diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2017-02-22 11:44:32 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2017-02-22 11:44:32 -0800 |
commit | b2064617c74f301dab1448f1f9c8dbb3c8021058 (patch) | |
tree | 02998695437a023316103256e6c0242e47e4b5eb | |
parent | e30aee9e10bb5168579e047f05c3d13d09e23356 (diff) | |
parent | 17627157cda13089d8a6c1c2d35acb07334b899c (diff) | |
download | op-kernel-dev-b2064617c74f301dab1448f1f9c8dbb3c8021058.zip op-kernel-dev-b2064617c74f301dab1448f1f9c8dbb3c8021058.tar.gz |
Merge tag 'driver-core-4.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg KH:
"Here is the "small" driver core patches for 4.11-rc1.
Not much here, some firmware documentation and self-test updates, a
debugfs code formatting issue, and a new feature for call_usermodehelper
to make it more robust on systems that want to lock it down in a more
secure way.
All of these have been linux-next for a while now with no reported
issues"
* tag 'driver-core-4.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core:
kernfs: handle null pointers while printing node name and path
Introduce STATIC_USERMODEHELPER to mediate call_usermodehelper()
Make static usermode helper binaries constant
kmod: make usermodehelper path a const string
firmware: revamp firmware documentation
selftests: firmware: send expected errors to /dev/null
selftests: firmware: only modprobe if driver is missing
platform: Print the resource range if device failed to claim
kref: prefer atomic_inc_not_zero to atomic_add_unless
debugfs: improve formatting of debugfs_real_fops()
27 files changed, 593 insertions, 173 deletions
diff --git a/Documentation/driver-api/firmware/built-in-fw.rst b/Documentation/driver-api/firmware/built-in-fw.rst new file mode 100644 index 0000000..7300e66 --- /dev/null +++ b/Documentation/driver-api/firmware/built-in-fw.rst @@ -0,0 +1,38 @@ +================= +Built-in firmware +================= + +Firmware can be built-in to the kernel, this means building the firmware +into vmlinux directly, to enable avoiding having to look for firmware from +the filesystem. Instead, firmware can be looked for inside the kernel +directly. You can enable built-in firmware using the kernel configuration +options: + + * CONFIG_EXTRA_FIRMWARE + * CONFIG_EXTRA_FIRMWARE_DIR + +This should not be confused with CONFIG_FIRMWARE_IN_KERNEL, this is for drivers +which enables firmware to be built as part of the kernel build process. This +option, CONFIG_FIRMWARE_IN_KERNEL, will build all firmware for all drivers +enabled which ship its firmware inside the Linux kernel source tree. + +There are a few reasons why you might want to consider building your firmware +into the kernel with CONFIG_EXTRA_FIRMWARE though: + +* Speed +* Firmware is needed for accessing the boot device, and the user doesn't + want to stuff the firmware into the boot initramfs. + +Even if you have these needs there are a few reasons why you may not be +able to make use of built-in firmware: + +* Legalese - firmware is non-GPL compatible +* Some firmware may be optional +* Firmware upgrades are possible, therefore a new firmware would implicate + a complete kernel rebuild. +* Some firmware files may be really large in size. The remote-proc subsystem + is an example subsystem which deals with these sorts of firmware +* The firmware may need to be scraped out from some device specific location + dynamically, an example is calibration data for for some WiFi chipsets. This + calibration data can be unique per sold device. + diff --git a/Documentation/driver-api/firmware/core.rst b/Documentation/driver-api/firmware/core.rst new file mode 100644 index 0000000..1d1688c --- /dev/null +++ b/Documentation/driver-api/firmware/core.rst @@ -0,0 +1,16 @@ +========================== +Firmware API core features +========================== + +The firmware API has a rich set of core features available. This section +documents these features. + +.. toctree:: + + fw_search_path + built-in-fw + firmware_cache + direct-fs-lookup + fallback-mechanisms + lookup-order + diff --git a/Documentation/driver-api/firmware/direct-fs-lookup.rst b/Documentation/driver-api/firmware/direct-fs-lookup.rst new file mode 100644 index 0000000..82b4d58 --- /dev/null +++ b/Documentation/driver-api/firmware/direct-fs-lookup.rst @@ -0,0 +1,30 @@ +======================== +Direct filesystem lookup +======================== + +Direct filesystem lookup is the most common form of firmware lookup performed +by the kernel. The kernel looks for the firmware directly on the root +filesystem in the paths documented in the section 'Firmware search paths'. +The filesystem lookup is implemented in fw_get_filesystem_firmware(), it +uses common core kernel file loader facility kernel_read_file_from_path(). +The max path allowed is PATH_MAX -- currently this is 4096 characters. + +It is recommended you keep /lib/firmware paths on your root filesystem, +avoid having a separate partition for them in order to avoid possible +races with lookups and avoid uses of the custom fallback mechanisms +documented below. + +Firmware and initramfs +---------------------- + +Drivers which are built-in to the kernel should have the firmware integrated +also as part of the initramfs used to boot the kernel given that otherwise +a race is possible with loading the driver and the real rootfs not yet being +available. Stuffing the firmware into initramfs resolves this race issue, +however note that using initrd does not suffice to address the same race. + +There are circumstances that justify not wanting to include firmware into +initramfs, such as dealing with large firmware firmware files for the +remote-proc subsystem. For such cases using a userspace fallback mechanism +is currently the only viable solution as only userspace can know for sure +when the real rootfs is ready and mounted. diff --git a/Documentation/driver-api/firmware/fallback-mechanisms.rst b/Documentation/driver-api/firmware/fallback-mechanisms.rst new file mode 100644 index 0000000..d193547 --- /dev/null +++ b/Documentation/driver-api/firmware/fallback-mechanisms.rst @@ -0,0 +1,195 @@ +=================== +Fallback mechanisms +=================== + +A fallback mechanism is supported to allow to overcome failures to do a direct +filesystem lookup on the root filesystem or when the firmware simply cannot be +installed for practical reasons on the root filesystem. The kernel +configuration options related to supporting the firmware fallback mechanism are: + + * CONFIG_FW_LOADER_USER_HELPER: enables building the firmware fallback + mechanism. Most distributions enable this option today. If enabled but + CONFIG_FW_LOADER_USER_HELPER_FALLBACK is disabled, only the custom fallback + mechanism is available and for the request_firmware_nowait() call. + * CONFIG_FW_LOADER_USER_HELPER_FALLBACK: force enables each request to + enable the kobject uevent fallback mechanism on all firmware API calls + except request_firmware_direct(). Most distributions disable this option + today. The call request_firmware_nowait() allows for one alternative + fallback mechanism: if this kconfig option is enabled and your second + argument to request_firmware_nowait(), uevent, is set to false you are + informing the kernel that you have a custom fallback mechanism and it will + manually load the firmware. Read below for more details. + +Note that this means when having this configuration: + +CONFIG_FW_LOADER_USER_HELPER=y +CONFIG_FW_LOADER_USER_HELPER_FALLBACK=n + +the kobject uevent fallback mechanism will never take effect even +for request_firmware_nowait() when uevent is set to true. + +Justifying the firmware fallback mechanism +========================================== + +Direct filesystem lookups may fail for a variety of reasons. Known reasons for +this are worth itemizing and documenting as it justifies the need for the +fallback mechanism: + +* Race against access with the root filesystem upon bootup. + +* Races upon resume from suspend. This is resolved by the firmware cache, but + the firmware cache is only supported if you use uevents, and its not + supported for request_firmware_into_buf(). + +* Firmware is not accessible through typical means: + * It cannot be installed into the root filesystem + * The firmware provides very unique device specific data tailored for + the unit gathered with local information. An example is calibration + data for WiFi chipsets for mobile devices. This calibration data is + not common to all units, but tailored per unit. Such information may + be installed on a separate flash partition other than where the root + filesystem is provided. + +Types of fallback mechanisms +============================ + +There are really two fallback mechanisms available using one shared sysfs +interface as a loading facility: + +* Kobject uevent fallback mechanism +* Custom fallback mechanism + +First lets document the shared sysfs loading facility. + +Firmware sysfs loading facility +=============================== + +In order to help device drivers upload firmware using a fallback mechanism +the firmware infrastructure creates a sysfs interface to enable userspace +to load and indicate when firmware is ready. The sysfs directory is created +via fw_create_instance(). This call creates a new struct device named after +the firmware requested, and establishes it in the device hierarchy by +associating the device used to make the request as the device's parent. +The sysfs directory's file attributes are defined and controlled through +the new device's class (firmare_class) and group (fw_dev_attr_groups). +This is actually where the original firmware_class.c file name comes from, +as originally the only firmware loading mechanism available was the +mechanism we now use as a fallback mechanism. + +To load firmware using the sysfs interface we expose a loading indicator, +and a file upload firmware into: + + * /sys/$DEVPATH/loading + * /sys/$DEVPATH/data + +To upload firmware you will echo 1 onto the loading file to indicate +you are loading firmware. You then cat the firmware into the data file, +and you notify the kernel the firmware is ready by echo'ing 0 onto +the loading file. + +The firmware device used to help load firmware using sysfs is only created if +direct firmware loading fails and if the fallback mechanism is enabled for your +firmware request, this is set up with fw_load_from_user_helper(). It is +important to re-iterate that no device is created if a direct filesystem lookup +succeeded. + +Using:: + + echo 1 > /sys/$DEVPATH/loading + +Will clean any previous partial load at once and make the firmware API +return an error. When loading firmware the firmware_class grows a buffer +for the firmware in PAGE_SIZE increments to hold the image as it comes in. + +firmware_data_read() and firmware_loading_show() are just provided for the +test_firmware driver for testing, they are not called in normal use or +expected to be used regularly by userspace. + +Firmware kobject uevent fallback mechanism +========================================== + +Since a device is created for the sysfs interface to help load firmware as a +fallback mechanism userspace can be informed of the addition of the device by +relying on kobject uevents. The addition of the device into the device +hierarchy means the fallback mechanism for firmware loading has been initiated. +For details of implementation refer to _request_firmware_load(), in particular +on the use of dev_set_uevent_suppress() and kobject_uevent(). + +The kernel's kobject uevent mechanism is implemented in lib/kobject_uevent.c, +it issues uevents to userspace. As a supplement to kobject uevents Linux +distributions could also enable CONFIG_UEVENT_HELPER_PATH, which makes use of +core kernel's usermode helper (UMH) functionality to call out to a userspace +helper for kobject uevents. In practice though no standard distribution has +ever used the CONFIG_UEVENT_HELPER_PATH. If CONFIG_UEVENT_HELPER_PATH is +enabled this binary would be called each time kobject_uevent_env() gets called +in the kernel for each kobject uevent triggered. + +Different implementations have been supported in userspace to take advantage of +this fallback mechanism. When firmware loading was only possible using the +sysfs mechanism the userspace component "hotplug" provided the functionality of +monitoring for kobject events. Historically this was superseded be systemd's +udev, however firmware loading support was removed from udev as of systemd +commit be2ea723b1d0 ("udev: remove userspace firmware loading support") +as of v217 on August, 2014. This means most Linux distributions today are +not using or taking advantage of the firmware fallback mechanism provided +by kobject uevents. This is specially exacerbated due to the fact that most +distributions today disable CONFIG_FW_LOADER_USER_HELPER_FALLBACK. + +Refer to do_firmware_uevent() for details of the kobject event variables +setup. Variables passwdd with a kobject add event: + +* FIRMWARE=firmware name +* TIMEOUT=timeout value +* ASYNC=whether or not the API request was asynchronous + +By default DEVPATH is set by the internal kernel kobject infrastructure. +Below is an example simple kobject uevent script:: + + # Both $DEVPATH and $FIRMWARE are already provided in the environment. + MY_FW_DIR=/lib/firmware/ + echo 1 > /sys/$DEVPATH/loading + cat $MY_FW_DIR/$FIRMWARE > /sys/$DEVPATH/data + echo 0 > /sys/$DEVPATH/loading + +Firmware custom fallback mechanism +================================== + +Users of the request_firmware_nowait() call have yet another option available +at their disposal: rely on the sysfs fallback mechanism but request that no +kobject uevents be issued to userspace. The original logic behind this +was that utilities other than udev might be required to lookup firmware +in non-traditional paths -- paths outside of the listing documented in the +section 'Direct filesystem lookup'. This option is not available to any of +the other API calls as uevents are always forced for them. + +Since uevents are only meaningful if the fallback mechanism is enabled +in your kernel it would seem odd to enable uevents with kernels that do not +have the fallback mechanism enabled in their kernels. Unfortunately we also +rely on the uevent flag which can be disabled by request_firmware_nowait() to +also setup the firmware cache for firmware requests. As documented above, +the firmware cache is only set up if uevent is enabled for an API call. +Although this can disable the firmware cache for request_firmware_nowait() +calls, users of this API should not use it for the purposes of disabling +the cache as that was not the original purpose of the flag. Not setting +the uevent flag means you want to opt-in for the firmware fallback mechanism +but you want to suppress kobject uevents, as you have a custom solution which +will monitor for your device addition into the device hierarchy somehow and +load firmware for you through a custom path. + +Firmware fallback timeout +========================= + +The firmware fallback mechanism has a timeout. If firmware is not loaded +onto the sysfs interface by the timeout value an error is sent to the +driver. By default the timeout is set to 60 seconds if uevents are +desirable, otherwise MAX_JIFFY_OFFSET is used (max timeout possible). +The logic behind using MAX_JIFFY_OFFSET for non-uevents is that a custom +solution will have as much time as it needs to load firmware. + +You can customize the firmware timeout by echo'ing your desired timeout into +the following file: + +* /sys/class/firmware/timeout + +If you echo 0 into it means MAX_JIFFY_OFFSET will be used. The data type +for the timeout is an int. diff --git a/Documentation/driver-api/firmware/firmware_cache.rst b/Documentation/driver-api/firmware/firmware_cache.rst new file mode 100644 index 0000000..2210e5b --- /dev/null +++ b/Documentation/driver-api/firmware/firmware_cache.rst @@ -0,0 +1,51 @@ +============== +Firmware cache +============== + +When Linux resumes from suspend some device drivers require firmware lookups to +re-initialize devices. During resume there may be a period of time during which +firmware lookups are not possible, during this short period of time firmware +requests will fail. Time is of essence though, and delaying drivers to wait for +the root filesystem for firmware delays user experience with device +functionality. In order to support these requirements the firmware +infrastructure implements a firmware cache for device drivers for most API +calls, automatically behind the scenes. + +The firmware cache makes using certain firmware API calls safe during a device +driver's suspend and resume callback. Users of these API calls needn't cache +the firmware by themselves for dealing with firmware loss during system resume. + +The firmware cache works by requesting for firmware prior to suspend and +caching it in memory. Upon resume device drivers using the firmware API will +have access to the firmware immediately, without having to wait for the root +filesystem to mount or dealing with possible race issues with lookups as the +root filesystem mounts. + +Some implementation details about the firmware cache setup: + +* The firmware cache is setup by adding a devres entry for each device that + uses all synchronous call except :c:func:`request_firmware_into_buf`. + +* If an asynchronous call is used the firmware cache is only set up for a + device if if the second argument (uevent) to request_firmware_nowait() is + true. When uevent is true it requests that a kobject uevent be sent to + userspace for the firmware request. For details refer to the Fackback + mechanism documented below. + +* If the firmware cache is determined to be needed as per the above two + criteria the firmware cache is setup by adding a devres entry for the + device making the firmware request. + +* The firmware devres entry is maintained throughout the lifetime of the + device. This means that even if you release_firmware() the firmware cache + will still be used on resume from suspend. + +* The timeout for the fallback mechanism is temporarily reduced to 10 seconds + as the firmware cache is set up during suspend, the timeout is set back to + the old value you had configured after the cache is set up. + +* Upon suspend any pending non-uevent firmware requests are killed to avoid + stalling the kernel, this is done with kill_requests_without_uevent(). Kernel + calls requiring the non-uevent therefore need to implement their own firmware + cache mechanism but must not use the firmware API on suspend. + diff --git a/Documentation/driver-api/firmware/fw_search_path.rst b/Documentation/driver-api/firmware/fw_search_path.rst new file mode 100644 index 0000000..a360f10 --- /dev/null +++ b/Documentation/driver-api/firmware/fw_search_path.rst @@ -0,0 +1,26 @@ +===================== +Firmware search paths +===================== + +The following search paths are used to look for firmware on your +root filesystem. + +* fw_path_para - module parameter - default is empty so this is ignored +* /lib/firmware/updates/UTS_RELEASE/ +* /lib/firmware/updates/ +* /lib/firmware/UTS_RELEASE/ +* /lib/firmware/ + +The module parameter ''path'' can be passed to the firmware_class module +to activate the first optional custom fw_path_para. The custom path can +only be up to 256 characters long. The kernel parameter passed would be: + +* 'firmware_class.path=$CUSTOMIZED_PATH' + +There is an alternative to customize the path at run time after bootup, you +can use the file: + +* /sys/module/firmware_class/parameters/path + +You would echo into it your custom path and firmware requested will be +searched for there first. diff --git a/Documentation/driver-api/firmware/index.rst b/Documentation/driver-api/firmware/index.rst new file mode 100644 index 0000000..1abe017 --- /dev/null +++ b/Documentation/driver-api/firmware/index.rst @@ -0,0 +1,16 @@ +================== +Linux Firmware API +================== + +.. toctree:: + + introduction + core + request_firmware + +.. only:: subproject and html + + Indices + ======= + + * :ref:`genindex` diff --git a/Documentation/driver-api/firmware/introduction.rst b/Documentation/driver-api/firmware/introduction.rst new file mode 100644 index 0000000..211cb44 --- /dev/null +++ b/Documentation/driver-api/firmware/introduction.rst @@ -0,0 +1,27 @@ +============ +Introduction +============ + +The firmware API enables kernel code to request files required +for functionality from userspace, the uses vary: + +* Microcode for CPU errata +* Device driver firmware, required to be loaded onto device + microcontrollers +* Device driver information data (calibration data, EEPROM overrides), + some of which can be completely optional. + +Types of firmware requests +========================== + +There are two types of calls: + +* Synchronous +* Asynchronous + +Which one you use vary depending on your requirements, the rule of thumb +however is you should strive to use the asynchronous APIs unless you also +are already using asynchronous initialization mechanisms which will not +stall or delay boot. Even if loading firmware does not take a lot of time +processing firmware might, and this can still delay boot or initialization, +as such mechanisms such as asynchronous probe can help supplement drivers. diff --git a/Documentation/driver-api/firmware/lookup-order.rst b/Documentation/driver-api/firmware/lookup-order.rst new file mode 100644 index 0000000..88c8173 --- /dev/null +++ b/Documentation/driver-api/firmware/lookup-order.rst @@ -0,0 +1,18 @@ +===================== +Firmware lookup order +===================== + +Different functionality is available to enable firmware to be found. +Below is chronological order of how firmware will be looked for once +a driver issues a firmware API call. + +* The ''Built-in firmware'' is checked first, if the firmware is present we + return it immediately +* The ''Firmware cache'' is looked at next. If the firmware is found we + return it immediately +* The ''Direct filesystem lookup'' is performed next, if found we + return it immediately +* If no firmware has been found and the fallback mechanism was enabled + the sysfs interface is created. After this either a kobject uevent + is issued or the custom firmware loading is relied upon for firmware + loading up to the timeout value. diff --git a/Documentation/driver-api/firmware/request_firmware.rst b/Documentation/driver-api/firmware/request_firmware.rst new file mode 100644 index 0000000..cc0aea8 --- /dev/null +++ b/Documentation/driver-api/firmware/request_firmware.rst @@ -0,0 +1,56 @@ +==================== +request_firmware API +==================== + +You would typically load firmware and then load it into your device somehow. +The typical firmware work flow is reflected below:: + + if(request_firmware(&fw_entry, $FIRMWARE, device) == 0) + copy_fw_to_device(fw_entry->data, fw_entry->size); + release_firmware(fw_entry); + +Synchronous firmware requests +============================= + +Synchronous firmware requests will wait until the firmware is found or until +an error is returned. + +request_firmware +---------------- +.. kernel-doc:: drivers/base/firmware_class.c + :functions: request_firmware + +request_firmware_direct +----------------------- +.. kernel-doc:: drivers/base/firmware_class.c + :functions: request_firmware_direct + +request_firmware_into_buf +------------------------- +.. kernel-doc:: drivers/base/firmware_class.c + :functions: request_firmware_into_buf + +Asynchronous firmware requests +============================== + +Asynchronous firmware requests allow driver code to not have to wait +until the firmware or an error is returned. Function callbacks are +provided so that when the firmware or an error is found the driver is +informed through the callback. request_firmware_nowait() cannot be called +in atomic contexts. + +request_firmware_nowait +----------------------- +.. kernel-doc:: drivers/base/firmware_class.c + :functions: request_firmware_nowait + +request firmware API expected driver use +======================================== + +Once an API call returns you process the firmware and then release the +firmware. For example if you used request_firmware() and it returns, +the driver has the firmware image accessible in fw_entry->{data,size}. +If something went wrong request_firmware() returns non-zero and fw_entry +is set to NULL. Once your driver is done with processing the firmware it +can call call release_firmware(fw_entry) to release the firmware image +and any related resource. diff --git a/Documentation/driver-api/index.rst b/Documentation/driver-api/index.rst index c5a1cd0..dbd34c9 100644 --- a/Documentation/driver-api/index.rst +++ b/Documentation/driver-api/index.rst @@ -31,6 +31,7 @@ available subsections can be seen below. vme 80211/index uio-howto + firmware/index .. only:: subproject and html diff --git a/Documentation/firmware_class/README b/Documentation/firmware_class/README deleted file mode 100644 index cafdca8..0000000 --- a/Documentation/firmware_class/README +++ /dev/null @@ -1,128 +0,0 @@ - - request_firmware() hotplug interface: - ------------------------------------ - Copyright (C) 2003 Manuel Estrada Sainz - - Why: - --- - - Today, the most extended way to use firmware in the Linux kernel is linking - it statically in a header file. Which has political and technical issues: - - 1) Some firmware is not legal to redistribute. - 2) The firmware occupies memory permanently, even though it often is just - used once. - 3) Some people, like the Debian crowd, don't consider some firmware free - enough and remove entire drivers (e.g.: keyspan). - - High level behavior (mixed): - ============================ - - 1), kernel(driver): - - calls request_firmware(&fw_entry, $FIRMWARE, device) - - kernel searches the firmware image with name $FIRMWARE directly - in the below search path of root filesystem: - User customized search path by module parameter 'path'[1] - "/lib/firmware/updates/" UTS_RELEASE, - "/lib/firmware/updates", - "/lib/firmware/" UTS_RELEASE, - "/lib/firmware" - - If found, goto 7), else goto 2) - - [1], the 'path' is a string parameter which length should be less - than 256, user should pass 'firmware_class.path=$CUSTOMIZED_PATH' - if firmware_class is built in kernel(the general situation) - - 2), userspace: - - /sys/class/firmware/xxx/{loading,data} appear. - - hotplug gets called with a firmware identifier in $FIRMWARE - and the usual hotplug environment. - - hotplug: echo 1 > /sys/class/firmware/xxx/loading - - 3), kernel: Discard any previous partial load. - - 4), userspace: - - hotplug: cat appropriate_firmware_image > \ - /sys/class/firmware/xxx/data - - 5), kernel: grows a buffer in PAGE_SIZE increments to hold the image as it - comes in. - - 6), userspace: - - hotplug: echo 0 > /sys/class/firmware/xxx/loading - - 7), kernel: request_firmware() returns and the driver has the firmware - image in fw_entry->{data,size}. If something went wrong - request_firmware() returns non-zero and fw_entry is set to - NULL. - - 8), kernel(driver): Driver code calls release_firmware(fw_entry) releasing - the firmware image and any related resource. - - High level behavior (driver code): - ================================== - - if(request_firmware(&fw_entry, $FIRMWARE, device) == 0) - copy_fw_to_device(fw_entry->data, fw_entry->size); - release_firmware(fw_entry); - - Sample/simple hotplug script: - ============================ - - # Both $DEVPATH and $FIRMWARE are already provided in the environment. - - HOTPLUG_FW_DIR=/usr/lib/hotplug/firmware/ - - echo 1 > /sys/$DEVPATH/loading - cat $HOTPLUG_FW_DIR/$FIRMWARE > /sys/$DEVPATH/data - echo 0 > /sys/$DEVPATH/loading - - Random notes: - ============ - - - "echo -1 > /sys/class/firmware/xxx/loading" will cancel the load at - once and make request_firmware() return with error. - - - firmware_data_read() and firmware_loading_show() are just provided - for testing and completeness, they are not called in normal use. - - - There is also /sys/class/firmware/timeout which holds a timeout in - seconds for the whole load operation. - - - request_firmware_nowait() is also provided for convenience in - user contexts to request firmware asynchronously, but can't be called - in atomic contexts. - - - about in-kernel persistence: - --------------------------- - Under some circumstances, as explained below, it would be interesting to keep - firmware images in non-swappable kernel memory or even in the kernel image - (probably within initramfs). - - Note that this functionality has not been implemented. - - - Why OPTIONAL in-kernel persistence may be a good idea sometimes: - - - If the device that needs the firmware is needed to access the - filesystem. When upon some error the device has to be reset and the - firmware reloaded, it won't be possible to get it from userspace. - e.g.: - - A diskless client with a network card that needs firmware. - - The filesystem is stored in a disk behind an scsi device - that needs firmware. - - Replacing buggy DSDT/SSDT ACPI tables on boot. - Note: this would require the persistent objects to be included - within the kernel image, probably within initramfs. - - And the same device can be needed to access the filesystem or not depending - on the setup, so I think that the choice on what firmware to make - persistent should be left to userspace. - - about firmware cache: - -------------------- - After firmware cache mechanism is introduced during system sleep, - request_firmware can be called safely inside device's suspend and - resume callback, and callers needn't cache the firmware by - themselves any more for dealing with firmware loss during system - resume. diff --git a/drivers/base/platform.c b/drivers/base/platform.c index 647e476..c245683 100644 --- a/drivers/base/platform.c +++ b/drivers/base/platform.c @@ -406,7 +406,7 @@ int platform_device_add(struct platform_device *pdev) } if (p && insert_resource(p, r)) { - dev_err(&pdev->dev, "failed to claim resource %d\n", i); + dev_err(&pdev->dev, "failed to claim resource %d: %pR\n", i, r); ret = -EBUSY; goto failed; } diff --git a/drivers/macintosh/windfarm_core.c b/drivers/macintosh/windfarm_core.c index 465d770..5e013d7 100644 --- a/drivers/macintosh/windfarm_core.c +++ b/drivers/macintosh/windfarm_core.c @@ -74,8 +74,8 @@ static inline void wf_notify(int event, void *param) static int wf_critical_overtemp(void) { - static char * critical_overtemp_path = "/sbin/critical_overtemp"; - char *argv[] = { critical_overtemp_path, NULL }; + static char const critical_overtemp_path[] = "/sbin/critical_overtemp"; + char *argv[] = { (char *)critical_overtemp_path, NULL }; static char *envp[] = { "HOME=/", "TERM=linux", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", diff --git a/drivers/net/hamradio/baycom_epp.c b/drivers/net/hamradio/baycom_epp.c index 7d05469..594fa14 100644 --- a/drivers/net/hamradio/baycom_epp.c +++ b/drivers/net/hamradio/baycom_epp.c @@ -299,7 +299,7 @@ static inline void baycom_int_freq(struct baycom_state *bc) * eppconfig_path should be setable via /proc/sys. */ -static char eppconfig_path[256] = "/usr/sbin/eppfpga"; +static char const eppconfig_path[] = "/usr/sbin/eppfpga"; static char *envp[] = { "HOME=/", "TERM=linux", "PATH=/usr/bin:/bin", NULL }; @@ -308,8 +308,12 @@ static int eppconfig(struct baycom_state *bc) { char modearg[256]; char portarg[16]; - char *argv[] = { eppconfig_path, "-s", "-p", portarg, "-m", modearg, - NULL }; + char *argv[] = { + (char *)eppconfig_path, + "-s", + "-p", portarg, + "-m", modearg, + NULL }; /* set up arguments */ sprintf(modearg, "%sclk,%smodem,fclk=%d,bps=%d,divider=%d%s,extstat", diff --git a/drivers/pnp/pnpbios/core.c b/drivers/pnp/pnpbios/core.c index c38a5b9..0ced908 100644 --- a/drivers/pnp/pnpbios/core.c +++ b/drivers/pnp/pnpbios/core.c @@ -98,6 +98,7 @@ static struct completion unload_sem; */ static int pnp_dock_event(int dock, struct pnp_docking_station_info *info) { + static char const sbin_pnpbios[] = "/sbin/pnpbios"; char *argv[3], **envp, *buf, *scratch; int i = 0, value; @@ -112,7 +113,7 @@ static int pnp_dock_event(int dock, struct pnp_docking_station_info *info) * integrated into the driver core and use the usual infrastructure * like sysfs and uevents */ - argv[0] = "/sbin/pnpbios"; + argv[0] = (char *)sbin_pnpbios; argv[1] = "dock"; argv[2] = NULL; @@ -139,7 +140,7 @@ static int pnp_dock_event(int dock, struct pnp_docking_station_info *info) info->location_id, info->serial, info->capabilities); envp[i] = NULL; - value = call_usermodehelper(argv [0], argv, envp, UMH_WAIT_EXEC); + value = call_usermodehelper(sbin_pnpbios, argv, envp, UMH_WAIT_EXEC); kfree(buf); kfree(envp); return 0; diff --git a/drivers/staging/greybus/svc_watchdog.c b/drivers/staging/greybus/svc_watchdog.c index 3729460..12cef5c 100644 --- a/drivers/staging/greybus/svc_watchdog.c +++ b/drivers/staging/greybus/svc_watchdog.c @@ -44,14 +44,14 @@ static int svc_watchdog_pm_notifier(struct notifier_block *notifier, static void greybus_reset(struct work_struct *work) { - static char start_path[256] = "/system/bin/start"; + static char const start_path[] = "/system/bin/start"; static char *envp[] = { "HOME=/", "PATH=/sbin:/vendor/bin:/system/sbin:/system/bin:/system/xbin", NULL, }; static char *argv[] = { - start_path, + (char *)start_path, "unipro_reset", NULL, }; diff --git a/drivers/staging/rtl8192e/rtl8192e/rtl_dm.c b/drivers/staging/rtl8192e/rtl8192e/rtl_dm.c index 9bc2848..dbb58fb 100644 --- a/drivers/staging/rtl8192e/rtl8192e/rtl_dm.c +++ b/drivers/staging/rtl8192e/rtl8192e/rtl_dm.c @@ -268,8 +268,8 @@ void rtl92e_dm_watchdog(struct net_device *dev) static void _rtl92e_dm_check_ac_dc_power(struct net_device *dev) { struct r8192_priv *priv = rtllib_priv(dev); - static char *ac_dc_script = "/etc/acpi/wireless-rtl-ac-dc-power.sh"; - char *argv[] = {ac_dc_script, DRV_NAME, NULL}; + static char const ac_dc_script[] = "/etc/acpi/wireless-rtl-ac-dc-power.sh"; + char *argv[] = {(char *)ac_dc_script, DRV_NAME, NULL}; static char *envp[] = {"HOME=/", "TERM=linux", "PATH=/usr/bin:/bin", @@ -1823,7 +1823,7 @@ static void _rtl92e_dm_check_rf_ctrl_gpio(void *data) enum rt_rf_power_state eRfPowerStateToSet; bool bActuallySet = false; char *argv[3]; - static char *RadioPowerPath = "/etc/acpi/events/RadioPower.sh"; + static char const RadioPowerPath[] = "/etc/acpi/events/RadioPower.sh"; static char *envp[] = {"HOME=/", "TERM=linux", "PATH=/usr/bin:/bin", NULL}; @@ -1862,7 +1862,7 @@ static void _rtl92e_dm_check_rf_ctrl_gpio(void *data) else argv[1] = "RFON"; - argv[0] = RadioPowerPath; + argv[0] = (char *)RadioPowerPath; argv[2] = NULL; call_usermodehelper(RadioPowerPath, argv, envp, UMH_WAIT_PROC); } diff --git a/fs/kernfs/dir.c b/fs/kernfs/dir.c index cf4c636..439b946 100644 --- a/fs/kernfs/dir.c +++ b/fs/kernfs/dir.c @@ -41,6 +41,9 @@ static bool kernfs_lockdep(struct kernfs_node *kn) static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) { + if (!kn) + return strlcpy(buf, "(null)", buflen); + return strlcpy(buf, kn->parent ? kn->name : "/", buflen); } @@ -110,6 +113,8 @@ static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a, * kn_to: /n1/n2/n3 [depth=3] * result: /../.. * + * [3] when @kn_to is NULL result will be "(null)" + * * Returns the length of the full path. If the full length is equal to or * greater than @buflen, @buf contains the truncated path with the trailing * '\0'. On error, -errno is returned. @@ -123,6 +128,9 @@ static int kernfs_path_from_node_locked(struct kernfs_node *kn_to, size_t depth_from, depth_to, len = 0; int i, j; + if (!kn_to) + return strlcpy(buf, "(null)", buflen); + if (!kn_from) kn_from = kernfs_root(kn_to)->kn; @@ -166,6 +174,8 @@ static int kernfs_path_from_node_locked(struct kernfs_node *kn_to, * similar to strlcpy(). It returns the length of @kn's name and if @buf * isn't long enough, it's filled upto @buflen-1 and nul terminated. * + * Fills buffer with "(null)" if @kn is NULL. + * * This function can be called from any context. */ int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) diff --git a/fs/nfsd/nfs4layouts.c b/fs/nfsd/nfs4layouts.c index 1fc07a9..e122da6 100644 --- a/fs/nfsd/nfs4layouts.c +++ b/fs/nfsd/nfs4layouts.c @@ -614,6 +614,7 @@ nfsd4_cb_layout_fail(struct nfs4_layout_stateid *ls) { struct nfs4_client *clp = ls->ls_stid.sc_client; char addr_str[INET6_ADDRSTRLEN]; + static char const nfsd_recall_failed[] = "/sbin/nfsd-recall-failed"; static char *envp[] = { "HOME=/", "TERM=linux", @@ -629,12 +630,13 @@ nfsd4_cb_layout_fail(struct nfs4_layout_stateid *ls) "nfsd: client %s failed to respond to layout recall. " " Fencing..\n", addr_str); - argv[0] = "/sbin/nfsd-recall-failed"; + argv[0] = (char *)nfsd_recall_failed; argv[1] = addr_str; argv[2] = ls->ls_file->f_path.mnt->mnt_sb->s_id; argv[3] = NULL; - error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC); + error = call_usermodehelper(nfsd_recall_failed, argv, envp, + UMH_WAIT_PROC); if (error) { printk(KERN_ERR "nfsd: fence failed for client %s: %d!\n", addr_str, error); diff --git a/include/linux/debugfs.h b/include/linux/debugfs.h index c0befcf..9d571ac 100644 --- a/include/linux/debugfs.h +++ b/include/linux/debugfs.h @@ -52,8 +52,7 @@ extern struct srcu_struct debugfs_srcu; * Must only be called under the protection established by * debugfs_use_file_start(). */ -static inline const struct file_operations * -debugfs_real_fops(const struct file *filp) +static inline const struct file_operations *debugfs_real_fops(const struct file *filp) __must_hold(&debugfs_srcu) { /* diff --git a/include/linux/kmod.h b/include/linux/kmod.h index fcfd2bf..c4e441e 100644 --- a/include/linux/kmod.h +++ b/include/linux/kmod.h @@ -56,7 +56,7 @@ struct file; struct subprocess_info { struct work_struct work; struct completion *complete; - char *path; + const char *path; char **argv; char **envp; int wait; @@ -67,10 +67,11 @@ struct subprocess_info { }; extern int -call_usermodehelper(char *path, char **argv, char **envp, int wait); +call_usermodehelper(const char *path, char **argv, char **envp, int wait); extern struct subprocess_info * -call_usermodehelper_setup(char *path, char **argv, char **envp, gfp_t gfp_mask, +call_usermodehelper_setup(const char *path, char **argv, char **envp, + gfp_t gfp_mask, int (*init)(struct subprocess_info *info, struct cred *new), void (*cleanup)(struct subprocess_info *), void *data); diff --git a/include/trace/events/cgroup.h b/include/trace/events/cgroup.h index ab68640..c226f50 100644 --- a/include/trace/events/cgroup.h +++ b/include/trace/events/cgroup.h @@ -61,19 +61,15 @@ DECLARE_EVENT_CLASS(cgroup, __field( int, id ) __field( int, level ) __dynamic_array(char, path, - cgrp->kn ? cgroup_path(cgrp, NULL, 0) + 1 - : strlen("(null)")) + cgroup_path(cgrp, NULL, 0) + 1) ), TP_fast_assign( __entry->root = cgrp->root->hierarchy_id; __entry->id = cgrp->id; __entry->level = cgrp->level; - if (cgrp->kn) - cgroup_path(cgrp, __get_dynamic_array(path), - __get_dynamic_array_len(path)); - else - __assign_str(path, "(null)"); + cgroup_path(cgrp, __get_dynamic_array(path), + __get_dynamic_array_len(path)); ), TP_printk("root=%d id=%d level=%d path=%s", @@ -119,8 +115,7 @@ DECLARE_EVENT_CLASS(cgroup_migrate, __field( int, dst_id ) __field( int, dst_level ) __dynamic_array(char, dst_path, - dst_cgrp->kn ? cgroup_path(dst_cgrp, NULL, 0) + 1 - : strlen("(null)")) + cgroup_path(dst_cgrp, NULL, 0) + 1) __field( int, pid ) __string( comm, task->comm ) ), @@ -129,11 +124,8 @@ DECLARE_EVENT_CLASS(cgroup_migrate, __entry->dst_root = dst_cgrp->root->hierarchy_id; __entry->dst_id = dst_cgrp->id; __entry->dst_level = dst_cgrp->level; - if (dst_cgrp->kn) - cgroup_path(dst_cgrp, __get_dynamic_array(dst_path), - __get_dynamic_array_len(dst_path)); - else - __assign_str(dst_path, "(null)"); + cgroup_path(dst_cgrp, __get_dynamic_array(dst_path), + __get_dynamic_array_len(dst_path)); __entry->pid = task->pid; __assign_str(comm, task->comm); ), diff --git a/kernel/kmod.c b/kernel/kmod.c index d45c960..0c407f9 100644 --- a/kernel/kmod.c +++ b/kernel/kmod.c @@ -516,7 +516,7 @@ static void helper_unlock(void) * Function must be runnable in either a process context or the * context in which call_usermodehelper_exec is called. */ -struct subprocess_info *call_usermodehelper_setup(char *path, char **argv, +struct subprocess_info *call_usermodehelper_setup(const char *path, char **argv, char **envp, gfp_t gfp_mask, int (*init)(struct subprocess_info *info, struct cred *new), void (*cleanup)(struct subprocess_info *info), @@ -528,7 +528,12 @@ struct subprocess_info *call_usermodehelper_setup(char *path, char **argv, goto out; INIT_WORK(&sub_info->work, call_usermodehelper_exec_work); + +#ifdef CONFIG_STATIC_USERMODEHELPER + sub_info->path = CONFIG_STATIC_USERMODEHELPER_PATH; +#else sub_info->path = path; +#endif sub_info->argv = argv; sub_info->envp = envp; @@ -566,6 +571,15 @@ int call_usermodehelper_exec(struct subprocess_info *sub_info, int wait) retval = -EBUSY; goto out; } + + /* + * If there is no binary for us to call, then just return and get out of + * here. This allows us to set STATIC_USERMODEHELPER_PATH to "" and + * disable all call_usermodehelper() calls. + */ + if (strlen(sub_info->path) == 0) + goto out; + /* * Set the completion pointer only if there is a waiter. * This makes it possible to use umh_complete to free @@ -613,7 +627,7 @@ EXPORT_SYMBOL(call_usermodehelper_exec); * This function is the equivalent to use call_usermodehelper_setup() and * call_usermodehelper_exec(). */ -int call_usermodehelper(char *path, char **argv, char **envp, int wait) +int call_usermodehelper(const char *path, char **argv, char **envp, int wait) { struct subprocess_info *info; gfp_t gfp_mask = (wait == UMH_NO_WAIT) ? GFP_ATOMIC : GFP_KERNEL; diff --git a/security/Kconfig b/security/Kconfig index 118f454..d900f47 100644 --- a/security/Kconfig +++ b/security/Kconfig @@ -158,6 +158,41 @@ config HARDENED_USERCOPY_PAGESPAN been removed. This config is intended to be used only while trying to find such users. +config STATIC_USERMODEHELPER + bool "Force all usermode helper calls through a single binary" + help + By default, the kernel can call many different userspace + binary programs through the "usermode helper" kernel + interface. Some of these binaries are statically defined + either in the kernel code itself, or as a kernel configuration + option. However, some of these are dynamically created at + runtime, or can be modified after the kernel has started up. + To provide an additional layer of security, route all of these + calls through a single executable that can not have its name + changed. + + Note, it is up to this single binary to then call the relevant + "real" usermode helper binary, based on the first argument + passed to it. If desired, this program can filter and pick + and choose what real programs are called. + + If you wish for all usermode helper programs are to be + disabled, choose this option and then set + STATIC_USERMODEHELPER_PATH to an empty string. + +config STATIC_USERMODEHELPER_PATH + string "Path to the static usermode helper binary" + depends on STATIC_USERMODEHELPER + default "/sbin/usermode-helper" + help + The binary called by the kernel when any usermode helper + program is wish to be run. The "real" application's name will + be in the first argument passed to this program on the command + line. + + If you wish for all usermode helper programs to be disabled, + specify an empty string here (i.e. ""). + source security/selinux/Kconfig source security/smack/Kconfig source security/tomoyo/Kconfig diff --git a/security/keys/request_key.c b/security/keys/request_key.c index 43affcf..9822e50 100644 --- a/security/keys/request_key.c +++ b/security/keys/request_key.c @@ -72,7 +72,7 @@ static void umh_keys_cleanup(struct subprocess_info *info) /* * Call a usermode helper with a specific session keyring. */ -static int call_usermodehelper_keys(char *path, char **argv, char **envp, +static int call_usermodehelper_keys(const char *path, char **argv, char **envp, struct key *session_keyring, int wait) { struct subprocess_info *info; @@ -95,6 +95,7 @@ static int call_sbin_request_key(struct key_construction *cons, const char *op, void *aux) { + static char const request_key[] = "/sbin/request-key"; const struct cred *cred = current_cred(); key_serial_t prkey, sskey; struct key *key = cons->key, *authkey = cons->authkey, *keyring, @@ -161,7 +162,7 @@ static int call_sbin_request_key(struct key_construction *cons, /* set up the argument list */ i = 0; - argv[i++] = "/sbin/request-key"; + argv[i++] = (char *)request_key; argv[i++] = (char *) op; argv[i++] = key_str; argv[i++] = uid_str; @@ -172,7 +173,7 @@ static int call_sbin_request_key(struct key_construction *cons, argv[i] = NULL; /* do it */ - ret = call_usermodehelper_keys(argv[0], argv, envp, keyring, + ret = call_usermodehelper_keys(request_key, argv, envp, keyring, UMH_WAIT_PROC); kdebug("usermode -> 0x%x", ret); if (ret >= 0) { diff --git a/tools/testing/selftests/firmware/fw_filesystem.sh b/tools/testing/selftests/firmware/fw_filesystem.sh index 5c495ad..e356912 100755 --- a/tools/testing/selftests/firmware/fw_filesystem.sh +++ b/tools/testing/selftests/firmware/fw_filesystem.sh @@ -5,9 +5,24 @@ # know so we can be sure we're not accidentally testing the user helper. set -e -modprobe test_firmware - DIR=/sys/devices/virtual/misc/test_firmware +TEST_DIR=$(dirname $0) + +test_modprobe() +{ + if [ ! -d $DIR ]; then + echo "$0: $DIR not present" + echo "You must have the following enabled in your kernel:" + cat $TEST_DIR/config + exit 1 + fi +} + +trap "test_modprobe" EXIT + +if [ ! -d $DIR ]; then + modprobe test_firmware +fi # CONFIG_FW_LOADER_USER_HELPER has a sysfs class under /sys/class/firmware/ # These days no one enables CONFIG_FW_LOADER_USER_HELPER so check for that @@ -48,18 +63,18 @@ echo "ABCD0123" >"$FW" NAME=$(basename "$FW") -if printf '\000' >"$DIR"/trigger_request; then +if printf '\000' >"$DIR"/trigger_request 2> /dev/null; then echo "$0: empty filename should not succeed" >&2 exit 1 fi -if printf '\000' >"$DIR"/trigger_async_request; then +if printf '\000' >"$DIR"/trigger_async_request 2> /dev/null; then echo "$0: empty filename should not succeed (async)" >&2 exit 1 fi # Request a firmware that doesn't exist, it should fail. -if echo -n "nope-$NAME" >"$DIR"/trigger_request; then +if echo -n "nope-$NAME" >"$DIR"/trigger_request 2> /dev/null; then echo "$0: firmware shouldn't have loaded" >&2 exit 1 fi |