or diagnosing kernel problems. You - can access some symbols by name in kernel built-ins or in kernel - modules if the code was built - with <symbol>CONFIG_KALLSYMS</symbol>. - </para> - <para> - Kgdb is intended to be used as a source level debugger for the - Linux kernel. It is used along with gdb to debug a Linux kernel. - The expectation is that gdb can be used to "break in" to the - kernel to inspect memory, variables and look through call stack - information similar to the way an application developer would use - gdb to debug an application. It is possible to place breakpoints - in kernel code and perform some limited execution stepping. - </para> - <para> - Two machines are required for using kgdb. One of these machines is - a development machine and the other is the target machine. The - kernel to be debugged runs on the target machine. The development - machine runs an instance of gdb against the vmlinux file which - contains the symbols (not a boot image such as bzImage, zImage, - uImage...). In gdb the developer specifies the connection - parameters and connects to kgdb. The type of connection a - developer makes with gdb depends on the availability of kgdb I/O - modules compiled as built-ins or loadable kernel modules in the test - machine's kernel. - </para> - </chapter> - <chapter id="CompilingAKernel"> - <title>Compiling a kernel</title> - <para> - <itemizedlist> - <listitem><para>In order to enable compilation of kdb, you must first enable kgdb.</para></listitem> - <listitem><para>The kgdb test compile options are described in the kgdb test suite chapter.</para></listitem> - </itemizedlist> - </para> - <sect1 id="CompileKGDB"> - <title>Kernel config options for kgdb</title> - <para> - To enable <symbol>CONFIG_KGDB</symbol> you should look under - "Kernel hacking" / "Kernel debugging" and select "KGDB: kernel debugger". - </para> - <para> - While it is not a hard requirement that you have symbols in your - vmlinux file, gdb tends not to be very useful without the symbolic - data, so you will want to turn - on <symbol>CONFIG_DEBUG_INFO</symbol> which is called "Compile the - kernel with debug info" in the config menu. - </para> - <para> - It is advised, but not required, that you turn on the - <symbol>CONFIG_FRAME_POINTER</symbol> kernel option which is called "Compile the - kernel with frame pointers" in the config menu. This option - inserts code to into the compiled executable which saves the frame - information in registers or on the stack at different points which - allows a debugger such as gdb to more accurately construct - stack back traces while debugging the kernel. - </para> - <para> - If the architecture that you are using supports the kernel option - CONFIG_STRICT_KERNEL_RWX, you should consider turning it off. This - option will prevent the use of software breakpoints because it - marks certain regions of the kernel's memory space as read-only. - If kgdb supports it for the architecture you are using, you can - use hardware breakpoints if you desire to run with the - CONFIG_STRICT_KERNEL_RWX option turned on, else you need to turn off - this option. - </para> - <para> - Next you should choose one of more I/O drivers to interconnect - debugging host and debugged target. Early boot debugging requires - a KGDB I/O driver that supports early debugging and the driver - must be built into the kernel directly. Kgdb I/O driver - configuration takes place via kernel or module parameters which - you can learn more about in the in the section that describes the - parameter "kgdboc". - </para> - <para>Here is an example set of .config symbols to enable or - disable for kgdb: - <itemizedlist> - <listitem><para># CONFIG_STRICT_KERNEL_RWX is not set</para></listitem> - <listitem><para>CONFIG_FRAME_POINTER=y</para></listitem> - <listitem><para>CONFIG_KGDB=y</para></listitem> - <listitem><para>CONFIG_KGDB_SERIAL_CONSOLE=y</para></listitem> - </itemizedlist> - </para> - </sect1> - <sect1 id="CompileKDB"> - <title>Kernel config options for kdb</title> - <para>Kdb is quite a bit more complex than the simple gdbstub - sitting on top of the kernel's debug core. Kdb must implement a - shell, and also adds some helper functions in other parts of the - kernel, responsible for printing out interesting data such as what - you would see if you ran "lsmod", or "ps". In order to build kdb - into the kernel you follow the same steps as you would for kgdb. - </para> - <para>The main config option for kdb - is <symbol>CONFIG_KGDB_KDB</symbol> which is called "KGDB_KDB: - include kdb frontend for kgdb" in the config menu. In theory you - would have already also selected an I/O driver such as the - CONFIG_KGDB_SERIAL_CONSOLE interface if you plan on using kdb on a - serial port, when you were configuring kgdb. - </para> - <para>If you want to use a PS/2-style keyboard with kdb, you would - select CONFIG_KDB_KEYBOARD which is called "KGDB_KDB: keyboard as - input device" in the config menu. The CONFIG_KDB_KEYBOARD option - is not used for anything in the gdb interface to kgdb. The - CONFIG_KDB_KEYBOARD option only works with kdb. - </para> - <para>Here is an example set of .config symbols to enable/disable kdb: - <itemizedlist> - <listitem><para># CONFIG_STRICT_KERNEL_RWX is not set</para></listitem> - <listitem><para>CONFIG_FRAME_POINTER=y</para></listitem> - <listitem><para>CONFIG_KGDB=y</para></listitem> - <listitem><para>CONFIG_KGDB_SERIAL_CONSOLE=y</para></listitem> - <listitem><para>CONFIG_KGDB_KDB=y</para></listitem> - <listitem><para>CONFIG_KDB_KEYBOARD=y</para></listitem> - </itemizedlist> - </para> - </sect1> - </chapter> - <chapter id="kgdbKernelArgs"> - <title>Kernel Debugger Boot Arguments</title> - <para>This section describes the various runtime kernel - parameters that affect the configuration of the kernel debugger. - The following chapter covers using kdb and kgdb as well as - providing some examples of the configuration parameters.</para> - <sect1 id="kgdboc"> - <title>Kernel parameter: kgdboc</title> - <para>The kgdboc driver was originally an abbreviation meant to - stand for "kgdb over console". Today it is the primary mechanism - to configure how to communicate from gdb to kgdb as well as the - devices you want to use to interact with the kdb shell. - </para> - <para>For kgdb/gdb, kgdboc is designed to work with a single serial - port. It is intended to cover the circumstance where you want to - use a serial console as your primary console as well as using it to - perform kernel debugging. It is also possible to use kgdb on a - serial port which is not designated as a system console. Kgdboc - may be configured as a kernel built-in or a kernel loadable module. - You can only make use of <constant>kgdbwait</constant> and early - debugging if you build kgdboc into the kernel as a built-in. - </para> - <para>Optionally you can elect to activate kms (Kernel Mode - Setting) integration. When you use kms with kgdboc and you have a - video driver that has atomic mode setting hooks, it is possible to - enter the debugger on the graphics console. When the kernel - execution is resumed, the previous graphics mode will be restored. - This integration can serve as a useful tool to aid in diagnosing - crashes or doing analysis of memory with kdb while allowing the - full graphics console applications to run. - </para> - <sect2 id="kgdbocArgs"> - <title>kgdboc arguments</title> - <para>Usage: <constant>kgdboc=[kms][[,]kbd][[,]serial_device][,baud]</constant></para> - <para>The order listed above must be observed if you use any of the - optional configurations together. - </para> - <para>Abbreviations: - <itemizedlist> - <listitem><para>kms = Kernel Mode Setting</para></listitem> - <listitem><para>kbd = Keyboard</para></listitem> - </itemizedlist> - </para> - <para>You can configure kgdboc to use the keyboard, and/or a serial - device depending on if you are using kdb and/or kgdb, in one of the - following scenarios. The order listed above must be observed if - you use any of the optional configurations together. Using kms + - only gdb is generally not a useful combination.</para> - <sect3 id="kgdbocArgs1"> - <title>Using loadable module or built-in</title> - <para> - <orderedlist> - <listitem><para>As a kernel built-in:</para> - <para>Use the kernel boot argument: <constant>kgdboc=<tty-device>,[baud]</constant></para></listitem> - <listitem> - <para>As a kernel loadable module:</para> - <para>Use the command: <constant>modprobe kgdboc kgdboc=<tty-device>,[baud]</constant></para> - <para>Here are two examples of how you might format the kgdboc - string. The first is for an x86 target using the first serial port. - The second example is for the ARM Versatile AB using the second - serial port. - <orderedlist> - <listitem><para><constant>kgdboc=ttyS0,115200</constant></para></listitem> - <listitem><para><constant>kgdboc=ttyAMA1,115200</constant></para></listitem> - </orderedlist> - </para> - </listitem> - </orderedlist></para> - </sect3> - <sect3 id="kgdbocArgs2"> - <title>Configure kgdboc at runtime with sysfs</title> - <para>At run time you can enable or disable kgdboc by echoing a - parameters into the sysfs. Here are two examples:</para> - <orderedlist> - <listitem><para>Enable kgdboc on ttyS0</para> - <para><constant>echo ttyS0 > /sys/module/kgdboc/parameters/kgdboc</constant></para></listitem> - <listitem><para>Disable kgdboc</para> - <para><constant>echo "" > /sys/module/kgdboc/parameters/kgdboc</constant></para></listitem> - </orderedlist> - <para>NOTE: You do not need to specify the baud if you are - configuring the console on tty which is already configured or - open.</para> - </sect3> - <sect3 id="kgdbocArgs3"> - <title>More examples</title> - <para>You can configure kgdboc to use the keyboard, and/or a serial device - depending on if you are using kdb and/or kgdb, in one of the - following scenarios. - <orderedlist> - <listitem><para>kdb and kgdb over only a serial port</para> - <para><constant>kgdboc=<serial_device>[,baud]</constant></para> - <para>Example: <constant>kgdboc=ttyS0,115200</constant></para> - </listitem> - <listitem><para>kdb and kgdb with keyboard and a serial port</para> - <para><constant>kgdboc=kbd,<serial_device>[,baud]</constant></para> - <para>Example: <constant>kgdboc=kbd,ttyS0,115200</constant></para> - </listitem> - <listitem><para>kdb with a keyboard</para> - <para><constant>kgdboc=kbd</constant></para> - </listitem> - <listitem><para>kdb with kernel mode setting</para> - <para><constant>kgdboc=kms,kbd</constant></para> - </listitem> - <listitem><para>kdb with kernel mode setting and kgdb over a serial port</para> - <para><constant>kgdboc=kms,kbd,ttyS0,115200</constant></para> - </listitem> - </orderedlist> - </para> - <para>NOTE: Kgdboc does not support interrupting the target via the - gdb remote protocol. You must manually send a sysrq-g unless you - have a proxy that splits console output to a terminal program. - A console proxy has a separate TCP port for the debugger and a separate - TCP port for the "human" console. The proxy can take care of sending - the sysrq-g for you. - </para> - <para>When using kgdboc with no debugger proxy, you can end up - connecting the debugger at one of two entry points. If an - exception occurs after you have loaded kgdboc, a message should - print on the console stating it is waiting for the debugger. In - this case you disconnect your terminal program and then connect the - debugger in its place. If you want to interrupt the target system - and forcibly enter a debug session you have to issue a Sysrq - sequence and then type the letter <constant>g</constant>. Then - you disconnect the terminal session and connect gdb. Your options - if you don't like this are to hack gdb to send the sysrq-g for you - as well as on the initial connect, or to use a debugger proxy that - allows an unmodified gdb to do the debugging. - </para> - </sect3> - </sect2> - </sect1> - <sect1 id="kgdbwait"> - <title>Kernel parameter: kgdbwait</title> - <para> - The Kernel command line option <constant>kgdbwait</constant> makes - kgdb wait for a debugger connection during booting of a kernel. You - can only use this option if you compiled a kgdb I/O driver into the - kernel and you specified the I/O driver configuration as a kernel - command line option. The kgdbwait parameter should always follow the - configuration parameter for the kgdb I/O driver in the kernel - command line else the I/O driver will not be configured prior to - asking the kernel to use it to wait. - </para> - <para> - The kernel will stop and wait as early as the I/O driver and - architecture allows when you use this option. If you build the - kgdb I/O driver as a loadable kernel module kgdbwait will not do - anything. - </para> - </sect1> - <sect1 id="kgdbcon"> - <title>Kernel parameter: kgdbcon</title> - <para> The kgdbcon feature allows you to see printk() messages - inside gdb while gdb is connected to the kernel. Kdb does not make - use of the kgdbcon feature. - </para> - <para>Kgdb supports using the gdb serial protocol to send console - messages to the debugger when the debugger is connected and running. - There are two ways to activate this feature. - <orderedlist> - <listitem><para>Activate with the kernel command line option:</para> - <para><constant>kgdbcon</constant></para> - </listitem> - <listitem><para>Use sysfs before configuring an I/O driver</para> - <para> - <constant>echo 1 > /sys/module/kgdb/parameters/kgdb_use_con</constant> - </para> - <para> - NOTE: If you do this after you configure the kgdb I/O driver, the - setting will not take effect until the next point the I/O is - reconfigured. - </para> - </listitem> - </orderedlist> - </para> - <para>IMPORTANT NOTE: You cannot use kgdboc + kgdbcon on a tty that is an - active system console. An example of incorrect usage is <constant>console=ttyS0,115200 kgdboc=ttyS0 kgdbcon</constant> - </para> - <para>It is possible to use this option with kgdboc on a tty that is not a system console. - </para> - </sect1> - <sect1 id="kgdbreboot"> - <title>Run time parameter: kgdbreboot</title> - <para> The kgdbreboot feature allows you to change how the debugger - deals with the reboot notification. You have 3 choices for the - behavior. The default behavior is always set to 0.</para> - <orderedlist> - <listitem><para>echo -1 > /sys/module/debug_core/parameters/kgdbreboot</para> - <para>Ignore the reboot notification entirely.</para> - </listitem> - <listitem><para>echo 0 > /sys/module/debug_core/parameters/kgdbreboot</para> - <para>Send the detach message to any attached debugger client.</para> - </listitem> - <listitem><para>echo 1 > /sys/module/debug_core/parameters/kgdbreboot</para> - <para>Enter the debugger on reboot notify.</para> - </listitem> - </orderedlist> - </sect1> - </chapter> - <chapter id="usingKDB"> - <title>Using kdb</title> - <para> - </para> - <sect1 id="quickKDBserial"> - <title>Quick start for kdb on a serial port</title> - <para>This is a quick example of how to use kdb.</para> - <para><orderedlist> - <listitem><para>Configure kgdboc at boot using kernel parameters: - <itemizedlist> - <listitem><para><constant>console=ttyS0,115200 kgdboc=ttyS0,115200</constant></para></listitem> - </itemizedlist></para> - <para>OR</para> - <para>Configure kgdboc after the kernel has booted; assuming you are using a serial port console: - <itemizedlist> - <listitem><para><constant>echo ttyS0 > /sys/module/kgdboc/parameters/kgdboc</constant></para></listitem> - </itemizedlist> - </para> - </listitem> - <listitem><para>Enter the kernel debugger manually or by waiting for an oops or fault. There are several ways you can enter the kernel debugger manually; all involve using the sysrq-g, which means you must have enabled CONFIG_MAGIC_SYSRQ=y in your kernel config.</para> - <itemizedlist> - <listitem><para>When logged in as root or with a super user session you can run:</para> - <para><constant>echo g > /proc/sysrq-trigger</constant></para></listitem> - <listitem><para>Example using minicom 2.2</para> - <para>Press: <constant>Control-a</constant></para> - <para>Press: <constant>f</constant></para> - <para>Press: <constant>g</constant></para> - </listitem> - <listitem><para>When you have telneted to a terminal server that supports sending a remote break</para> - <para>Press: <constant>Control-]</constant></para> - <para>Type in:<constant>send break</constant></para> - <para>Press: <constant>Enter</constant></para> - <para>Press: <constant>g</constant></para> - </listitem> - </itemizedlist> - </listitem> - <listitem><para>From the kdb prompt you can run the "help" command to see a complete list of the commands that are available.</para> - <para>Some useful commands in kdb include: - <itemizedlist> - <listitem><para>lsmod -- Shows where kernel modules are loaded</para></listitem> - <listitem><para>ps -- Displays only the active processes</para></listitem> - <listitem><para>ps A -- Shows all the processes</para></listitem> - <listitem><para>summary -- Shows kernel version info and memory usage</para></listitem> - <listitem><para>bt -- Get a backtrace of the current process using dump_stack()</para></listitem> - <listitem><para>dmesg -- View the kernel syslog buffer</para></listitem> - <listitem><para>go -- Continue the system</para></listitem> - </itemizedlist> - </para> - </listitem> - <listitem> - <para>When you are done using kdb you need to consider rebooting the - system or using the "go" command to resuming normal kernel - execution. If you have paused the kernel for a lengthy period of - time, applications that rely on timely networking or anything to do - with real wall clock time could be adversely affected, so you - should take this into consideration when using the kernel - debugger.</para> - </listitem> - </orderedlist></para> - </sect1> - <sect1 id="quickKDBkeyboard"> - <title>Quick start for kdb using a keyboard connected console</title> - <para>This is a quick example of how to use kdb with a keyboard.</para> - <para><orderedlist> - <listitem><para>Configure kgdboc at boot using kernel parameters: - <itemizedlist> - <listitem><para><constant>kgdboc=kbd</constant></para></listitem> - </itemizedlist></para> - <para>OR</para> - <para>Configure kgdboc after the kernel has booted: - <itemizedlist> - <listitem><para><constant>echo kbd > /sys/module/kgdboc/parameters/kgdboc</constant></para></listitem> - </itemizedlist> - </para> - </listitem> - <listitem><para>Enter the kernel debugger manually or by waiting for an oops or fault. There are several ways you can enter the kernel debugger manually; all involve using the sysrq-g, which means you must have enabled CONFIG_MAGIC_SYSRQ=y in your kernel config.</para> - <itemizedlist> - <listitem><para>When logged in as root or with a super user session you can run:</para> - <para><constant>echo g > /proc/sysrq-trigger</constant></para></listitem> - <listitem><para>Example using a laptop keyboard</para> - <para>Press and hold down: <constant>Alt</constant></para> - <para>Press and hold down: <constant>Fn</constant></para> - <para>Press and release the key with the label: <constant>SysRq</constant></para> - <para>Release: <constant>Fn</constant></para> - <para>Press and release: <constant>g</constant></para> - <para>Release: <constant>Alt</constant></para> - </listitem> - <listitem><para>Example using a PS/2 101-key keyboard</para> - <para>Press and hold down: <constant>Alt</constant></para> - <para>Press and release the key with the label: <constant>SysRq</constant></para> - <para>Press and release: <constant>g</constant></para> - <para>Release: <constant>Alt</constant></para> - </listitem> - </itemizedlist> - </listitem> - <listitem> - <para>Now type in a kdb command such as "help", "dmesg", "bt" or "go" to continue kernel execution.</para> - </listitem> - </orderedlist></para> - </sect1> - </chapter> - <chapter id="EnableKGDB"> - <title>Using kgdb / gdb</title> - <para>In order to use kgdb you must activate it by passing - configuration information to one of the kgdb I/O drivers. If you - do not pass any configuration information kgdb will not do anything - at all. Kgdb will only actively hook up to the kernel trap hooks - if a kgdb I/O driver is loaded and configured. If you unconfigure - a kgdb I/O driver, kgdb will unregister all the kernel hook points. - </para> - <para> All kgdb I/O drivers can be reconfigured at run time, if - <symbol>CONFIG_SYSFS</symbol> and <symbol>CONFIG_MODULES</symbol> - are enabled, by echo'ing a new config string to - <constant>/sys/module/<driver>/parameter/<option></constant>. - The driver can be unconfigured by passing an empty string. You cannot - change the configuration while the debugger is attached. Make sure - to detach the debugger with the <constant>detach</constant> command - prior to trying to unconfigure a kgdb I/O driver. - </para> - <sect1 id="ConnectingGDB"> - <title>Connecting with gdb to a serial port</title> - <orderedlist> - <listitem><para>Configure kgdboc</para> - <para>Configure kgdboc at boot using kernel parameters: - <itemizedlist> - <listitem><para><constant>kgdboc=ttyS0,115200</constant></para></listitem> - </itemizedlist></para> - <para>OR</para> - <para>Configure kgdboc after the kernel has booted: - <itemizedlist> - <listitem><para><constant>echo ttyS0 > /sys/module/kgdboc/parameters/kgdboc</constant></para></listitem> - </itemizedlist></para> - </listitem> - <listitem> - <para>Stop kernel execution (break into the debugger)</para> - <para>In order to connect to gdb via kgdboc, the kernel must - first be stopped. There are several ways to stop the kernel which - include using kgdbwait as a boot argument, via a sysrq-g, or running - the kernel until it takes an exception where it waits for the - debugger to attach. - <itemizedlist> - <listitem><para>When logged in as root or with a super user session you can run:</para> - <para><constant>echo g > /proc/sysrq-trigger</constant></para></listitem> - <listitem><para>Example using minicom 2.2</para> - <para>Press: <constant>Control-a</constant></para> - <para>Press: <constant>f</constant></para> - <para>Press: <constant>g</constant></para> - </listitem> - <listitem><para>When you have telneted to a terminal server that supports sending a remote break</para> - <para>Press: <constant>Control-]</constant></para> - <para>Type in:<constant>send break</constant></para> - <para>Press: <constant>Enter</constant></para> - <para>Press: <constant>g</constant></para> - </listitem> - </itemizedlist> - </para> - </listitem> - <listitem> - <para>Connect from gdb</para> - <para> - Example (using a directly connected port): - </para> - <programlisting> - % gdb ./vmlinux - (gdb) set remotebaud 115200 - (gdb) target remote /dev/ttyS0 - </programlisting> - <para> - Example (kgdb to a terminal server on TCP port 2012): - </para> - <programlisting> - % gdb ./vmlinux - (gdb) target remote 192.168.2.2:2012 - </programlisting> - <para> - Once connected, you can debug a kernel the way you would debug an - application program. - </para> - <para> - If you are having problems connecting or something is going - seriously wrong while debugging, it will most often be the case - that you want to enable gdb to be verbose about its target - communications. You do this prior to issuing the <constant>target - remote</constant> command by typing in: <constant>set debug remote 1</constant> - </para> - </listitem> - </orderedlist> - <para>Remember if you continue in gdb, and need to "break in" again, - you need to issue an other sysrq-g. It is easy to create a simple - entry point by putting a breakpoint at <constant>sys_sync</constant> - and then you can run "sync" from a shell or script to break into the - debugger.</para> - </sect1> - </chapter> - <chapter id="switchKdbKgdb"> - <title>kgdb and kdb interoperability</title> - <para>It is possible to transition between kdb and kgdb dynamically. - The debug core will remember which you used the last time and - automatically start in the same mode.</para> - <sect1> - <title>Switching between kdb and kgdb</title> - <sect2> - <title>Switching from kgdb to kdb</title> - <para> - There are two ways to switch from kgdb to kdb: you can use gdb to - issue a maintenance packet, or you can blindly type the command $3#33. - Whenever the kernel debugger stops in kgdb mode it will print the - message <constant>KGDB or $3#33 for KDB</constant>. It is important - to note that you have to type the sequence correctly in one pass. - You cannot type a backspace or delete because kgdb will interpret - that as part of the debug stream. - <orderedlist> - <listitem><para>Change from kgdb to kdb by blindly typing:</para> - <para><constant>$3#33</constant></para></listitem> - <listitem><para>Change from kgdb to kdb with gdb</para> - <para><constant>maintenance packet 3</constant></para> - <para>NOTE: Now you must kill gdb. Typically you press control-z and - issue the command: kill -9 %</para></listitem> - </orderedlist> - </para> - </sect2> - <sect2> - <title>Change from kdb to kgdb</title> - <para>There are two ways you can change from kdb to kgdb. You can - manually enter kgdb mode by issuing the kgdb command from the kdb - shell prompt, or you can connect gdb while the kdb shell prompt is - active. The kdb shell looks for the typical first commands that gdb - would issue with the gdb remote protocol and if it sees one of those - commands it automatically changes into kgdb mode.</para> - <orderedlist> - <listitem><para>From kdb issue the command:</para> - <para><constant>kgdb</constant></para> - <para>Now disconnect your terminal program and connect gdb in its place</para></listitem> - <listitem><para>At the kdb prompt, disconnect the terminal program and connect gdb in its place.</para></listitem> - </orderedlist> - </sect2> - </sect1> - <sect1> - <title>Running kdb commands from gdb</title> - <para>It is possible to run a limited set of kdb commands from gdb, - using the gdb monitor command. You don't want to execute any of the - run control or breakpoint operations, because it can disrupt the - state of the kernel debugger. You should be using gdb for - breakpoints and run control operations if you have gdb connected. - The more useful commands to run are things like lsmod, dmesg, ps or - possibly some of the memory information commands. To see all the kdb - commands you can run <constant>monitor help</constant>.</para> - <para>Example: - <informalexample><programlisting> -(gdb) monitor ps -1 idle process (state I) and -27 sleeping system daemon (state M) processes suppressed, -use 'ps A' to see all. -Task Addr Pid Parent [*] cpu State Thread Command - -0xc78291d0 1 0 0 0 S 0xc7829404 init -0xc7954150 942 1 0 0 S 0xc7954384 dropbear -0xc78789c0 944 1 0 0 S 0xc7878bf4 sh -(gdb) - </programlisting></informalexample> - </para> - </sect1> - </chapter> - <chapter id="KGDBTestSuite"> - <title>kgdb Test Suite</title> - <para> - When kgdb is enabled in the kernel config you can also elect to - enable the config parameter KGDB_TESTS. Turning this on will - enable a special kgdb I/O module which is designed to test the - kgdb internal functions. - </para> - <para> - The kgdb tests are mainly intended for developers to test the kgdb - internals as well as a tool for developing a new kgdb architecture - specific implementation. These tests are not really for end users - of the Linux kernel. The primary source of documentation would be - to look in the drivers/misc/kgdbts.c file. - </para> - <para> - The kgdb test suite can also be configured at compile time to run - the core set of tests by setting the kernel config parameter - KGDB_TESTS_ON_BOOT. This particular option is aimed at automated - regression testing and does not require modifying the kernel boot - config arguments. If this is turned on, the kgdb test suite can - be disabled by specifying "kgdbts=" as a kernel boot argument. - </para> - </chapter> - <chapter id="CommonBackEndReq"> - <title>Kernel Debugger Internals</title> - <sect1 id="kgdbArchitecture"> - <title>Architecture Specifics</title> - <para> - The kernel debugger is organized into a number of components: - <orderedlist> - <listitem><para>The debug core</para> - <para> - The debug core is found in kernel/debugger/debug_core.c. It contains: - <itemizedlist> - <listitem><para>A generic OS exception handler which includes - sync'ing the processors into a stopped state on an multi-CPU - system.</para></listitem> - <listitem><para>The API to talk to the kgdb I/O drivers</para></listitem> - <listitem><para>The API to make calls to the arch-specific kgdb implementation</para></listitem> - <listitem><para>The logic to perform safe memory reads and writes to memory while using the debugger</para></listitem> - <listitem><para>A full implementation for software breakpoints unless overridden by the arch</para></listitem> - <listitem><para>The API to invoke either the kdb or kgdb frontend to the debug core.</para></listitem> - <listitem><para>The structures and callback API for atomic kernel mode setting.</para> - <para>NOTE: kgdboc is where the kms callbacks are invoked.</para></listitem> - </itemizedlist> - </para> - </listitem> - <listitem><para>kgdb arch-specific implementation</para> - <para> - This implementation is generally found in arch/*/kernel/kgdb.c. - As an example, arch/x86/kernel/kgdb.c contains the specifics to - implement HW breakpoint as well as the initialization to - dynamically register and unregister for the trap handlers on - this architecture. The arch-specific portion implements: - <itemizedlist> - <listitem><para>contains an arch-specific trap catcher which - invokes kgdb_handle_exception() to start kgdb about doing its - work</para></listitem> - <listitem><para>translation to and from gdb specific packet format to pt_regs</para></listitem> - <listitem><para>Registration and unregistration of architecture specific trap hooks</para></listitem> - <listitem><para>Any special exception handling and cleanup</para></listitem> - <listitem><para>NMI exception handling and cleanup</para></listitem> - <listitem><para>(optional) HW breakpoints</para></listitem> - </itemizedlist> - </para> - </listitem> - <listitem><para>gdbstub frontend (aka kgdb)</para> - <para>The gdbstub is located in kernel/debug/gdbstub.c. It contains:</para> - <itemizedlist> - <listitem><para>All the logic to implement the gdb serial protocol</para></listitem> - </itemizedlist> - </listitem> - <listitem><para>kdb frontend</para> - <para>The kdb debugger shell is broken down into a number of - components. The kdb core is located in kernel/debug/kdb. There - are a number of helper functions in some of the other kernel - components to make it possible for kdb to examine and report - information about the kernel without taking locks that could - cause a kernel deadlock. The kdb core contains implements the following functionality.</para> - <itemizedlist> - <listitem><para>A simple shell</para></listitem> - <listitem><para>The kdb core command set</para></listitem> - <listitem><para>A registration API to register additional kdb shell commands.</para> - <itemizedlist> - <listitem><para>A good example of a self-contained kdb module - is the "ftdump" command for dumping the ftrace buffer. See: - kernel/trace/trace_kdb.c</para></listitem> - <listitem><para>For an example of how to dynamically register - a new kdb command you can build the kdb_hello.ko kernel module - from samples/kdb/kdb_hello.c. To build this example you can - set CONFIG_SAMPLES=y and CONFIG_SAMPLE_KDB=m in your kernel - config. Later run "modprobe kdb_hello" and the next time you - enter the kdb shell, you can run the "hello" - command.</para></listitem> - </itemizedlist></listitem> - <listitem><para>The implementation for kdb_printf() which - emits messages directly to I/O drivers, bypassing the kernel - log.</para></listitem> - <listitem><para>SW / HW breakpoint management for the kdb shell</para></listitem> - </itemizedlist> - </listitem> - <listitem><para>kgdb I/O driver</para> - <para> - Each kgdb I/O driver has to provide an implementation for the following: - <itemizedlist> - <listitem><para>configuration via built-in or module</para></listitem> - <listitem><para>dynamic configuration and kgdb hook registration calls</para></listitem> - <listitem><para>read and write character interface</para></listitem> - <listitem><para>A cleanup handler for unconfiguring from the kgdb core</para></listitem> - <listitem><para>(optional) Early debug methodology</para></listitem> - </itemizedlist> - Any given kgdb I/O driver has to operate very closely with the - hardware and must do it in such a way that does not enable - interrupts or change other parts of the system context without - completely restoring them. The kgdb core will repeatedly "poll" - a kgdb I/O driver for characters when it needs input. The I/O - driver is expected to return immediately if there is no data - available. Doing so allows for the future possibility to touch - watchdog hardware in such a way as to have a target system not - reset when these are enabled. - </para> - </listitem> - </orderedlist> - </para> - <para> - If you are intent on adding kgdb architecture specific support - for a new architecture, the architecture should define - <constant>HAVE_ARCH_KGDB</constant> in the architecture specific - Kconfig file. This will enable kgdb for the architecture, and - at that point you must create an architecture specific kgdb - implementation. - </para> - <para> - There are a few flags which must be set on every architecture in - their <asm/kgdb.h> file. These are: - <itemizedlist> - <listitem> - <para> - NUMREGBYTES: The size in bytes of all of the registers, so - that we can ensure they will all fit into a packet. - </para> - </listitem> - <listitem> - <para> - BUFMAX: The size in bytes of the buffer GDB will read into. - This must be larger than NUMREGBYTES. - </para> - </listitem> - <listitem> - <para> - CACHE_FLUSH_IS_SAFE: Set to 1 if it is always safe to call - flush_cache_range or flush_icache_range. On some architectures, - these functions may not be safe to call on SMP since we keep other - CPUs in a holding pattern. - </para> - </listitem> - </itemizedlist> - </para> - <para> - There are also the following functions for the common backend, - found in kernel/kgdb.c, that must be supplied by the - architecture-specific backend unless marked as (optional), in - which case a default function maybe used if the architecture - does not need to provide a specific implementation. - </para> -!Iinclude/linux/kgdb.h - </sect1> - <sect1 id="kgdbocDesign"> - <title>kgdboc internals</title> - <sect2> - <title>kgdboc and uarts</title> - <para> - The kgdboc driver is actually a very thin driver that relies on the - underlying low level to the hardware driver having "polling hooks" - to which the tty driver is attached. In the initial - implementation of kgdboc the serial_core was changed to expose a - low level UART hook for doing polled mode reading and writing of a - single character while in an atomic context. When kgdb makes an I/O - request to the debugger, kgdboc invokes a callback in the serial - core which in turn uses the callback in the UART driver.</para> - <para> - When using kgdboc with a UART, the UART driver must implement two callbacks in the <constant>struct uart_ops</constant>. Example from drivers/8250.c:<programlisting> -#ifdef CONFIG_CONSOLE_POLL - .poll_get_char = serial8250_get_poll_char, - .poll_put_char = serial8250_put_poll_char, -#endif - </programlisting> - Any implementation specifics around creating a polling driver use the - <constant>#ifdef CONFIG_CONSOLE_POLL</constant>, as shown above. - Keep in mind that polling hooks have to be implemented in such a way - that they can be called from an atomic context and have to restore - the state of the UART chip on return such that the system can return - to normal when the debugger detaches. You need to be very careful - with any kind of lock you consider, because failing here is most likely - going to mean pressing the reset button. - </para> - </sect2> - <sect2 id="kgdbocKbd"> - <title>kgdboc and keyboards</title> - <para>The kgdboc driver contains logic to configure communications - with an attached keyboard. The keyboard infrastructure is only - compiled into the kernel when CONFIG_KDB_KEYBOARD=y is set in the - kernel configuration.</para> - <para>The core polled keyboard driver driver for PS/2 type keyboards - is in drivers/char/kdb_keyboard.c. This driver is hooked into the - debug core when kgdboc populates the callback in the array - called <constant>kdb_poll_funcs[]</constant>. The - kdb_get_kbd_char() is the top-level function which polls hardware - for single character input. - </para> - </sect2> - <sect2 id="kgdbocKms"> - <title>kgdboc and kms</title> - <para>The kgdboc driver contains logic to request the graphics - display to switch to a text context when you are using - "kgdboc=kms,kbd", provided that you have a video driver which has a - frame buffer console and atomic kernel mode setting support.</para> - <para> - Every time the kernel - debugger is entered it calls kgdboc_pre_exp_handler() which in turn - calls con_debug_enter() in the virtual console layer. On resuming kernel - execution, the kernel debugger calls kgdboc_post_exp_handler() which - in turn calls con_debug_leave().</para> - <para>Any video driver that wants to be compatible with the kernel - debugger and the atomic kms callbacks must implement the - mode_set_base_atomic, fb_debug_enter and fb_debug_leave operations. - For the fb_debug_enter and fb_debug_leave the option exists to use - the generic drm fb helper functions or implement something custom for - the hardware. The following example shows the initialization of the - .mode_set_base_atomic operation in - drivers/gpu/drm/i915/intel_display.c: - <informalexample> - <programlisting> -static const struct drm_crtc_helper_funcs intel_helper_funcs = { -[...] - .mode_set_base_atomic = intel_pipe_set_base_atomic, -[...] -}; - </programlisting> - </informalexample> - </para> - <para>Here is an example of how the i915 driver initializes the fb_debug_enter and fb_debug_leave functions to use the generic drm helpers in - drivers/gpu/drm/i915/intel_fb.c: - <informalexample> - <programlisting> -static struct fb_ops intelfb_ops = { -[...] - .fb_debug_enter = drm_fb_helper_debug_enter, - .fb_debug_leave = drm_fb_helper_debug_leave, -[...] -}; - </programlisting> - </informalexample> - </para> - </sect2> - </sect1> - </chapter> - <chapter id="credits"> - <title>Credits</title> - <para> - The following people have contributed to this document: - <orderedlist> - <listitem><para>Amit Kale<email>amitkale@linsyssoft.com</email></para></listitem> - <listitem><para>Tom Rini<email>trini@kernel.crashing.org</email></para></listitem> - </orderedlist> - In March 2008 this document was completely rewritten by: - <itemizedlist> - <listitem><para>Jason Wessel<email>jason.wessel@windriver.com</email></para></listitem> - </itemizedlist> - In Jan 2010 this document was updated to include kdb. - <itemizedlist> - <listitem><para>Jason Wessel<email>jason.wessel@windriver.com</email></para></listitem> - </itemizedlist> - </para> - </chapter> -</book> - |