summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorMinchan Kim <minchan@kernel.org>2015-04-15 16:15:46 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2015-04-15 16:35:21 -0700
commitd02be50dba649b4246e0c1c4b7cb5d8a8d49de9a (patch)
tree8f9abae32accfac491d48a044fa92c9f6a17ea90
parent248ca1b053c82fa22427d22b33ac51a24c88a86d (diff)
downloadop-kernel-dev-d02be50dba649b4246e0c1c4b7cb5d8a8d49de9a.zip
op-kernel-dev-d02be50dba649b4246e0c1c4b7cb5d8a8d49de9a.tar.gz
zsmalloc: zsmalloc documentation
Create zsmalloc doc which explains design concept and stat information. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Juneho Choi <juno.choi@lge.com> Cc: Gunho Lee <gunho.lee@lge.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: Seth Jennings <sjennings@variantweb.net> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-rw-r--r--Documentation/vm/zsmalloc.txt70
-rw-r--r--MAINTAINERS1
-rw-r--r--mm/zsmalloc.c29
3 files changed, 71 insertions, 29 deletions
diff --git a/Documentation/vm/zsmalloc.txt b/Documentation/vm/zsmalloc.txt
new file mode 100644
index 0000000..64ed63c
--- /dev/null
+++ b/Documentation/vm/zsmalloc.txt
@@ -0,0 +1,70 @@
+zsmalloc
+--------
+
+This allocator is designed for use with zram. Thus, the allocator is
+supposed to work well under low memory conditions. In particular, it
+never attempts higher order page allocation which is very likely to
+fail under memory pressure. On the other hand, if we just use single
+(0-order) pages, it would suffer from very high fragmentation --
+any object of size PAGE_SIZE/2 or larger would occupy an entire page.
+This was one of the major issues with its predecessor (xvmalloc).
+
+To overcome these issues, zsmalloc allocates a bunch of 0-order pages
+and links them together using various 'struct page' fields. These linked
+pages act as a single higher-order page i.e. an object can span 0-order
+page boundaries. The code refers to these linked pages as a single entity
+called zspage.
+
+For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
+since this satisfies the requirements of all its current users (in the
+worst case, page is incompressible and is thus stored "as-is" i.e. in
+uncompressed form). For allocation requests larger than this size, failure
+is returned (see zs_malloc).
+
+Additionally, zs_malloc() does not return a dereferenceable pointer.
+Instead, it returns an opaque handle (unsigned long) which encodes actual
+location of the allocated object. The reason for this indirection is that
+zsmalloc does not keep zspages permanently mapped since that would cause
+issues on 32-bit systems where the VA region for kernel space mappings
+is very small. So, before using the allocating memory, the object has to
+be mapped using zs_map_object() to get a usable pointer and subsequently
+unmapped using zs_unmap_object().
+
+stat
+----
+
+With CONFIG_ZSMALLOC_STAT, we could see zsmalloc internal information via
+/sys/kernel/debug/zsmalloc/<user name>. Here is a sample of stat output:
+
+# cat /sys/kernel/debug/zsmalloc/zram0/classes
+
+ class size almost_full almost_empty obj_allocated obj_used pages_used pages_per_zspage
+ ..
+ ..
+ 9 176 0 1 186 129 8 4
+ 10 192 1 0 2880 2872 135 3
+ 11 208 0 1 819 795 42 2
+ 12 224 0 1 219 159 12 4
+ ..
+ ..
+
+
+class: index
+size: object size zspage stores
+almost_empty: the number of ZS_ALMOST_EMPTY zspages(see below)
+almost_full: the number of ZS_ALMOST_FULL zspages(see below)
+obj_allocated: the number of objects allocated
+obj_used: the number of objects allocated to the user
+pages_used: the number of pages allocated for the class
+pages_per_zspage: the number of 0-order pages to make a zspage
+
+We assign a zspage to ZS_ALMOST_EMPTY fullness group when:
+ n <= N / f, where
+n = number of allocated objects
+N = total number of objects zspage can store
+f = fullness_threshold_frac(ie, 4 at the moment)
+
+Similarly, we assign zspage to:
+ ZS_ALMOST_FULL when n > N / f
+ ZS_EMPTY when n == 0
+ ZS_FULL when n == N
diff --git a/MAINTAINERS b/MAINTAINERS
index 6ee1e79..1909813 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -10972,6 +10972,7 @@ L: linux-mm@kvack.org
S: Maintained
F: mm/zsmalloc.c
F: include/linux/zsmalloc.h
+F: Documentation/vm/zsmalloc.txt
ZSWAP COMPRESSED SWAP CACHING
M: Seth Jennings <sjennings@variantweb.net>
diff --git a/mm/zsmalloc.c b/mm/zsmalloc.c
index 461243e..1833fc9 100644
--- a/mm/zsmalloc.c
+++ b/mm/zsmalloc.c
@@ -12,35 +12,6 @@
*/
/*
- * This allocator is designed for use with zram. Thus, the allocator is
- * supposed to work well under low memory conditions. In particular, it
- * never attempts higher order page allocation which is very likely to
- * fail under memory pressure. On the other hand, if we just use single
- * (0-order) pages, it would suffer from very high fragmentation --
- * any object of size PAGE_SIZE/2 or larger would occupy an entire page.
- * This was one of the major issues with its predecessor (xvmalloc).
- *
- * To overcome these issues, zsmalloc allocates a bunch of 0-order pages
- * and links them together using various 'struct page' fields. These linked
- * pages act as a single higher-order page i.e. an object can span 0-order
- * page boundaries. The code refers to these linked pages as a single entity
- * called zspage.
- *
- * For simplicity, zsmalloc can only allocate objects of size up to PAGE_SIZE
- * since this satisfies the requirements of all its current users (in the
- * worst case, page is incompressible and is thus stored "as-is" i.e. in
- * uncompressed form). For allocation requests larger than this size, failure
- * is returned (see zs_malloc).
- *
- * Additionally, zs_malloc() does not return a dereferenceable pointer.
- * Instead, it returns an opaque handle (unsigned long) which encodes actual
- * location of the allocated object. The reason for this indirection is that
- * zsmalloc does not keep zspages permanently mapped since that would cause
- * issues on 32-bit systems where the VA region for kernel space mappings
- * is very small. So, before using the allocating memory, the object has to
- * be mapped using zs_map_object() to get a usable pointer and subsequently
- * unmapped using zs_unmap_object().
- *
* Following is how we use various fields and flags of underlying
* struct page(s) to form a zspage.
*
OpenPOWER on IntegriCloud