summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorDave Chinner <dchinner@redhat.com>2016-01-19 08:28:10 +1100
committerDave Chinner <david@fromorbit.com>2016-01-19 08:28:10 +1100
commit85bec5460ad8e05e0a8d70fb0f6750eb719ad092 (patch)
tree212b66fd573f8f2e6ec0f9a12af1bd512e0a8264
parent3e85286e75224fa3f08bdad20e78c8327742634e (diff)
downloadop-kernel-dev-85bec5460ad8e05e0a8d70fb0f6750eb719ad092.zip
op-kernel-dev-85bec5460ad8e05e0a8d70fb0f6750eb719ad092.tar.gz
xfs: log mount failures don't wait for buffers to be released
Recently I've been seeing xfs/051 fail on 1k block size filesystems. Trying to trace the events during the test lead to the problem going away, indicating that it was a race condition that lead to this ASSERT failure: XFS: Assertion failed: atomic_read(&pag->pag_ref) == 0, file: fs/xfs/xfs_mount.c, line: 156 ..... [<ffffffff814e1257>] xfs_free_perag+0x87/0xb0 [<ffffffff814e21b9>] xfs_mountfs+0x4d9/0x900 [<ffffffff814e5dff>] xfs_fs_fill_super+0x3bf/0x4d0 [<ffffffff811d8800>] mount_bdev+0x180/0x1b0 [<ffffffff814e3ff5>] xfs_fs_mount+0x15/0x20 [<ffffffff811d90a8>] mount_fs+0x38/0x170 [<ffffffff811f4347>] vfs_kern_mount+0x67/0x120 [<ffffffff811f7018>] do_mount+0x218/0xd60 [<ffffffff811f7e5b>] SyS_mount+0x8b/0xd0 When I finally caught it with tracing enabled, I saw that AG 2 had an elevated reference count and a buffer was responsible for it. I tracked down the specific buffer, and found that it was missing the final reference count release that would put it back on the LRU and hence be found by xfs_wait_buftarg() calls in the log mount failure handling. The last four traces for the buffer before the assert were (trimmed for relevance) kworker/0:1-5259 xfs_buf_iodone: hold 2 lock 0 flags ASYNC kworker/0:1-5259 xfs_buf_ioerror: hold 2 lock 0 error -5 mount-7163 xfs_buf_lock_done: hold 2 lock 0 flags ASYNC mount-7163 xfs_buf_unlock: hold 2 lock 1 flags ASYNC This is an async write that is completing, so there's nobody waiting for it directly. Hence we call xfs_buf_relse() once all the processing is complete. That does: static inline void xfs_buf_relse(xfs_buf_t *bp) { xfs_buf_unlock(bp); xfs_buf_rele(bp); } Now, it's clear that mount is waiting on the buffer lock, and that it has been released by xfs_buf_relse() and gained by mount. This is expected, because at this point the mount process is in xfs_buf_delwri_submit() waiting for all the IO it submitted to complete. The mount process, however, is waiting on the lock for the buffer because it is in xfs_buf_delwri_submit(). This waits for IO completion, but it doesn't wait for the buffer reference owned by the IO to go away. The mount process collects all the completions, fails the log recovery, and the higher level code then calls xfs_wait_buftarg() to free all the remaining buffers in the filesystem. The issue is that on unlocking the buffer, the scheduler has decided that the mount process has higher priority than the the kworker thread that is running the IO completion, and so immediately switched contexts to the mount process from the semaphore unlock code, hence preventing the kworker thread from finishing the IO completion and releasing the IO reference to the buffer. Hence by the time that xfs_wait_buftarg() is run, the buffer still has an active reference and so isn't on the LRU list that the function walks to free the remaining buffers. Hence we miss that buffer and continue onwards to tear down the mount structures, at which time we get find a stray reference count on the perag structure. On a non-debug kernel, this will be ignored and the structure torn down and freed. Hence when the kworker thread is then rescheduled and the buffer released and freed, it will access a freed perag structure. The problem here is that when the log mount fails, we still need to quiesce the log to ensure that the IO workqueues have returned to idle before we run xfs_wait_buftarg(). By synchronising the workqueues, we ensure that all IO completions are fully processed, not just to the point where buffers have been unlocked. This ensures we don't end up in the situation above. cc: <stable@vger.kernel.org> # 3.18 Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Dave Chinner <david@fromorbit.com>
-rw-r--r--fs/xfs/xfs_buf.c10
1 files changed, 10 insertions, 0 deletions
diff --git a/fs/xfs/xfs_buf.c b/fs/xfs/xfs_buf.c
index 3243cdf..cbddb91 100644
--- a/fs/xfs/xfs_buf.c
+++ b/fs/xfs/xfs_buf.c
@@ -1520,6 +1520,16 @@ xfs_wait_buftarg(
LIST_HEAD(dispose);
int loop = 0;
+ /*
+ * We need to flush the buffer workqueue to ensure that all IO
+ * completion processing is 100% done. Just waiting on buffer locks is
+ * not sufficient for async IO as the reference count held over IO is
+ * not released until after the buffer lock is dropped. Hence we need to
+ * ensure here that all reference counts have been dropped before we
+ * start walking the LRU list.
+ */
+ drain_workqueue(btp->bt_mount->m_buf_workqueue);
+
/* loop until there is nothing left on the lru list. */
while (list_lru_count(&btp->bt_lru)) {
list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
OpenPOWER on IntegriCloud