summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorMark Fasheh <mark.fasheh@oracle.com>2007-05-08 17:47:32 -0700
committerMark Fasheh <mark.fasheh@oracle.com>2007-07-10 17:31:46 -0700
commit3a307ffc2730bfa1a4dfa94537be9d412338aad2 (patch)
tree3e83201eb816aec8b897afcf3920dd716ce4412c
parent2e89b2e48e1da09ed483f195968c9172aa95b5e2 (diff)
downloadop-kernel-dev-3a307ffc2730bfa1a4dfa94537be9d412338aad2.zip
op-kernel-dev-3a307ffc2730bfa1a4dfa94537be9d412338aad2.tar.gz
ocfs2: rework ocfs2_buffered_write_cluster()
Use some ideas from the new-aops patch series and turn ocfs2_buffered_write_cluster() into a 2 stage operation with the caller copying data in between. The code now understands multiple cluster writes as a result of having to deal with a full page write for greater than 4k pages. This sets us up to easily call into the write path during ->page_mkwrite(). Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
-rw-r--r--fs/ocfs2/aops.c812
-rw-r--r--fs/ocfs2/aops.h56
-rw-r--r--fs/ocfs2/file.c121
3 files changed, 551 insertions, 438 deletions
diff --git a/fs/ocfs2/aops.c b/fs/ocfs2/aops.c
index a480b09..3e5758e 100644
--- a/fs/ocfs2/aops.c
+++ b/fs/ocfs2/aops.c
@@ -684,6 +684,8 @@ int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
bh = bh->b_this_page, block_start += bsize) {
block_end = block_start + bsize;
+ clear_buffer_new(bh);
+
/*
* Ignore blocks outside of our i/o range -
* they may belong to unallocated clusters.
@@ -698,9 +700,8 @@ int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
* For an allocating write with cluster size >= page
* size, we always write the entire page.
*/
-
- if (buffer_new(bh))
- clear_buffer_new(bh);
+ if (new)
+ set_buffer_new(bh);
if (!buffer_mapped(bh)) {
map_bh(bh, inode->i_sb, *p_blkno);
@@ -761,217 +762,232 @@ next_bh:
return ret;
}
+#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
+#define OCFS2_MAX_CTXT_PAGES 1
+#else
+#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
+#endif
+
+#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
+
/*
- * This will copy user data from the buffer page in the splice
- * context.
- *
- * For now, we ignore SPLICE_F_MOVE as that would require some extra
- * communication out all the way to ocfs2_write().
+ * Describe the state of a single cluster to be written to.
*/
-int ocfs2_map_and_write_splice_data(struct inode *inode,
- struct ocfs2_write_ctxt *wc, u64 *p_blkno,
- unsigned int *ret_from, unsigned int *ret_to)
-{
- int ret;
- unsigned int to, from, cluster_start, cluster_end;
- char *src, *dst;
- struct ocfs2_splice_write_priv *sp = wc->w_private;
- struct pipe_buffer *buf = sp->s_buf;
- unsigned long bytes, src_from;
- struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
+struct ocfs2_write_cluster_desc {
+ u32 c_cpos;
+ u32 c_phys;
+ /*
+ * Give this a unique field because c_phys eventually gets
+ * filled.
+ */
+ unsigned c_new;
+};
- ocfs2_figure_cluster_boundaries(osb, wc->w_cpos, &cluster_start,
- &cluster_end);
+struct ocfs2_write_ctxt {
+ /* Logical cluster position / len of write */
+ u32 w_cpos;
+ u32 w_clen;
- from = sp->s_offset;
- src_from = sp->s_buf_offset;
- bytes = wc->w_count;
+ struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
- if (wc->w_large_pages) {
- /*
- * For cluster size < page size, we have to
- * calculate pos within the cluster and obey
- * the rightmost boundary.
- */
- bytes = min(bytes, (unsigned long)(osb->s_clustersize
- - (wc->w_pos & (osb->s_clustersize - 1))));
- }
- to = from + bytes;
+ /*
+ * This is true if page_size > cluster_size.
+ *
+ * It triggers a set of special cases during write which might
+ * have to deal with allocating writes to partial pages.
+ */
+ unsigned int w_large_pages;
- BUG_ON(from > PAGE_CACHE_SIZE);
- BUG_ON(to > PAGE_CACHE_SIZE);
- BUG_ON(from < cluster_start);
- BUG_ON(to > cluster_end);
+ /*
+ * Pages involved in this write.
+ *
+ * w_target_page is the page being written to by the user.
+ *
+ * w_pages is an array of pages which always contains
+ * w_target_page, and in the case of an allocating write with
+ * page_size < cluster size, it will contain zero'd and mapped
+ * pages adjacent to w_target_page which need to be written
+ * out in so that future reads from that region will get
+ * zero's.
+ */
+ struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
+ unsigned int w_num_pages;
+ struct page *w_target_page;
- if (wc->w_this_page_new)
- ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
- cluster_start, cluster_end, 1);
- else
- ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
- from, to, 0);
- if (ret) {
- mlog_errno(ret);
- goto out;
+ /*
+ * ocfs2_write_end() uses this to know what the real range to
+ * write in the target should be.
+ */
+ unsigned int w_target_from;
+ unsigned int w_target_to;
+
+ /*
+ * We could use journal_current_handle() but this is cleaner,
+ * IMHO -Mark
+ */
+ handle_t *w_handle;
+
+ struct buffer_head *w_di_bh;
+};
+
+static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
+{
+ int i;
+
+ for(i = 0; i < wc->w_num_pages; i++) {
+ if (wc->w_pages[i] == NULL)
+ continue;
+
+ unlock_page(wc->w_pages[i]);
+ mark_page_accessed(wc->w_pages[i]);
+ page_cache_release(wc->w_pages[i]);
}
- src = buf->ops->map(sp->s_pipe, buf, 1);
- dst = kmap_atomic(wc->w_this_page, KM_USER1);
- memcpy(dst + from, src + src_from, bytes);
- kunmap_atomic(wc->w_this_page, KM_USER1);
- buf->ops->unmap(sp->s_pipe, buf, src);
+ brelse(wc->w_di_bh);
+ kfree(wc);
+}
+
+static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
+ struct ocfs2_super *osb, loff_t pos,
+ unsigned len)
+{
+ struct ocfs2_write_ctxt *wc;
+
+ wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
+ if (!wc)
+ return -ENOMEM;
- wc->w_finished_copy = 1;
+ wc->w_cpos = pos >> osb->s_clustersize_bits;
+ wc->w_clen = ocfs2_clusters_for_bytes(osb->sb, len);
- *ret_from = from;
- *ret_to = to;
-out:
+ if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
+ wc->w_large_pages = 1;
+ else
+ wc->w_large_pages = 0;
+
+ *wcp = wc;
- return bytes ? (unsigned int)bytes : ret;
+ return 0;
}
/*
- * This will copy user data from the iovec in the buffered write
- * context.
+ * If a page has any new buffers, zero them out here, and mark them uptodate
+ * and dirty so they'll be written out (in order to prevent uninitialised
+ * block data from leaking). And clear the new bit.
*/
-int ocfs2_map_and_write_user_data(struct inode *inode,
- struct ocfs2_write_ctxt *wc, u64 *p_blkno,
- unsigned int *ret_from, unsigned int *ret_to)
+static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
{
- int ret;
- unsigned int to, from, cluster_start, cluster_end;
- unsigned long bytes, src_from;
- char *dst;
- struct ocfs2_buffered_write_priv *bp = wc->w_private;
- const struct iovec *cur_iov = bp->b_cur_iov;
- char __user *buf;
- struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
+ unsigned int block_start, block_end;
+ struct buffer_head *head, *bh;
- ocfs2_figure_cluster_boundaries(osb, wc->w_cpos, &cluster_start,
- &cluster_end);
+ BUG_ON(!PageLocked(page));
+ if (!page_has_buffers(page))
+ return;
- buf = cur_iov->iov_base + bp->b_cur_off;
- src_from = (unsigned long)buf & ~PAGE_CACHE_MASK;
+ bh = head = page_buffers(page);
+ block_start = 0;
+ do {
+ block_end = block_start + bh->b_size;
+
+ if (buffer_new(bh)) {
+ if (block_end > from && block_start < to) {
+ if (!PageUptodate(page)) {
+ unsigned start, end;
+ void *kaddr;
+
+ start = max(from, block_start);
+ end = min(to, block_end);
+
+ kaddr = kmap_atomic(page, KM_USER0);
+ memset(kaddr+start, 0, end - start);
+ flush_dcache_page(page);
+ kunmap_atomic(kaddr, KM_USER0);
+ set_buffer_uptodate(bh);
+ }
+
+ clear_buffer_new(bh);
+ mark_buffer_dirty(bh);
+ }
+ }
- from = wc->w_pos & (PAGE_CACHE_SIZE - 1);
+ block_start = block_end;
+ bh = bh->b_this_page;
+ } while (bh != head);
+}
+
+/*
+ * Only called when we have a failure during allocating write to write
+ * zero's to the newly allocated region.
+ */
+static void ocfs2_write_failure(struct inode *inode,
+ struct ocfs2_write_ctxt *wc,
+ loff_t user_pos, unsigned user_len)
+{
+ int i;
+ unsigned from, to;
+ struct page *tmppage;
+
+ ocfs2_zero_new_buffers(wc->w_target_page, user_pos, user_len);
- /*
- * This is a lot of comparisons, but it reads quite
- * easily, which is important here.
- */
- /* Stay within the src page */
- bytes = PAGE_SIZE - src_from;
- /* Stay within the vector */
- bytes = min(bytes,
- (unsigned long)(cur_iov->iov_len - bp->b_cur_off));
- /* Stay within count */
- bytes = min(bytes, (unsigned long)wc->w_count);
- /*
- * For clustersize > page size, just stay within
- * target page, otherwise we have to calculate pos
- * within the cluster and obey the rightmost
- * boundary.
- */
if (wc->w_large_pages) {
- /*
- * For cluster size < page size, we have to
- * calculate pos within the cluster and obey
- * the rightmost boundary.
- */
- bytes = min(bytes, (unsigned long)(osb->s_clustersize
- - (wc->w_pos & (osb->s_clustersize - 1))));
+ from = wc->w_target_from;
+ to = wc->w_target_to;
} else {
- /*
- * cluster size > page size is the most common
- * case - we just stay within the target page
- * boundary.
- */
- bytes = min(bytes, PAGE_CACHE_SIZE - from);
+ from = 0;
+ to = PAGE_CACHE_SIZE;
}
- to = from + bytes;
+ for(i = 0; i < wc->w_num_pages; i++) {
+ tmppage = wc->w_pages[i];
- BUG_ON(from > PAGE_CACHE_SIZE);
- BUG_ON(to > PAGE_CACHE_SIZE);
- BUG_ON(from < cluster_start);
- BUG_ON(to > cluster_end);
+ if (ocfs2_should_order_data(inode))
+ walk_page_buffers(wc->w_handle, page_buffers(tmppage),
+ from, to, NULL,
+ ocfs2_journal_dirty_data);
- if (wc->w_this_page_new)
- ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
- cluster_start, cluster_end, 1);
- else
- ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
- from, to, 0);
- if (ret) {
- mlog_errno(ret);
- goto out;
+ block_commit_write(tmppage, from, to);
}
-
- dst = kmap(wc->w_this_page);
- memcpy(dst + from, bp->b_src_buf + src_from, bytes);
- kunmap(wc->w_this_page);
-
- /*
- * XXX: This is slow, but simple. The caller of
- * ocfs2_buffered_write_cluster() is responsible for
- * passing through the iovecs, so it's difficult to
- * predict what our next step is in here after our
- * initial write. A future version should be pushing
- * that iovec manipulation further down.
- *
- * By setting this, we indicate that a copy from user
- * data was done, and subsequent calls for this
- * cluster will skip copying more data.
- */
- wc->w_finished_copy = 1;
-
- *ret_from = from;
- *ret_to = to;
-out:
-
- return bytes ? (unsigned int)bytes : ret;
}
-/*
- * Map, fill and write a page to disk.
- *
- * The work of copying data is done via callback. Newly allocated
- * pages which don't take user data will be zero'd (set 'new' to
- * indicate an allocating write)
- *
- * Returns a negative error code or the number of bytes copied into
- * the page.
- */
-static int ocfs2_write_data_page(struct inode *inode, handle_t *handle,
- u64 *p_blkno, struct page *page,
- struct ocfs2_write_ctxt *wc, int new)
+static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
+ struct ocfs2_write_ctxt *wc,
+ struct page *page, u32 cpos,
+ loff_t user_pos, unsigned user_len,
+ int new)
{
- int ret, copied = 0;
- unsigned int from = 0, to = 0;
+ int ret;
+ unsigned int map_from = 0, map_to = 0;
unsigned int cluster_start, cluster_end;
- unsigned int zero_from = 0, zero_to = 0;
+ unsigned int user_data_from = 0, user_data_to = 0;
- ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), wc->w_cpos,
+ ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
&cluster_start, &cluster_end);
- if ((wc->w_pos >> PAGE_CACHE_SHIFT) == page->index
- && !wc->w_finished_copy) {
-
- wc->w_this_page = page;
- wc->w_this_page_new = new;
- ret = wc->w_write_data_page(inode, wc, p_blkno, &from, &to);
- if (ret < 0) {
+ if (page == wc->w_target_page) {
+ map_from = user_pos & (PAGE_CACHE_SIZE - 1);
+ map_to = map_from + user_len;
+
+ if (new)
+ ret = ocfs2_map_page_blocks(page, p_blkno, inode,
+ cluster_start, cluster_end,
+ new);
+ else
+ ret = ocfs2_map_page_blocks(page, p_blkno, inode,
+ map_from, map_to, new);
+ if (ret) {
mlog_errno(ret);
goto out;
}
- copied = ret;
-
- zero_from = from;
- zero_to = to;
+ user_data_from = map_from;
+ user_data_to = map_to;
if (new) {
- from = cluster_start;
- to = cluster_end;
+ map_from = cluster_start;
+ map_to = cluster_end;
}
+
+ wc->w_target_from = map_from;
+ wc->w_target_to = map_to;
} else {
/*
* If we haven't allocated the new page yet, we
@@ -980,11 +996,11 @@ static int ocfs2_write_data_page(struct inode *inode, handle_t *handle,
*/
BUG_ON(!new);
- from = cluster_start;
- to = cluster_end;
+ map_from = cluster_start;
+ map_to = cluster_end;
ret = ocfs2_map_page_blocks(page, p_blkno, inode,
- cluster_start, cluster_end, 1);
+ cluster_start, cluster_end, new);
if (ret) {
mlog_errno(ret);
goto out;
@@ -1003,108 +1019,84 @@ static int ocfs2_write_data_page(struct inode *inode, handle_t *handle,
*/
if (new && !PageUptodate(page))
ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
- wc->w_cpos, zero_from, zero_to);
+ cpos, user_data_from, user_data_to);
flush_dcache_page(page);
- if (ocfs2_should_order_data(inode)) {
- ret = walk_page_buffers(handle,
- page_buffers(page),
- from, to, NULL,
- ocfs2_journal_dirty_data);
- if (ret < 0)
- mlog_errno(ret);
- }
-
- /*
- * We don't use generic_commit_write() because we need to
- * handle our own i_size update.
- */
- ret = block_commit_write(page, from, to);
- if (ret)
- mlog_errno(ret);
out:
-
- return copied ? copied : ret;
+ return ret;
}
/*
- * Do the actual write of some data into an inode. Optionally allocate
- * in order to fulfill the write.
- *
- * cpos is the logical cluster offset within the file to write at
- *
- * 'phys' is the physical mapping of that offset. a 'phys' value of
- * zero indicates that allocation is required. In this case, data_ac
- * and meta_ac should be valid (meta_ac can be null if metadata
- * allocation isn't required).
+ * This function will only grab one clusters worth of pages.
*/
-static ssize_t ocfs2_write(struct file *file, u32 phys, handle_t *handle,
- struct buffer_head *di_bh,
- struct ocfs2_alloc_context *data_ac,
- struct ocfs2_alloc_context *meta_ac,
- struct ocfs2_write_ctxt *wc)
+static int ocfs2_grab_pages_for_write(struct address_space *mapping,
+ struct ocfs2_write_ctxt *wc,
+ u32 cpos, loff_t user_pos, int new)
{
- int ret, i, numpages = 1, new;
- unsigned int copied = 0;
- u32 tmp_pos;
- u64 v_blkno, p_blkno;
- struct address_space *mapping = file->f_mapping;
+ int ret = 0, i;
+ unsigned long start, target_index, index;
struct inode *inode = mapping->host;
- unsigned long index, start;
- struct page **cpages;
- new = phys == 0 ? 1 : 0;
+ target_index = user_pos >> PAGE_CACHE_SHIFT;
/*
* Figure out how many pages we'll be manipulating here. For
* non allocating write, we just change the one
* page. Otherwise, we'll need a whole clusters worth.
*/
- if (new)
- numpages = ocfs2_pages_per_cluster(inode->i_sb);
-
- cpages = kzalloc(sizeof(*cpages) * numpages, GFP_NOFS);
- if (!cpages) {
- ret = -ENOMEM;
- mlog_errno(ret);
- return ret;
- }
-
- /*
- * Fill our page array first. That way we've grabbed enough so
- * that we can zero and flush if we error after adding the
- * extent.
- */
if (new) {
- start = ocfs2_align_clusters_to_page_index(inode->i_sb,
- wc->w_cpos);
- v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, wc->w_cpos);
+ wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
+ start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
} else {
- start = wc->w_pos >> PAGE_CACHE_SHIFT;
- v_blkno = wc->w_pos >> inode->i_sb->s_blocksize_bits;
+ wc->w_num_pages = 1;
+ start = target_index;
}
- for(i = 0; i < numpages; i++) {
+ for(i = 0; i < wc->w_num_pages; i++) {
index = start + i;
- cpages[i] = find_or_create_page(mapping, index, GFP_NOFS);
- if (!cpages[i]) {
+ wc->w_pages[i] = find_or_create_page(mapping, index, GFP_NOFS);
+ if (!wc->w_pages[i]) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
+
+ if (index == target_index)
+ wc->w_target_page = wc->w_pages[i];
}
+out:
+ return ret;
+}
+
+/*
+ * Prepare a single cluster for write one cluster into the file.
+ */
+static int ocfs2_write_cluster(struct address_space *mapping,
+ u32 phys, struct ocfs2_alloc_context *data_ac,
+ struct ocfs2_alloc_context *meta_ac,
+ struct ocfs2_write_ctxt *wc, u32 cpos,
+ loff_t user_pos, unsigned user_len)
+{
+ int ret, i, new;
+ u64 v_blkno, p_blkno;
+ struct inode *inode = mapping->host;
+
+ new = phys == 0 ? 1 : 0;
if (new) {
+ u32 tmp_pos;
+
/*
* This is safe to call with the page locks - it won't take
* any additional semaphores or cluster locks.
*/
- tmp_pos = wc->w_cpos;
+ tmp_pos = cpos;
ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
- &tmp_pos, 1, di_bh, handle,
- data_ac, meta_ac, NULL);
+ &tmp_pos, 1, wc->w_di_bh,
+ wc->w_handle, data_ac,
+ meta_ac, NULL);
/*
* This shouldn't happen because we must have already
* calculated the correct meta data allocation required. The
@@ -1121,103 +1113,132 @@ static ssize_t ocfs2_write(struct file *file, u32 phys, handle_t *handle,
mlog_errno(ret);
goto out;
}
+
+ v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
+ } else {
+ v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
}
+ /*
+ * The only reason this should fail is due to an inability to
+ * find the extent added.
+ */
ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
NULL);
if (ret < 0) {
-
- /*
- * XXX: Should we go readonly here?
- */
-
- mlog_errno(ret);
+ ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
+ "at logical block %llu",
+ (unsigned long long)OCFS2_I(inode)->ip_blkno,
+ (unsigned long long)v_blkno);
goto out;
}
BUG_ON(p_blkno == 0);
- for(i = 0; i < numpages; i++) {
- ret = ocfs2_write_data_page(inode, handle, &p_blkno, cpages[i],
- wc, new);
- if (ret < 0) {
- mlog_errno(ret);
- goto out;
- }
+ for(i = 0; i < wc->w_num_pages; i++) {
+ int tmpret;
- copied += ret;
+ tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
+ wc->w_pages[i], cpos,
+ user_pos, user_len, new);
+ if (tmpret) {
+ mlog_errno(tmpret);
+ if (ret == 0)
+ tmpret = ret;
+ }
}
+ /*
+ * We only have cleanup to do in case of allocating write.
+ */
+ if (ret && new)
+ ocfs2_write_failure(inode, wc, user_pos, user_len);
+
out:
- for(i = 0; i < numpages; i++) {
- unlock_page(cpages[i]);
- mark_page_accessed(cpages[i]);
- page_cache_release(cpages[i]);
- }
- kfree(cpages);
- return copied ? copied : ret;
+ return ret;
}
-static void ocfs2_write_ctxt_init(struct ocfs2_write_ctxt *wc,
- struct ocfs2_super *osb, loff_t pos,
- size_t count, ocfs2_page_writer *cb,
- void *cb_priv)
+/*
+ * ocfs2_write_end() wants to know which parts of the target page it
+ * should complete the write on. It's easiest to compute them ahead of
+ * time when a more complete view of the write is available.
+ */
+static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
+ struct ocfs2_write_ctxt *wc,
+ loff_t pos, unsigned len, int alloc)
{
- wc->w_count = count;
- wc->w_pos = pos;
- wc->w_cpos = wc->w_pos >> osb->s_clustersize_bits;
- wc->w_finished_copy = 0;
+ struct ocfs2_write_cluster_desc *desc;
- if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
- wc->w_large_pages = 1;
- else
- wc->w_large_pages = 0;
+ wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
+ wc->w_target_to = wc->w_target_from + len;
+
+ if (alloc == 0)
+ return;
+
+ /*
+ * Allocating write - we may have different boundaries based
+ * on page size and cluster size.
+ *
+ * NOTE: We can no longer compute one value from the other as
+ * the actual write length and user provided length may be
+ * different.
+ */
- wc->w_write_data_page = cb;
- wc->w_private = cb_priv;
+ if (wc->w_large_pages) {
+ /*
+ * We only care about the 1st and last cluster within
+ * our range and whether they are holes or not. Either
+ * value may be extended out to the start/end of a
+ * newly allocated cluster.
+ */
+ desc = &wc->w_desc[0];
+ if (desc->c_new)
+ ocfs2_figure_cluster_boundaries(osb,
+ desc->c_cpos,
+ &wc->w_target_from,
+ NULL);
+
+ desc = &wc->w_desc[wc->w_clen - 1];
+ if (desc->c_new)
+ ocfs2_figure_cluster_boundaries(osb,
+ desc->c_cpos,
+ NULL,
+ &wc->w_target_to);
+ } else {
+ wc->w_target_from = 0;
+ wc->w_target_to = PAGE_CACHE_SIZE;
+ }
}
-/*
- * Write a cluster to an inode. The cluster may not be allocated yet,
- * in which case it will be. This only exists for buffered writes -
- * O_DIRECT takes a more "traditional" path through the kernel.
- *
- * The caller is responsible for incrementing pos, written counts, etc
- *
- * For file systems that don't support sparse files, pre-allocation
- * and page zeroing up until cpos should be done prior to this
- * function call.
- *
- * Callers should be holding i_sem, and the rw cluster lock.
- *
- * Returns the number of user bytes written, or less than zero for
- * error.
- */
-ssize_t ocfs2_buffered_write_cluster(struct file *file, loff_t pos,
- size_t count, ocfs2_page_writer *actor,
- void *priv)
+int ocfs2_write_begin(struct file *file, struct address_space *mapping,
+ loff_t pos, unsigned len, unsigned flags,
+ struct page **pagep, void **fsdata)
{
- int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
- ssize_t written = 0;
- u32 phys;
- struct inode *inode = file->f_mapping->host;
+ int ret, i, credits = OCFS2_INODE_UPDATE_CREDITS;
+ unsigned int num_clusters = 0, clusters_to_alloc = 0;
+ u32 phys = 0;
+ struct ocfs2_write_ctxt *wc;
+ struct inode *inode = mapping->host;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
- struct buffer_head *di_bh = NULL;
struct ocfs2_dinode *di;
struct ocfs2_alloc_context *data_ac = NULL;
struct ocfs2_alloc_context *meta_ac = NULL;
handle_t *handle;
- struct ocfs2_write_ctxt wc;
+ struct ocfs2_write_cluster_desc *desc;
- ocfs2_write_ctxt_init(&wc, osb, pos, count, actor, priv);
+ ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len);
+ if (ret) {
+ mlog_errno(ret);
+ return ret;
+ }
- ret = ocfs2_meta_lock(inode, &di_bh, 1);
+ ret = ocfs2_meta_lock(inode, &wc->w_di_bh, 1);
if (ret) {
mlog_errno(ret);
goto out;
}
- di = (struct ocfs2_dinode *)di_bh->b_data;
+ di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
/*
* Take alloc sem here to prevent concurrent lookups. That way
@@ -1228,23 +1249,60 @@ ssize_t ocfs2_buffered_write_cluster(struct file *file, loff_t pos,
*/
down_write(&OCFS2_I(inode)->ip_alloc_sem);
- ret = ocfs2_get_clusters(inode, wc.w_cpos, &phys, NULL, NULL);
- if (ret) {
- mlog_errno(ret);
- goto out_meta;
+ for (i = 0; i < wc->w_clen; i++) {
+ desc = &wc->w_desc[i];
+ desc->c_cpos = wc->w_cpos + i;
+
+ if (num_clusters == 0) {
+ ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
+ &num_clusters, NULL);
+ if (ret) {
+ mlog_errno(ret);
+ goto out_meta;
+ }
+ } else if (phys) {
+ /*
+ * Only increment phys if it doesn't describe
+ * a hole.
+ */
+ phys++;
+ }
+
+ desc->c_phys = phys;
+ if (phys == 0) {
+ desc->c_new = 1;
+ clusters_to_alloc++;
+ }
+
+ num_clusters--;
}
- /* phys == 0 means that allocation is required. */
- if (phys == 0) {
- ret = ocfs2_lock_allocators(inode, di, 1, &data_ac, &meta_ac);
+ /*
+ * We set w_target_from, w_target_to here so that
+ * ocfs2_write_end() knows which range in the target page to
+ * write out. An allocation requires that we write the entire
+ * cluster range.
+ */
+ if (clusters_to_alloc > 0) {
+ /*
+ * XXX: We are stretching the limits of
+ * ocfs2_lock_allocators(). It greately over-estimates
+ * the work to be done.
+ */
+ ret = ocfs2_lock_allocators(inode, di, clusters_to_alloc,
+ &data_ac, &meta_ac);
if (ret) {
mlog_errno(ret);
goto out_meta;
}
- credits = ocfs2_calc_extend_credits(inode->i_sb, di, 1);
+ credits = ocfs2_calc_extend_credits(inode->i_sb, di,
+ clusters_to_alloc);
+
}
+ ocfs2_set_target_boundaries(osb, wc, pos, len, clusters_to_alloc);
+
ret = ocfs2_data_lock(inode, 1);
if (ret) {
mlog_errno(ret);
@@ -1258,36 +1316,50 @@ ssize_t ocfs2_buffered_write_cluster(struct file *file, loff_t pos,
goto out_data;
}
- written = ocfs2_write(file, phys, handle, di_bh, data_ac,
- meta_ac, &wc);
- if (written < 0) {
- ret = written;
+ wc->w_handle = handle;
+
+ /*
+ * We don't want this to fail in ocfs2_write_end(), so do it
+ * here.
+ */
+ ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
+ OCFS2_JOURNAL_ACCESS_WRITE);
+ if (ret) {
mlog_errno(ret);
goto out_commit;
}
- ret = ocfs2_journal_access(handle, inode, di_bh,
- OCFS2_JOURNAL_ACCESS_WRITE);
+ /*
+ * Fill our page array first. That way we've grabbed enough so
+ * that we can zero and flush if we error after adding the
+ * extent.
+ */
+ ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
+ clusters_to_alloc);
if (ret) {
mlog_errno(ret);
goto out_commit;
}
- pos += written;
- if (pos > inode->i_size) {
- i_size_write(inode, pos);
- mark_inode_dirty(inode);
+ for (i = 0; i < wc->w_clen; i++) {
+ desc = &wc->w_desc[i];
+
+ ret = ocfs2_write_cluster(mapping, desc->c_phys, data_ac,
+ meta_ac, wc, desc->c_cpos, pos, len);
+ if (ret) {
+ mlog_errno(ret);
+ goto out_commit;
+ }
}
- inode->i_blocks = ocfs2_inode_sector_count(inode);
- di->i_size = cpu_to_le64((u64)i_size_read(inode));
- inode->i_mtime = inode->i_ctime = CURRENT_TIME;
- di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
- di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
- ret = ocfs2_journal_dirty(handle, di_bh);
- if (ret)
- mlog_errno(ret);
+ if (data_ac)
+ ocfs2_free_alloc_context(data_ac);
+ if (meta_ac)
+ ocfs2_free_alloc_context(meta_ac);
+ *pagep = wc->w_target_page;
+ *fsdata = wc;
+ return 0;
out_commit:
ocfs2_commit_trans(osb, handle);
@@ -1299,13 +1371,85 @@ out_meta:
ocfs2_meta_unlock(inode, 1);
out:
- brelse(di_bh);
+ ocfs2_free_write_ctxt(wc);
+
if (data_ac)
ocfs2_free_alloc_context(data_ac);
if (meta_ac)
ocfs2_free_alloc_context(meta_ac);
+ return ret;
+}
+
+int ocfs2_write_end(struct file *file, struct address_space *mapping,
+ loff_t pos, unsigned len, unsigned copied,
+ struct page *page, void *fsdata)
+{
+ int i;
+ unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
+ struct inode *inode = mapping->host;
+ struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
+ struct ocfs2_write_ctxt *wc = fsdata;
+ struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
+ handle_t *handle = wc->w_handle;
+ struct page *tmppage;
+
+ if (unlikely(copied < len)) {
+ if (!PageUptodate(wc->w_target_page))
+ copied = 0;
+
+ ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
+ start+len);
+ }
+ flush_dcache_page(wc->w_target_page);
+
+ for(i = 0; i < wc->w_num_pages; i++) {
+ tmppage = wc->w_pages[i];
+
+ if (tmppage == wc->w_target_page) {
+ from = wc->w_target_from;
+ to = wc->w_target_to;
+
+ BUG_ON(from > PAGE_CACHE_SIZE ||
+ to > PAGE_CACHE_SIZE ||
+ to < from);
+ } else {
+ /*
+ * Pages adjacent to the target (if any) imply
+ * a hole-filling write in which case we want
+ * to flush their entire range.
+ */
+ from = 0;
+ to = PAGE_CACHE_SIZE;
+ }
+
+ if (ocfs2_should_order_data(inode))
+ walk_page_buffers(wc->w_handle, page_buffers(tmppage),
+ from, to, NULL,
+ ocfs2_journal_dirty_data);
+
+ block_commit_write(tmppage, from, to);
+ }
+
+ pos += copied;
+ if (pos > inode->i_size) {
+ i_size_write(inode, pos);
+ mark_inode_dirty(inode);
+ }
+ inode->i_blocks = ocfs2_inode_sector_count(inode);
+ di->i_size = cpu_to_le64((u64)i_size_read(inode));
+ inode->i_mtime = inode->i_ctime = CURRENT_TIME;
+ di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
+ di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
+
+ ocfs2_journal_dirty(handle, wc->w_di_bh);
+
+ ocfs2_commit_trans(osb, handle);
+ ocfs2_data_unlock(inode, 1);
+ up_write(&OCFS2_I(inode)->ip_alloc_sem);
+ ocfs2_meta_unlock(inode, 1);
+ ocfs2_free_write_ctxt(wc);
- return written ? written : ret;
+ return copied;
}
const struct address_space_operations ocfs2_aops = {
diff --git a/fs/ocfs2/aops.h b/fs/ocfs2/aops.h
index 45821d4..bdcdd1a 100644
--- a/fs/ocfs2/aops.h
+++ b/fs/ocfs2/aops.h
@@ -42,57 +42,13 @@ int walk_page_buffers( handle_t *handle,
int (*fn)( handle_t *handle,
struct buffer_head *bh));
-struct ocfs2_write_ctxt;
-typedef int (ocfs2_page_writer)(struct inode *, struct ocfs2_write_ctxt *,
- u64 *, unsigned int *, unsigned int *);
+int ocfs2_write_begin(struct file *file, struct address_space *mapping,
+ loff_t pos, unsigned len, unsigned flags,
+ struct page **pagep, void **fsdata);
-ssize_t ocfs2_buffered_write_cluster(struct file *file, loff_t pos,
- size_t count, ocfs2_page_writer *actor,
- void *priv);
-
-struct ocfs2_write_ctxt {
- size_t w_count;
- loff_t w_pos;
- u32 w_cpos;
- unsigned int w_finished_copy;
-
- /* This is true if page_size > cluster_size */
- unsigned int w_large_pages;
-
- /* Filler callback and private data */
- ocfs2_page_writer *w_write_data_page;
- void *w_private;
-
- /* Only valid for the filler callback */
- struct page *w_this_page;
- unsigned int w_this_page_new;
-};
-
-struct ocfs2_buffered_write_priv {
- char *b_src_buf;
- const struct iovec *b_cur_iov; /* Current iovec */
- size_t b_cur_off; /* Offset in the
- * current iovec */
-};
-int ocfs2_map_and_write_user_data(struct inode *inode,
- struct ocfs2_write_ctxt *wc,
- u64 *p_blkno,
- unsigned int *ret_from,
- unsigned int *ret_to);
-
-struct ocfs2_splice_write_priv {
- struct splice_desc *s_sd;
- struct pipe_buffer *s_buf;
- struct pipe_inode_info *s_pipe;
- /* Neither offset value is ever larger than one page */
- unsigned int s_offset;
- unsigned int s_buf_offset;
-};
-int ocfs2_map_and_write_splice_data(struct inode *inode,
- struct ocfs2_write_ctxt *wc,
- u64 *p_blkno,
- unsigned int *ret_from,
- unsigned int *ret_to);
+int ocfs2_write_end(struct file *file, struct address_space *mapping,
+ loff_t pos, unsigned len, unsigned copied,
+ struct page *page, void *fsdata);
/* all ocfs2_dio_end_io()'s fault */
#define ocfs2_iocb_is_rw_locked(iocb) \
diff --git a/fs/ocfs2/file.c b/fs/ocfs2/file.c
index 566f9b7..4c850d0 100644
--- a/fs/ocfs2/file.c
+++ b/fs/ocfs2/file.c
@@ -1335,15 +1335,16 @@ ocfs2_set_next_iovec(const struct iovec **iovp, size_t *basep, size_t bytes)
*basep = base;
}
-static struct page * ocfs2_get_write_source(struct ocfs2_buffered_write_priv *bp,
+static struct page * ocfs2_get_write_source(char **ret_src_buf,
const struct iovec *cur_iov,
size_t iov_offset)
{
int ret;
- char *buf;
+ char *buf = cur_iov->iov_base + iov_offset;
struct page *src_page = NULL;
+ unsigned long off;
- buf = cur_iov->iov_base + iov_offset;
+ off = (unsigned long)(buf) & ~PAGE_CACHE_MASK;
if (!segment_eq(get_fs(), KERNEL_DS)) {
/*
@@ -1355,18 +1356,17 @@ static struct page * ocfs2_get_write_source(struct ocfs2_buffered_write_priv *bp
(unsigned long)buf & PAGE_CACHE_MASK, 1,
0, 0, &src_page, NULL);
if (ret == 1)
- bp->b_src_buf = kmap(src_page);
+ *ret_src_buf = kmap(src_page) + off;
else
src_page = ERR_PTR(-EFAULT);
} else {
- bp->b_src_buf = buf;
+ *ret_src_buf = buf;
}
return src_page;
}
-static void ocfs2_put_write_source(struct ocfs2_buffered_write_priv *bp,
- struct page *page)
+static void ocfs2_put_write_source(struct page *page)
{
if (page) {
kunmap(page);
@@ -1382,10 +1382,12 @@ static ssize_t ocfs2_file_buffered_write(struct file *file, loff_t *ppos,
{
int ret = 0;
ssize_t copied, total = 0;
- size_t iov_offset = 0;
+ size_t iov_offset = 0, bytes;
+ loff_t pos;
const struct iovec *cur_iov = iov;
- struct ocfs2_buffered_write_priv bp;
- struct page *page;
+ struct page *user_page, *page;
+ char *buf, *dst;
+ void *fsdata;
/*
* handle partial DIO write. Adjust cur_iov if needed.
@@ -1393,21 +1395,38 @@ static ssize_t ocfs2_file_buffered_write(struct file *file, loff_t *ppos,
ocfs2_set_next_iovec(&cur_iov, &iov_offset, o_direct_written);
do {
- bp.b_cur_off = iov_offset;
- bp.b_cur_iov = cur_iov;
+ pos = *ppos;
- page = ocfs2_get_write_source(&bp, cur_iov, iov_offset);
- if (IS_ERR(page)) {
- ret = PTR_ERR(page);
+ user_page = ocfs2_get_write_source(&buf, cur_iov, iov_offset);
+ if (IS_ERR(user_page)) {
+ ret = PTR_ERR(user_page);
goto out;
}
- copied = ocfs2_buffered_write_cluster(file, *ppos, count,
- ocfs2_map_and_write_user_data,
- &bp);
+ /* Stay within our page boundaries */
+ bytes = min((PAGE_CACHE_SIZE - ((unsigned long)pos & ~PAGE_CACHE_MASK)),
+ (PAGE_CACHE_SIZE - ((unsigned long)buf & ~PAGE_CACHE_MASK)));
+ /* Stay within the vector boundary */
+ bytes = min_t(size_t, bytes, cur_iov->iov_len - iov_offset);
+ /* Stay within count */
+ bytes = min(bytes, count);
+
+ page = NULL;
+ ret = ocfs2_write_begin(file, file->f_mapping, pos, bytes, 0,
+ &page, &fsdata);
+ if (ret) {
+ mlog_errno(ret);
+ goto out;
+ }
- ocfs2_put_write_source(&bp, page);
+ dst = kmap_atomic(page, KM_USER0);
+ memcpy(dst + (pos & (PAGE_CACHE_SIZE - 1)), buf, bytes);
+ kunmap_atomic(dst, KM_USER0);
+ flush_dcache_page(page);
+ ocfs2_put_write_source(user_page);
+ copied = ocfs2_write_end(file, file->f_mapping, pos, bytes,
+ bytes, page, fsdata);
if (copied < 0) {
mlog_errno(copied);
ret = copied;
@@ -1415,7 +1434,7 @@ static ssize_t ocfs2_file_buffered_write(struct file *file, loff_t *ppos,
}
total += copied;
- *ppos = *ppos + copied;
+ *ppos = pos + copied;
count -= copied;
ocfs2_set_next_iovec(&cur_iov, &iov_offset, copied);
@@ -1585,52 +1604,46 @@ static int ocfs2_splice_write_actor(struct pipe_inode_info *pipe,
struct pipe_buffer *buf,
struct splice_desc *sd)
{
- int ret, count, total = 0;
+ int ret, count;
ssize_t copied = 0;
- struct ocfs2_splice_write_priv sp;
+ struct file *file = sd->u.file;
+ unsigned int offset;
+ struct page *page = NULL;
+ void *fsdata;
+ char *src, *dst;
ret = buf->ops->confirm(pipe, buf);
if (ret)
goto out;
- sp.s_sd = sd;
- sp.s_buf = buf;
- sp.s_pipe = pipe;
- sp.s_offset = sd->pos & ~PAGE_CACHE_MASK;
- sp.s_buf_offset = buf->offset;
-
+ offset = sd->pos & ~PAGE_CACHE_MASK;
count = sd->len;
- if (count + sp.s_offset > PAGE_CACHE_SIZE)
- count = PAGE_CACHE_SIZE - sp.s_offset;
+ if (count + offset > PAGE_CACHE_SIZE)
+ count = PAGE_CACHE_SIZE - offset;
- do {
- /*
- * splice wants us to copy up to one page at a
- * time. For pagesize > cluster size, this means we
- * might enter ocfs2_buffered_write_cluster() more
- * than once, so keep track of our progress here.
- */
- copied = ocfs2_buffered_write_cluster(sd->u.file,
- (loff_t)sd->pos + total,
- count,
- ocfs2_map_and_write_splice_data,
- &sp);
- if (copied < 0) {
- mlog_errno(copied);
- ret = copied;
- goto out;
- }
+ ret = ocfs2_write_begin(file, file->f_mapping, sd->pos, count, 0,
+ &page, &fsdata);
+ if (ret) {
+ mlog_errno(ret);
+ goto out;
+ }
- count -= copied;
- sp.s_offset += copied;
- sp.s_buf_offset += copied;
- total += copied;
- } while (count);
+ src = buf->ops->map(pipe, buf, 1);
+ dst = kmap_atomic(page, KM_USER1);
+ memcpy(dst + offset, src + buf->offset, count);
+ kunmap_atomic(page, KM_USER1);
+ buf->ops->unmap(pipe, buf, src);
- ret = 0;
+ copied = ocfs2_write_end(file, file->f_mapping, sd->pos, count, count,
+ page, fsdata);
+ if (copied < 0) {
+ mlog_errno(copied);
+ ret = copied;
+ goto out;
+ }
out:
- return total ? total : ret;
+ return copied ? copied : ret;
}
static ssize_t __ocfs2_file_splice_write(struct pipe_inode_info *pipe,
OpenPOWER on IntegriCloud