diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2009-03-26 16:05:01 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2009-03-26 16:05:01 -0700 |
commit | 831576fe40f4175e0767623cffa4aeb28157943a (patch) | |
tree | de54e628e5849d6cf201df4446d760d17f752326 | |
parent | 21cdbc1378e8aa96e1ed4a606dce1a8e7daf7fdf (diff) | |
parent | 66fef08f7d5267b2312c4b48a6d2957d2d414105 (diff) | |
download | op-kernel-dev-831576fe40f4175e0767623cffa4aeb28157943a.zip op-kernel-dev-831576fe40f4175e0767623cffa4aeb28157943a.tar.gz |
Merge branch 'sched-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'sched-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (46 commits)
sched: Add comments to find_busiest_group() function
sched: Refactor the power savings balance code
sched: Optimize the !power_savings_balance during fbg()
sched: Create a helper function to calculate imbalance
sched: Create helper to calculate small_imbalance in fbg()
sched: Create a helper function to calculate sched_domain stats for fbg()
sched: Define structure to store the sched_domain statistics for fbg()
sched: Create a helper function to calculate sched_group stats for fbg()
sched: Define structure to store the sched_group statistics for fbg()
sched: Fix indentations in find_busiest_group() using gotos
sched: Simple helper functions for find_busiest_group()
sched: remove unused fields from struct rq
sched: jiffies not printed per CPU
sched: small optimisation of can_migrate_task()
sched: fix typos in documentation
sched: add avg_overlap decay
x86, sched_clock(): mark variables read-mostly
sched: optimize ttwu vs group scheduling
sched: TIF_NEED_RESCHED -> need_reshed() cleanup
sched: don't rebalance if attached on NULL domain
...
-rw-r--r-- | Documentation/scheduler/00-INDEX | 2 | ||||
-rw-r--r-- | Documentation/scheduler/sched-coding.txt | 126 | ||||
-rw-r--r-- | arch/x86/kernel/cpu/intel.c | 8 | ||||
-rw-r--r-- | arch/x86/kernel/tsc.c | 9 | ||||
-rw-r--r-- | include/linux/init_task.h | 1 | ||||
-rw-r--r-- | include/linux/latencytop.h | 10 | ||||
-rw-r--r-- | include/linux/plist.h | 9 | ||||
-rw-r--r-- | include/linux/sched.h | 17 | ||||
-rw-r--r-- | init/Kconfig | 1 | ||||
-rw-r--r-- | kernel/latencytop.c | 83 | ||||
-rw-r--r-- | kernel/sched.c | 982 | ||||
-rw-r--r-- | kernel/sched_clock.c | 30 | ||||
-rw-r--r-- | kernel/sched_debug.c | 8 | ||||
-rw-r--r-- | kernel/sched_fair.c | 59 | ||||
-rw-r--r-- | kernel/sched_features.h | 3 | ||||
-rw-r--r-- | kernel/sched_rt.c | 537 | ||||
-rw-r--r-- | kernel/sched_stats.h | 7 | ||||
-rw-r--r-- | lib/Kconfig | 6 | ||||
-rw-r--r-- | lib/Makefile | 4 | ||||
-rw-r--r-- | lib/kernel_lock.c | 2 |
20 files changed, 1262 insertions, 642 deletions
diff --git a/Documentation/scheduler/00-INDEX b/Documentation/scheduler/00-INDEX index aabcc3a..3c00c9c 100644 --- a/Documentation/scheduler/00-INDEX +++ b/Documentation/scheduler/00-INDEX @@ -2,8 +2,6 @@ - this file. sched-arch.txt - CPU Scheduler implementation hints for architecture specific code. -sched-coding.txt - - reference for various scheduler-related methods in the O(1) scheduler. sched-design-CFS.txt - goals, design and implementation of the Complete Fair Scheduler. sched-domains.txt diff --git a/Documentation/scheduler/sched-coding.txt b/Documentation/scheduler/sched-coding.txt deleted file mode 100644 index cbd8db7..0000000 --- a/Documentation/scheduler/sched-coding.txt +++ /dev/null @@ -1,126 +0,0 @@ - Reference for various scheduler-related methods in the O(1) scheduler - Robert Love <rml@tech9.net>, MontaVista Software - - -Note most of these methods are local to kernel/sched.c - this is by design. -The scheduler is meant to be self-contained and abstracted away. This document -is primarily for understanding the scheduler, not interfacing to it. Some of -the discussed interfaces, however, are general process/scheduling methods. -They are typically defined in include/linux/sched.h. - - -Main Scheduling Methods ------------------------ - -void load_balance(runqueue_t *this_rq, int idle) - Attempts to pull tasks from one cpu to another to balance cpu usage, - if needed. This method is called explicitly if the runqueues are - imbalanced or periodically by the timer tick. Prior to calling, - the current runqueue must be locked and interrupts disabled. - -void schedule() - The main scheduling function. Upon return, the highest priority - process will be active. - - -Locking -------- - -Each runqueue has its own lock, rq->lock. When multiple runqueues need -to be locked, lock acquires must be ordered by ascending &runqueue value. - -A specific runqueue is locked via - - task_rq_lock(task_t pid, unsigned long *flags) - -which disables preemption, disables interrupts, and locks the runqueue pid is -running on. Likewise, - - task_rq_unlock(task_t pid, unsigned long *flags) - -unlocks the runqueue pid is running on, restores interrupts to their previous -state, and reenables preemption. - -The routines - - double_rq_lock(runqueue_t *rq1, runqueue_t *rq2) - -and - - double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2) - -safely lock and unlock, respectively, the two specified runqueues. They do -not, however, disable and restore interrupts. Users are required to do so -manually before and after calls. - - -Values ------- - -MAX_PRIO - The maximum priority of the system, stored in the task as task->prio. - Lower priorities are higher. Normal (non-RT) priorities range from - MAX_RT_PRIO to (MAX_PRIO - 1). -MAX_RT_PRIO - The maximum real-time priority of the system. Valid RT priorities - range from 0 to (MAX_RT_PRIO - 1). -MAX_USER_RT_PRIO - The maximum real-time priority that is exported to user-space. Should - always be equal to or less than MAX_RT_PRIO. Setting it less allows - kernel threads to have higher priorities than any user-space task. -MIN_TIMESLICE -MAX_TIMESLICE - Respectively, the minimum and maximum timeslices (quanta) of a process. - -Data ----- - -struct runqueue - The main per-CPU runqueue data structure. -struct task_struct - The main per-process data structure. - - -General Methods ---------------- - -cpu_rq(cpu) - Returns the runqueue of the specified cpu. -this_rq() - Returns the runqueue of the current cpu. -task_rq(pid) - Returns the runqueue which holds the specified pid. -cpu_curr(cpu) - Returns the task currently running on the given cpu. -rt_task(pid) - Returns true if pid is real-time, false if not. - - -Process Control Methods ------------------------ - -void set_user_nice(task_t *p, long nice) - Sets the "nice" value of task p to the given value. -int setscheduler(pid_t pid, int policy, struct sched_param *param) - Sets the scheduling policy and parameters for the given pid. -int set_cpus_allowed(task_t *p, unsigned long new_mask) - Sets a given task's CPU affinity and migrates it to a proper cpu. - Callers must have a valid reference to the task and assure the - task not exit prematurely. No locks can be held during the call. -set_task_state(tsk, state_value) - Sets the given task's state to the given value. -set_current_state(state_value) - Sets the current task's state to the given value. -void set_tsk_need_resched(struct task_struct *tsk) - Sets need_resched in the given task. -void clear_tsk_need_resched(struct task_struct *tsk) - Clears need_resched in the given task. -void set_need_resched() - Sets need_resched in the current task. -void clear_need_resched() - Clears need_resched in the current task. -int need_resched() - Returns true if need_resched is set in the current task, false - otherwise. -yield() - Place the current process at the end of the runqueue and call schedule. diff --git a/arch/x86/kernel/cpu/intel.c b/arch/x86/kernel/cpu/intel.c index 24ff26a..5fff00c 100644 --- a/arch/x86/kernel/cpu/intel.c +++ b/arch/x86/kernel/cpu/intel.c @@ -4,6 +4,7 @@ #include <linux/string.h> #include <linux/bitops.h> #include <linux/smp.h> +#include <linux/sched.h> #include <linux/thread_info.h> #include <linux/module.h> @@ -56,11 +57,16 @@ static void __cpuinit early_init_intel(struct cpuinfo_x86 *c) /* * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate - * with P/T states and does not stop in deep C-states + * with P/T states and does not stop in deep C-states. + * + * It is also reliable across cores and sockets. (but not across + * cabinets - we turn it off in that case explicitly.) */ if (c->x86_power & (1 << 8)) { set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); + set_cpu_cap(c, X86_FEATURE_TSC_RELIABLE); + sched_clock_stable = 1; } } diff --git a/arch/x86/kernel/tsc.c b/arch/x86/kernel/tsc.c index b8e7aaf..08afa15 100644 --- a/arch/x86/kernel/tsc.c +++ b/arch/x86/kernel/tsc.c @@ -17,20 +17,21 @@ #include <asm/delay.h> #include <asm/hypervisor.h> -unsigned int cpu_khz; /* TSC clocks / usec, not used here */ +unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */ EXPORT_SYMBOL(cpu_khz); -unsigned int tsc_khz; + +unsigned int __read_mostly tsc_khz; EXPORT_SYMBOL(tsc_khz); /* * TSC can be unstable due to cpufreq or due to unsynced TSCs */ -static int tsc_unstable; +static int __read_mostly tsc_unstable; /* native_sched_clock() is called before tsc_init(), so we must start with the TSC soft disabled to prevent erroneous rdtsc usage on !cpu_has_tsc processors */ -static int tsc_disabled = -1; +static int __read_mostly tsc_disabled = -1; static int tsc_clocksource_reliable; /* diff --git a/include/linux/init_task.h b/include/linux/init_task.h index e752d973f..af1de95 100644 --- a/include/linux/init_task.h +++ b/include/linux/init_task.h @@ -147,6 +147,7 @@ extern struct cred init_cred; .nr_cpus_allowed = NR_CPUS, \ }, \ .tasks = LIST_HEAD_INIT(tsk.tasks), \ + .pushable_tasks = PLIST_NODE_INIT(tsk.pushable_tasks, MAX_PRIO), \ .ptraced = LIST_HEAD_INIT(tsk.ptraced), \ .ptrace_entry = LIST_HEAD_INIT(tsk.ptrace_entry), \ .real_parent = &tsk, \ diff --git a/include/linux/latencytop.h b/include/linux/latencytop.h index 901c2d6..b0e9989 100644 --- a/include/linux/latencytop.h +++ b/include/linux/latencytop.h @@ -9,6 +9,7 @@ #ifndef _INCLUDE_GUARD_LATENCYTOP_H_ #define _INCLUDE_GUARD_LATENCYTOP_H_ +#include <linux/compiler.h> #ifdef CONFIG_LATENCYTOP #define LT_SAVECOUNT 32 @@ -24,7 +25,14 @@ struct latency_record { struct task_struct; -void account_scheduler_latency(struct task_struct *task, int usecs, int inter); +extern int latencytop_enabled; +void __account_scheduler_latency(struct task_struct *task, int usecs, int inter); +static inline void +account_scheduler_latency(struct task_struct *task, int usecs, int inter) +{ + if (unlikely(latencytop_enabled)) + __account_scheduler_latency(task, usecs, inter); +} void clear_all_latency_tracing(struct task_struct *p); diff --git a/include/linux/plist.h b/include/linux/plist.h index 85de2f0..45926d7 100644 --- a/include/linux/plist.h +++ b/include/linux/plist.h @@ -96,6 +96,10 @@ struct plist_node { # define PLIST_HEAD_LOCK_INIT(_lock) #endif +#define _PLIST_HEAD_INIT(head) \ + .prio_list = LIST_HEAD_INIT((head).prio_list), \ + .node_list = LIST_HEAD_INIT((head).node_list) + /** * PLIST_HEAD_INIT - static struct plist_head initializer * @head: struct plist_head variable name @@ -103,8 +107,7 @@ struct plist_node { */ #define PLIST_HEAD_INIT(head, _lock) \ { \ - .prio_list = LIST_HEAD_INIT((head).prio_list), \ - .node_list = LIST_HEAD_INIT((head).node_list), \ + _PLIST_HEAD_INIT(head), \ PLIST_HEAD_LOCK_INIT(&(_lock)) \ } @@ -116,7 +119,7 @@ struct plist_node { #define PLIST_NODE_INIT(node, __prio) \ { \ .prio = (__prio), \ - .plist = PLIST_HEAD_INIT((node).plist, NULL), \ + .plist = { _PLIST_HEAD_INIT((node).plist) }, \ } /** diff --git a/include/linux/sched.h b/include/linux/sched.h index 2c36f62..ff904b0 100644 --- a/include/linux/sched.h +++ b/include/linux/sched.h @@ -998,6 +998,7 @@ struct sched_class { struct rq *busiest, struct sched_domain *sd, enum cpu_idle_type idle); void (*pre_schedule) (struct rq *this_rq, struct task_struct *task); + int (*needs_post_schedule) (struct rq *this_rq); void (*post_schedule) (struct rq *this_rq); void (*task_wake_up) (struct rq *this_rq, struct task_struct *task); @@ -1052,6 +1053,10 @@ struct sched_entity { u64 last_wakeup; u64 avg_overlap; + u64 start_runtime; + u64 avg_wakeup; + u64 nr_migrations; + #ifdef CONFIG_SCHEDSTATS u64 wait_start; u64 wait_max; @@ -1067,7 +1072,6 @@ struct sched_entity { u64 exec_max; u64 slice_max; - u64 nr_migrations; u64 nr_migrations_cold; u64 nr_failed_migrations_affine; u64 nr_failed_migrations_running; @@ -1164,6 +1168,7 @@ struct task_struct { #endif struct list_head tasks; + struct plist_node pushable_tasks; struct mm_struct *mm, *active_mm; @@ -1675,6 +1680,16 @@ static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask) return set_cpus_allowed_ptr(p, &new_mask); } +/* + * Architectures can set this to 1 if they have specified + * CONFIG_HAVE_UNSTABLE_SCHED_CLOCK in their arch Kconfig, + * but then during bootup it turns out that sched_clock() + * is reliable after all: + */ +#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK +extern int sched_clock_stable; +#endif + extern unsigned long long sched_clock(void); extern void sched_clock_init(void); diff --git a/init/Kconfig b/init/Kconfig index 6a5c5fe..6869913 100644 --- a/init/Kconfig +++ b/init/Kconfig @@ -966,7 +966,6 @@ config SLABINFO config RT_MUTEXES boolean - select PLIST config BASE_SMALL int diff --git a/kernel/latencytop.c b/kernel/latencytop.c index 449db46..ca07c5c 100644 --- a/kernel/latencytop.c +++ b/kernel/latencytop.c @@ -9,6 +9,44 @@ * as published by the Free Software Foundation; version 2 * of the License. */ + +/* + * CONFIG_LATENCYTOP enables a kernel latency tracking infrastructure that is + * used by the "latencytop" userspace tool. The latency that is tracked is not + * the 'traditional' interrupt latency (which is primarily caused by something + * else consuming CPU), but instead, it is the latency an application encounters + * because the kernel sleeps on its behalf for various reasons. + * + * This code tracks 2 levels of statistics: + * 1) System level latency + * 2) Per process latency + * + * The latency is stored in fixed sized data structures in an accumulated form; + * if the "same" latency cause is hit twice, this will be tracked as one entry + * in the data structure. Both the count, total accumulated latency and maximum + * latency are tracked in this data structure. When the fixed size structure is + * full, no new causes are tracked until the buffer is flushed by writing to + * the /proc file; the userspace tool does this on a regular basis. + * + * A latency cause is identified by a stringified backtrace at the point that + * the scheduler gets invoked. The userland tool will use this string to + * identify the cause of the latency in human readable form. + * + * The information is exported via /proc/latency_stats and /proc/<pid>/latency. + * These files look like this: + * + * Latency Top version : v0.1 + * 70 59433 4897 i915_irq_wait drm_ioctl vfs_ioctl do_vfs_ioctl sys_ioctl + * | | | | + * | | | +----> the stringified backtrace + * | | +---------> The maximum latency for this entry in microseconds + * | +--------------> The accumulated latency for this entry (microseconds) + * +-------------------> The number of times this entry is hit + * + * (note: the average latency is the accumulated latency divided by the number + * of times) + */ + #include <linux/latencytop.h> #include <linux/kallsyms.h> #include <linux/seq_file.h> @@ -72,7 +110,7 @@ account_global_scheduler_latency(struct task_struct *tsk, struct latency_record firstnonnull = i; continue; } - for (q = 0 ; q < LT_BACKTRACEDEPTH ; q++) { + for (q = 0; q < LT_BACKTRACEDEPTH; q++) { unsigned long record = lat->backtrace[q]; if (latency_record[i].backtrace[q] != record) { @@ -101,31 +139,52 @@ account_global_scheduler_latency(struct task_struct *tsk, struct latency_record memcpy(&latency_record[i], lat, sizeof(struct latency_record)); } -static inline void store_stacktrace(struct task_struct *tsk, struct latency_record *lat) +/* + * Iterator to store a backtrace into a latency record entry + */ +static inline void store_stacktrace(struct task_struct *tsk, + struct latency_record *lat) { struct stack_trace trace; memset(&trace, 0, sizeof(trace)); trace.max_entries = LT_BACKTRACEDEPTH; trace.entries = &lat->backtrace[0]; - trace.skip = 0; save_stack_trace_tsk(tsk, &trace); } +/** + * __account_scheduler_latency - record an occured latency + * @tsk - the task struct of the task hitting the latency + * @usecs - the duration of the latency in microseconds + * @inter - 1 if the sleep was interruptible, 0 if uninterruptible + * + * This function is the main entry point for recording latency entries + * as called by the scheduler. + * + * This function has a few special cases to deal with normal 'non-latency' + * sleeps: specifically, interruptible sleep longer than 5 msec is skipped + * since this usually is caused by waiting for events via select() and co. + * + * Negative latencies (caused by time going backwards) are also explicitly + * skipped. + */ void __sched -account_scheduler_latency(struct task_struct *tsk, int usecs, int inter) +__account_scheduler_latency(struct task_struct *tsk, int usecs, int inter) { unsigned long flags; int i, q; struct latency_record lat; - if (!latencytop_enabled) - return; - /* Long interruptible waits are generally user requested... */ if (inter && usecs > 5000) return; + /* Negative sleeps are time going backwards */ + /* Zero-time sleeps are non-interesting */ + if (usecs <= 0) + return; + memset(&lat, 0, sizeof(lat)); lat.count = 1; lat.time = usecs; @@ -143,12 +202,12 @@ account_scheduler_latency(struct task_struct *tsk, int usecs, int inter) if (tsk->latency_record_count >= LT_SAVECOUNT) goto out_unlock; - for (i = 0; i < LT_SAVECOUNT ; i++) { + for (i = 0; i < LT_SAVECOUNT; i++) { struct latency_record *mylat; int same = 1; mylat = &tsk->latency_record[i]; - for (q = 0 ; q < LT_BACKTRACEDEPTH ; q++) { + for (q = 0; q < LT_BACKTRACEDEPTH; q++) { unsigned long record = lat.backtrace[q]; if (mylat->backtrace[q] != record) { @@ -186,7 +245,7 @@ static int lstats_show(struct seq_file *m, void *v) for (i = 0; i < MAXLR; i++) { if (latency_record[i].backtrace[0]) { int q; - seq_printf(m, "%i %li %li ", + seq_printf(m, "%i %lu %lu ", latency_record[i].count, latency_record[i].time, latency_record[i].max); @@ -223,7 +282,7 @@ static int lstats_open(struct inode *inode, struct file *filp) return single_open(filp, lstats_show, NULL); } -static struct file_operations lstats_fops = { +static const struct file_operations lstats_fops = { .open = lstats_open, .read = seq_read, .write = lstats_write, @@ -236,4 +295,4 @@ static int __init init_lstats_procfs(void) proc_create("latency_stats", 0644, NULL, &lstats_fops); return 0; } -__initcall(init_lstats_procfs); +device_initcall(init_lstats_procfs); diff --git a/kernel/sched.c b/kernel/sched.c index 8e2558c..9f8506d 100644 --- a/kernel/sched.c +++ b/kernel/sched.c @@ -331,6 +331,13 @@ static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; */ static DEFINE_SPINLOCK(task_group_lock); +#ifdef CONFIG_SMP +static int root_task_group_empty(void) +{ + return list_empty(&root_task_group.children); +} +#endif + #ifdef CONFIG_FAIR_GROUP_SCHED #ifdef CONFIG_USER_SCHED # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD) @@ -391,6 +398,13 @@ static inline void set_task_rq(struct task_struct *p, unsigned int cpu) #else +#ifdef CONFIG_SMP +static int root_task_group_empty(void) +{ + return 1; +} +#endif + static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } static inline struct task_group *task_group(struct task_struct *p) { @@ -467,11 +481,17 @@ struct rt_rq { struct rt_prio_array active; unsigned long rt_nr_running; #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED - int highest_prio; /* highest queued rt task prio */ + struct { + int curr; /* highest queued rt task prio */ +#ifdef CONFIG_SMP + int next; /* next highest */ +#endif + } highest_prio; #endif #ifdef CONFIG_SMP unsigned long rt_nr_migratory; int overloaded; + struct plist_head pushable_tasks; #endif int rt_throttled; u64 rt_time; @@ -549,7 +569,6 @@ struct rq { unsigned long nr_running; #define CPU_LOAD_IDX_MAX 5 unsigned long cpu_load[CPU_LOAD_IDX_MAX]; - unsigned char idle_at_tick; #ifdef CONFIG_NO_HZ unsigned long last_tick_seen; unsigned char in_nohz_recently; @@ -590,6 +609,7 @@ struct rq { struct root_domain *rd; struct sched_domain *sd; + unsigned char idle_at_tick; /* For active balancing */ int active_balance; int push_cpu; @@ -618,9 +638,6 @@ struct rq { /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ /* sys_sched_yield() stats */ - unsigned int yld_exp_empty; - unsigned int yld_act_empty; - unsigned int yld_both_empty; unsigned int yld_count; /* schedule() stats */ @@ -1183,10 +1200,10 @@ static void resched_task(struct task_struct *p) assert_spin_locked(&task_rq(p)->lock); - if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED))) + if (test_tsk_need_resched(p)) return; - set_tsk_thread_flag(p, TIF_NEED_RESCHED); + set_tsk_need_resched(p); cpu = task_cpu(p); if (cpu == smp_processor_id()) @@ -1242,7 +1259,7 @@ void wake_up_idle_cpu(int cpu) * lockless. The worst case is that the other CPU runs the * idle task through an additional NOOP schedule() */ - set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED); + set_tsk_need_resched(rq->idle); /* NEED_RESCHED must be visible before we test polling */ smp_mb(); @@ -1610,21 +1627,42 @@ static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) #endif +#ifdef CONFIG_PREEMPT + /* - * double_lock_balance - lock the busiest runqueue, this_rq is locked already. + * fair double_lock_balance: Safely acquires both rq->locks in a fair + * way at the expense of forcing extra atomic operations in all + * invocations. This assures that the double_lock is acquired using the + * same underlying policy as the spinlock_t on this architecture, which + * reduces latency compared to the unfair variant below. However, it + * also adds more overhead and therefore may reduce throughput. */ -static int double_lock_balance(struct rq *this_rq, struct rq *busiest) +static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) + __releases(this_rq->lock) + __acquires(busiest->lock) + __acquires(this_rq->lock) +{ + spin_unlock(&this_rq->lock); + double_rq_lock(this_rq, busiest); + + return 1; +} + +#else +/* + * Unfair double_lock_balance: Optimizes throughput at the expense of + * latency by eliminating extra atomic operations when the locks are + * already in proper order on entry. This favors lower cpu-ids and will + * grant the double lock to lower cpus over higher ids under contention, + * regardless of entry order into the function. + */ +static int _double_lock_balance(struct rq *this_rq, struct rq *busiest) __releases(this_rq->lock) __acquires(busiest->lock) __acquires(this_rq->lock) { int ret = 0; - if (unlikely(!irqs_disabled())) { - /* printk() doesn't work good under rq->lock */ - spin_unlock(&this_rq->lock); - BUG_ON(1); - } if (unlikely(!spin_trylock(&busiest->lock))) { if (busiest < this_rq) { spin_unlock(&this_rq->lock); @@ -1637,6 +1675,22 @@ static int double_lock_balance(struct rq *this_rq, struct rq *busiest) return ret; } +#endif /* CONFIG_PREEMPT */ + +/* + * double_lock_balance - lock the busiest runqueue, this_rq is locked already. + */ +static int double_lock_balance(struct rq *this_rq, struct rq *busiest) +{ + if (unlikely(!irqs_disabled())) { + /* printk() doesn't work good under rq->lock */ + spin_unlock(&this_rq->lock); + BUG_ON(1); + } + + return _double_lock_balance(this_rq, busiest); +} + static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) __releases(busiest->lock) { @@ -1705,6 +1759,9 @@ static void update_avg(u64 *avg, u64 sample) static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) { + if (wakeup) + p->se.start_runtime = p->se.sum_exec_runtime; + sched_info_queued(p); p->sched_class->enqueue_task(rq, p, wakeup); p->se.on_rq = 1; @@ -1712,10 +1769,15 @@ static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) { - if (sleep && p->se.last_wakeup) { - update_avg(&p->se.avg_overlap, - p->se.sum_exec_runtime - p->se.last_wakeup); - p->se.last_wakeup = 0; + if (sleep) { + if (p->se.last_wakeup) { + update_avg(&p->se.avg_overlap, + p->se.sum_exec_runtime - p->se.last_wakeup); + p->se.last_wakeup = 0; + } else { + update_avg(&p->se.avg_wakeup, + sysctl_sched_wakeup_granularity); + } } sched_info_dequeued(p); @@ -2017,7 +2079,7 @@ unsigned long wait_task_inactive(struct task_struct *p, long match_state) * it must be off the runqueue _entirely_, and not * preempted! * - * So if it wa still runnable (but just not actively + * So if it was still runnable (but just not actively * running right now), it's preempted, and we should * yield - it could be a while. */ @@ -2267,7 +2329,7 @@ static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) sync = 0; #ifdef CONFIG_SMP - if (sched_feat(LB_WAKEUP_UPDATE)) { + if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) { struct sched_domain *sd; this_cpu = raw_smp_processor_id(); @@ -2345,6 +2407,22 @@ out_activate: activate_task(rq, p, 1); success = 1; + /* + * Only attribute actual wakeups done by this task. + */ + if (!in_interrupt()) { + struct sched_entity *se = ¤t->se; + u64 sample = se->sum_exec_runtime; + + if (se->last_wakeup) + sample -= se->last_wakeup; + else + sample -= se->start_runtime; + update_avg(&se->avg_wakeup, sample); + + se->last_wakeup = se->sum_exec_runtime; + } + out_running: trace_sched_wakeup(rq, p, success); check_preempt_curr(rq, p, sync); @@ -2355,8 +2433,6 @@ out_running: p->sched_class->task_wake_up(rq, p); #endif out: - current->se.last_wakeup = current->se.sum_exec_runtime; - task_rq_unlock(rq, &flags); return success; @@ -2386,6 +2462,8 @@ static void __sched_fork(struct task_struct *p) p->se.prev_sum_exec_runtime = 0; p->se.last_wakeup = 0; p->se.avg_overlap = 0; + p->se.start_runtime = 0; + p->se.avg_wakeup = sysctl_sched_wakeup_granularity; #ifdef CONFIG_SCHEDSTATS p->se.wait_start = 0; @@ -2448,6 +2526,8 @@ void sched_fork(struct task_struct *p, int clone_flags) /* Want to start with kernel preemption disabled. */ task_thread_info(p)->preempt_count = 1; #endif + plist_node_init(&p->pushable_tasks, MAX_PRIO); + put_cpu(); } @@ -2491,7 +2571,7 @@ void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) #ifdef CONFIG_PREEMPT_NOTIFIERS /** - * preempt_notifier_register - tell me when current is being being preempted & rescheduled + * preempt_notifier_register - tell me when current is being preempted & rescheduled * @notifier: notifier struct to register */ void preempt_notifier_register(struct preempt_notifier *notifier) @@ -2588,6 +2668,12 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) { struct mm_struct *mm = rq->prev_mm; long prev_state; +#ifdef CONFIG_SMP + int post_schedule = 0; + + if (current->sched_class->needs_post_schedule) + post_schedule = current->sched_class->needs_post_schedule(rq); +#endif rq->prev_mm = NULL; @@ -2606,7 +2692,7 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) finish_arch_switch(prev); finish_lock_switch(rq, prev); #ifdef CONFIG_SMP - if (current->sched_class->post_schedule) + if (post_schedule) current->sched_class->post_schedule(rq); #endif @@ -2913,6 +2999,7 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, struct sched_domain *sd, enum cpu_idle_type idle, int *all_pinned) { + int tsk_cache_hot = 0; /* * We do not migrate tasks that are: * 1) running (obviously), or @@ -2936,10 +3023,11 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, * 2) too many balance attempts have failed. */ - if (!task_hot(p, rq->clock, sd) || - sd->nr_balance_failed > sd->cache_nice_tries) { + tsk_cache_hot = task_hot(p, rq->clock, sd); + if (!tsk_cache_hot || + sd->nr_balance_failed > sd->cache_nice_tries) { #ifdef CONFIG_SCHEDSTATS - if (task_hot(p, rq->clock, sd)) { + if (tsk_cache_hot) { schedstat_inc(sd, lb_hot_gained[idle]); schedstat_inc(p, se.nr_forced_migrations); } @@ -2947,7 +3035,7 @@ int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, return 1; } - if (task_hot(p, rq->clock, sd)) { + if (tsk_cache_hot) { schedstat_inc(p, se.nr_failed_migrations_hot); return 0; } @@ -2987,6 +3075,16 @@ next: pulled++; rem_load_move -= p->se.load.weight; +#ifdef CONFIG_PREEMPT + /* + * NEWIDLE balancing is a source of latency, so preemptible kernels + * will stop after the first task is pulled to minimize the critical + * section. + */ + if (idle == CPU_NEWLY_IDLE) + goto out; +#endif + /* * We only want to steal up to the prescribed amount of weighted load. */ @@ -3033,9 +3131,15 @@ static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, sd, idle, all_pinned, &this_best_prio); class = class->next; +#ifdef CONFIG_PREEMPT + /* + * NEWIDLE balancing is a source of latency, so preemptible + * kernels will stop after the first task is pulled to minimize + * the critical section. + */ if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) break; - +#endif } while (class && max_load_move > total_load_moved); return total_load_moved > 0; @@ -3085,246 +3189,479 @@ static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, return 0; } +/********** Helpers for find_busiest_group ************************/ +/** + * sd_lb_stats - Structure to store the statistics of a sched_domain + * during load balancing. + */ +struct sd_lb_stats { + struct sched_group *busiest; /* Busiest group in this sd */ + struct sched_group *this; /* Local group in this sd */ + unsigned long total_load; /* Total load of all groups in sd */ + unsigned long total_pwr; /* Total power of all groups in sd */ + unsigned long avg_load; /* Average load across all groups in sd */ + + /** Statistics of this group */ + unsigned long this_load; + unsigned long this_load_per_task; + unsigned long this_nr_running; + + /* Statistics of the busiest group */ + unsigned long max_load; + unsigned long busiest_load_per_task; + unsigned long busiest_nr_running; + + int group_imb; /* Is there imbalance in this sd */ +#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) + int power_savings_balance; /* Is powersave balance needed for this sd */ + struct sched_group *group_min; /* Least loaded group in sd */ + struct sched_group *group_leader; /* Group which relieves group_min */ + unsigned long min_load_per_task; /* load_per_task in group_min */ + unsigned long leader_nr_running; /* Nr running of group_leader */ + unsigned long min_nr_running; /* Nr running of group_min */ +#endif +}; -/* - * find_busiest_group finds and returns the busiest CPU group within the - * domain. It calculates and returns the amount of weighted load which - * should be moved to restore balance via the imbalance parameter. +/** + * sg_lb_stats - stats of a sched_group required for load_balancing + */ +struct sg_lb_stats { + unsigned long avg_load; /*Avg load across the CPUs of the group */ + unsigned long group_load; /* Total load over the CPUs of the group */ + unsigned long sum_nr_running; /* Nr tasks running in the group */ + unsigned long sum_weighted_load; /* Weighted load of group's tasks */ + unsigned long group_capacity; + int group_imb; /* Is there an imbalance in the group ? */ +}; + +/** + * group_first_cpu - Returns the first cpu in the cpumask of a sched_group. + * @group: The group whose first cpu is to be returned. */ -static struct sched_group * -find_busiest_group(struct sched_domain *sd, int this_cpu, - unsigned long *imbalance, enum cpu_idle_type idle, - int *sd_idle, const struct cpumask *cpus, int *balance) +static inline unsigned int group_first_cpu(struct sched_group *group) { - struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; - unsigned long max_load, avg_load, total_load, this_load, total_pwr; - unsigned long max_pull; - unsigned long busiest_load_per_task, busiest_nr_running; - unsigned long this_load_per_task, this_nr_running; - int load_idx, group_imb = 0; -#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) - int power_savings_balance = 1; - unsigned long leader_nr_running = 0, min_load_per_task = 0; - unsigned long min_nr_running = ULONG_MAX; - struct sched_group *group_min = NULL, *group_leader = NULL; -#endif + return cpumask_first(sched_group_cpus(group)); +} - max_load = this_load = total_load = total_pwr = 0; - busiest_load_per_task = busiest_nr_running = 0; - this_load_per_task = this_nr_running = 0; +/** + * get_sd_load_idx - Obtain the load index for a given sched domain. + * @sd: The sched_domain whose load_idx is to be obtained. + * @idle: The Idle status of the CPU for whose sd load_icx is obtained. + */ +static inline int get_sd_load_idx(struct sched_domain *sd, + enum cpu_idle_type idle) +{ + int load_idx; - if (idle == CPU_NOT_IDLE) + switch (idle) { + case CPU_NOT_IDLE: load_idx = sd->busy_idx; - else if (idle == CPU_NEWLY_IDLE) + break; + + case CPU_NEWLY_IDLE: load_idx = sd->newidle_idx; - else + break; + default: load_idx = sd->idle_idx; + break; + } - do { - unsigned long load, group_capacity, max_cpu_load, min_cpu_load; - int local_group; - int i; - int __group_imb = 0; - unsigned int balance_cpu = -1, first_idle_cpu = 0; - unsigned long sum_nr_running, sum_weighted_load; - unsigned long sum_avg_load_per_task; - unsigned long avg_load_per_task; + return load_idx; +} - local_group = cpumask_test_cpu(this_cpu, - sched_group_cpus(group)); - if (local_group) - balance_cpu = cpumask_first(sched_group_cpus(group)); +#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) +/** + * init_sd_power_savings_stats - Initialize power savings statistics for + * the given sched_domain, during load balancing. + * + * @sd: Sched domain whose power-savings statistics are to be initialized. + * @sds: Variable containing the statistics for sd. + * @idle: Idle status of the CPU at which we're performing load-balancing. + */ +static inline void init_sd_power_savings_stats(struct sched_domain *sd, + struct sd_lb_stats *sds, enum cpu_idle_type idle) +{ + /* + * Busy processors will not participate in power savings + * balance. + */ + if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) + sds->power_savings_balance = 0; + else { + sds->power_savings_balance = 1; + sds->min_nr_running = ULONG_MAX; + sds->leader_nr_running = 0; + } +} - /* Tally up the load of all CPUs in the group */ - sum_weighted_load = sum_nr_running = avg_load = 0; - sum_avg_load_per_task = avg_load_per_task = 0; +/** + * update_sd_power_savings_stats - Update the power saving stats for a + * sched_domain while performing load balancing. + * + * @group: sched_group belonging to the sched_domain under consideration. + * @sds: Variable containing the statistics of the sched_domain + * @local_group: Does group contain the CPU for which we're performing + * load balancing ? + * @sgs: Variable containing the statistics of the group. + */ +static inline void update_sd_power_savings_stats(struct sched_group *group, + struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) +{ - max_cpu_load = 0; - min_cpu_load = ~0UL; + if (!sds->power_savings_balance) + return; - for_each_cpu_and(i, sched_group_cpus(group), cpus) { - struct rq *rq = cpu_rq(i); + /* + * If the local group is idle or completely loaded + * no need to do power savings balance at this domain + */ + if (local_group && (sds->this_nr_running >= sgs->group_capacity || + !sds->this_nr_running)) + sds->power_savings_balance = 0; - if (*sd_idle && rq->nr_running) - *sd_idle = 0; + /* + * If a group is already running at full capacity or idle, + * don't include that group in power savings calculations + */ + if (!sds->power_savings_balance || + sgs->sum_nr_running >= sgs->group_capacity || + !sgs->sum_nr_running) + return; - /* Bias balancing toward cpus of our domain */ - if (local_group) { - if (idle_cpu(i) && !first_idle_cpu) { - first_idle_cpu = 1; - balance_cpu = i; - } + /* + * Calculate the group which has the least non-idle load. + * This is the group from where we need to pick up the load + * for saving power + */ + if ((sgs->sum_nr_running < sds->min_nr_running) || + (sgs->sum_nr_running == sds->min_nr_running && + group_first_cpu(group) > group_first_cpu(sds->group_min))) { + sds->group_min = group; + sds->min_nr_running = sgs->sum_nr_running; + sds->min_load_per_task = sgs->sum_weighted_load / + sgs->sum_nr_running; + } - load = target_load(i, load_idx); - } else { - load = source_load(i, load_idx); - if (load > max_cpu_load) - max_cpu_load = load; - if (min_cpu_load > load) - min_cpu_load = load; - } + /* + * Calculate the group which is almost near its + * capacity but still has some space to pick up some load + * from other group and save more power + */ + if (sgs->sum_nr_running > sgs->group_capacity - 1) + return; - avg_load += load; - sum_nr_running += rq->nr_running; - sum_weighted_load += weighted_cpuload(i); + if (sgs->sum_nr_running > sds->leader_nr_running || + (sgs->sum_nr_running == sds->leader_nr_running && + group_first_cpu(group) < group_first_cpu(sds->group_leader))) { + sds->group_leader = group; + sds->leader_nr_running = sgs->sum_nr_running; + } +} - sum_avg_load_per_task += cpu_avg_load_per_task(i); - } +/** + * check_power_save_busiest_group - Check if we have potential to perform + * some power-savings balance. If yes, set the busiest group to be + * the least loaded group in the sched_domain, so that it's CPUs can + * be put to idle. + * + * @sds: Variable containing the statistics of the sched_domain + * under consideration. + * @this_cpu: Cpu at which we're currently performing load-balancing. + * @imbalance: Variable to store the imbalance. + * + * Returns 1 if there is potential to perform power-savings balance. + * Else returns 0. + */ +static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, + int this_cpu, unsigned long *imbalance) +{ + if (!sds->power_savings_balance) + return 0; - /* - * First idle cpu or the first cpu(busiest) in this sched group - * is eligible for doing load balancing at this and above - * domains. In the newly idle case, we will allow all the cpu's - * to do the newly idle load balance. - */ - if (idle != CPU_NEWLY_IDLE && local_group && - balance_cpu != this_cpu && balance) { - *balance = 0; - goto ret; - } + if (sds->this != sds->group_leader || + sds->group_leader == sds->group_min) + return 0; - total_load += avg_load; - total_pwr += group->__cpu_power; + *imbalance = sds->min_load_per_task; + sds->busiest = sds->group_min; - /* Adjust by relative CPU power of the group */ - avg_load = sg_div_cpu_power(group, - avg_load * SCHED_LOAD_SCALE); + if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) { + cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu = + group_first_cpu(sds->group_leader); + } + return 1; - /* - * Consider the group unbalanced when the imbalance is larger - * than the average weight of two tasks. - * - * APZ: with cgroup the avg task weight can vary wildly and - * might not be a suitable number - should we keep a - * normalized nr_running number somewhere that negates - * the hierarchy? - */ - avg_load_per_task = sg_div_cpu_power(group, - sum_avg_load_per_task * SCHED_LOAD_SCALE); +} +#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ +static inline void init_sd_power_savings_stats(struct sched_domain *sd, + struct sd_lb_stats *sds, enum cpu_idle_type idle) +{ + return; +} - if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) - __group_imb = 1; +static inline void update_sd_power_savings_stats(struct sched_group *group, + struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) +{ + return; +} + +static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, + int this_cpu, unsigned long *imbalance) +{ + return 0; +} +#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ - group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; +/** + * update_sg_lb_stats - Update sched_group's statistics for load balancing. + * @group: sched_group whose statistics are to be updated. + * @this_cpu: Cpu for which load balance is currently performed. + * @idle: Idle status of this_cpu + * @load_idx: Load index of sched_domain of this_cpu for load calc. + * @sd_idle: Idle status of the sched_domain containing group. + * @local_group: Does group contain this_cpu. + * @cpus: Set of cpus considered for load balancing. + * @balance: Should we balance. + * @sgs: variable to hold the statistics for this group. + */ +static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu, + enum cpu_idle_type idle, int load_idx, int *sd_idle, + int local_group, const struct cpumask *cpus, + int *balance, struct sg_lb_stats *sgs) +{ + unsigned long load, max_cpu_load, min_cpu_load; + int i; + unsigned int balance_cpu = -1, first_idle_cpu = 0; + unsigned long sum_avg_load_per_task; + unsigned long avg_load_per_task; + + if (local_group) + balance_cpu = group_first_cpu(group); + + /* Tally up the load of all CPUs in the group */ + sum_avg_load_per_task = avg_load_per_task = 0; + max_cpu_load = 0; + min_cpu_load = ~0UL; + + for_each_cpu_and(i, sched_group_cpus(group), cpus) { + struct rq *rq = cpu_rq(i); + + if (*sd_idle && rq->nr_running) + *sd_idle = 0; + + /* Bias balancing toward cpus of our domain */ if (local_group) { - this_load = avg_load; - this = group; - this_nr_running = sum_nr_running; - this_load_per_task = sum_weighted_load; - } else if (avg_load > max_load && - (sum_nr_running > group_capacity || __group_imb)) { - max_load = avg_load; - busiest = group; - busiest_nr_running = sum_nr_running; - busiest_load_per_task = sum_weighted_load; - group_imb = __group_imb; + if (idle_cpu(i) && !first_idle_cpu) { + first_idle_cpu = 1; + balance_cpu = i; + } + + load = target_load(i, load_idx); + } else { + load = source_load(i, load_idx); + if (load > max_cpu_load) + max_cpu_load = load; + if (min_cpu_load > load) + min_cpu_load = load; } -#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) - /* - * Busy processors will not participate in power savings - * balance. - */ - if (idle == CPU_NOT_IDLE || - !(sd->flags & SD_POWERSAVINGS_BALANCE)) - goto group_next; + sgs->group_load += load; + sgs->sum_nr_running += rq->nr_running; + sgs->sum_weighted_load += weighted_cpuload(i); - /* - * If the local group is idle or completely loaded - * no need to do power savings balance at this domain - */ - if (local_group && (this_nr_running >= group_capacity || - !this_nr_running)) - power_savings_balance = 0; + sum_avg_load_per_task += cpu_avg_load_per_task(i); + } - /* - * If a group is already running at full capacity or idle, - * don't include that group in power savings calculations - */ - if (!power_savings_balance || sum_nr_running >= group_capacity - || !sum_nr_running) - goto group_next; + /* + * First idle cpu or the first cpu(busiest) in this sched group + * is eligible for doing load balancing at this and above + * domains. In the newly idle case, we will allow all the cpu's + * to do the newly idle load balance. + */ + if (idle != CPU_NEWLY_IDLE && local_group && + balance_cpu != this_cpu && balance) { + *balance = 0; + return; + } - /* - * Calculate the group which has the least non-idle load. - * This is the group from where we need to pick up the load - * for saving power - */ - if ((sum_nr_running < min_nr_running) || - (sum_nr_running == min_nr_running && - cpumask_first(sched_group_cpus(group)) > - cpumask_first(sched_group_cpus(group_min)))) { - group_min = group; - min_nr_running = sum_nr_running; - min_load_per_task = sum_weighted_load / - sum_nr_running; - } + /* Adjust by relative CPU power of the group */ + sgs->avg_load = sg_div_cpu_power(group, + sgs->group_load * SCHED_LOAD_SCALE); - /* - * Calculate the group which is almost near its - * capacity but still has some space to pick up some load - * from other group and save more power - */ - if (sum_nr_running <= group_capacity - 1) { - if (sum_nr_running > leader_nr_running || - (sum_nr_running == leader_nr_running && - cpumask_first(sched_group_cpus(group)) < - cpumask_first(sched_group_cpus(group_leader)))) { - group_leader = group; - leader_nr_running = sum_nr_running; - } + + /* + * Consider the group unbalanced when the imbalance is larger + * than the average weight of two tasks. + * + * APZ: with cgroup the avg task weight can vary wildly and + * might not be a suitable number - should we keep a + * normalized nr_running number somewhere that negates + * the hierarchy? + */ + avg_load_per_task = sg_div_cpu_power(group, + sum_avg_load_per_task * SCHED_LOAD_SCALE); + + if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) + sgs->group_imb = 1; + + sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; + +} + +/** + * update_sd_lb_stats - Update sched_group's statistics for load balancing. + * @sd: sched_domain whose statistics are to be updated. + * @this_cpu: Cpu for which load balance is currently performed. + * @idle: Idle status of this_cpu + * @sd_idle: Idle status of the sched_domain containing group. + * @cpus: Set of cpus considered for load balancing. + * @balance: Should we balance. + * @sds: variable to hold the statistics for this sched_domain. + */ +static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, + enum cpu_idle_type idle, int *sd_idle, + const struct cpumask *cpus, int *balance, + struct sd_lb_stats *sds) +{ + struct sched_group *group = sd->groups; + struct sg_lb_stats sgs; + int load_idx; + + init_sd_power_savings_stats(sd, sds, idle); + load_idx = get_sd_load_idx(sd, idle); + + do { + int local_group; + + local_group = cpumask_test_cpu(this_cpu, + sched_group_cpus(group)); + memset(&sgs, 0, sizeof(sgs)); + update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle, + local_group, cpus, balance, &sgs); + + if (local_group && balance && !(*balance)) + return; + + sds->total_load += sgs.group_load; + sds->total_pwr += group->__cpu_power; + + if (local_group) { + sds->this_load = sgs.avg_load; + sds->this = group; + sds->this_nr_running = sgs.sum_nr_running; + sds->this_load_per_task = sgs.sum_weighted_load; + } else if (sgs.avg_load > sds->max_load && + (sgs.sum_nr_running > sgs.group_capacity || + sgs.group_imb)) { + sds->max_load = sgs.avg_load; + sds->busiest = group; + sds->busiest_nr_running = sgs.sum_nr_running; + sds->busiest_load_per_task = sgs.sum_weighted_load; + sds->group_imb = sgs.group_imb; } -group_next: -#endif + + update_sd_power_savings_stats(group, sds, local_group, &sgs); group = group->next; } while (group != sd->groups); - if (!busiest || this_load >= max_load || busiest_nr_running == 0) - goto out_balanced; - - avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr; +} - if (this_load >= avg_load || - 100*max_load <= sd->imbalance_pct*this_load) - goto out_balanced; +/** + * fix_small_imbalance - Calculate the minor imbalance that exists + * amongst the groups of a sched_domain, during + * load balancing. + * @sds: Statistics of the sched_domain whose imbalance is to be calculated. + * @this_cpu: The cpu at whose sched_domain we're performing load-balance. + * @imbalance: Variable to store the imbalance. + */ +static inline void fix_small_imbalance(struct sd_lb_stats *sds, + int this_cpu, unsigned long *imbalance) +{ + unsigned long tmp, pwr_now = 0, pwr_move = 0; + unsigned int imbn = 2; + + if (sds->this_nr_running) { + sds->this_load_per_task /= sds->this_nr_running; + if (sds->busiest_load_per_task > + sds->this_load_per_task) + imbn = 1; + } else + sds->this_load_per_task = + cpu_avg_load_per_task(this_cpu); - busiest_load_per_task /= busiest_nr_running; - if (group_imb) - busiest_load_per_task = min(busiest_load_per_task, avg_load); + if (sds->max_load - sds->this_load + sds->busiest_load_per_task >= + sds->busiest_load_per_task * imbn) { + *imbalance = sds->busiest_load_per_task; + return; + } /* - * We're trying to get all the cpus to the average_load, so we don't - * want to push ourselves above the average load, nor do we wish to - * reduce the max loaded cpu below the average load, as either of these - * actions would just result in more rebalancing later, and ping-pong - * tasks around. Thus we look for the minimum possible imbalance. - * Negative imbalances (*we* are more loaded than anyone else) will - * be counted as no imbalance for these purposes -- we can't fix that - * by pulling tasks to us. Be careful of negative numbers as they'll - * appear as very large values with unsigned longs. + * OK, we don't have enough imbalance to justify moving tasks, + * however we may be able to increase total CPU power used by + * moving them. */ - if (max_load <= busiest_load_per_task) - goto out_balanced; + pwr_now += sds->busiest->__cpu_power * + min(sds->busiest_load_per_task, sds->max_load); + pwr_now += sds->this->__cpu_power * + min(sds->this_load_per_task, sds->this_load); + pwr_now /= SCHED_LOAD_SCALE; + + /* Amount of load we'd subtract */ + tmp = sg_div_cpu_power(sds->busiest, + sds->busiest_load_per_task * SCHED_LOAD_SCALE); + if (sds->max_load > tmp) + pwr_move += sds->busiest->__cpu_power * + min(sds->busiest_load_per_task, sds->max_load - tmp); + + /* Amount of load we'd add */ + if (sds->max_load * sds->busiest->__cpu_power < + sds->busiest_load_per_task * SCHED_LOAD_SCALE) + tmp = sg_div_cpu_power(sds->this, + sds->max_load * sds->busiest->__cpu_power); + else + tmp = sg_div_cpu_power(sds->this, + sds->busiest_load_per_task * SCHED_LOAD_SCALE); + pwr_move += sds->this->__cpu_power * + min(sds->this_load_per_task, sds->this_load + tmp); + pwr_move /= SCHED_LOAD_SCALE; + + /* Move if we gain throughput */ + if (pwr_move > pwr_now) + *imbalance = sds->busiest_load_per_task; +} + +/** + * calculate_imbalance - Calculate the amount of imbalance present within the + * groups of a given sched_domain during load balance. + * @sds: statistics of the sched_domain whose imbalance is to be calculated. + * @this_cpu: Cpu for which currently load balance is being performed. + * @imbalance: The variable to store the imbalance. + */ +static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, + unsigned long *imbalance) +{ + unsigned long max_pull; /* * In the presence of smp nice balancing, certain scenarios can have * max load less than avg load(as we skip the groups at or below * its cpu_power, while calculating max_load..) */ - if (max_load < avg_load) { + if (sds->max_load < sds->avg_load) { *imbalance = 0; - goto small_imbalance; + return fix_small_imbalance(sds, this_cpu, imbalance); } /* Don't want to pull so many tasks that a group would go idle */ - max_pull = min(max_load - avg_load, max_load - busiest_load_per_task); + max_pull = min(sds->max_load - sds->avg_load, + sds->max_load - sds->busiest_load_per_task); /* How much load to actually move to equalise the imbalance */ - *imbalance = min(max_pull * busiest->__cpu_power, - (avg_load - this_load) * this->__cpu_power) + *imbalance = min(max_pull * sds->busiest->__cpu_power, + (sds->avg_load - sds->this_load) * sds->this->__cpu_power) / SCHED_LOAD_SCALE; /* @@ -3333,78 +3670,110 @@ group_next: * a think about bumping its value to force at least one task to be * moved */ - if (*imbalance < busiest_load_per_task) { - unsigned long tmp, pwr_now, pwr_move; - unsigned int imbn; - -small_imbalance: - pwr_move = pwr_now = 0; - imbn = 2; - if (this_nr_running) { - this_load_per_task /= this_nr_running; - if (busiest_load_per_task > this_load_per_task) - imbn = 1; - } else - this_load_per_task = cpu_avg_load_per_task(this_cpu); + if (*imbalance < sds->busiest_load_per_task) + return fix_small_imbalance(sds, this_cpu, imbalance); - if (max_load - this_load + busiest_load_per_task >= - busiest_load_per_task * imbn) { - *imbalance = busiest_load_per_task; - return busiest; - } +} +/******* find_busiest_group() helpers end here *********************/ - /* - * OK, we don't have enough imbalance to justify moving tasks, - * however we may be able to increase total CPU power used by - * moving them. - */ +/** + * find_busiest_group - Returns the busiest group within the sched_domain + * if there is an imbalance. If there isn't an imbalance, and + * the user has opted for power-savings, it returns a group whose + * CPUs can be put to idle by rebalancing those tasks elsewhere, if + * such a group exists. + * + * Also calculates the amount of weighted load which should be moved + * to restore balance. + * + * @sd: The sched_domain whose busiest group is to be returned. + * @this_cpu: The cpu for which load balancing is currently being performed. + * @imbalance: Variable which stores amount of weighted load which should + * be moved to restore balance/put a group to idle. + * @idle: The idle status of this_cpu. + * @sd_idle: The idleness of sd + * @cpus: The set of CPUs under consideration for load-balancing. + * @balance: Pointer to a variable indicating if this_cpu + * is the appropriate cpu to perform load balancing at this_level. + * + * Returns: - the busiest group if imbalance exists. + * - If no imbalance and user has opted for power-savings balance, + * return the least loaded group whose CPUs can be + * put to idle by rebalancing its tasks onto our group. + */ +static struct sched_group * +find_busiest_group(struct sched_domain *sd, int this_cpu, + unsigned long *imbalance, enum cpu_idle_type idle, + int *sd_idle, const struct cpumask *cpus, int *balance) +{ + struct sd_lb_stats sds; - pwr_now += busiest->__cpu_power * - min(busiest_load_per_task, max_load); - pwr_now += this->__cpu_power * - min(this_load_per_task, this_load); - pwr_now /= SCHED_LOAD_SCALE; - - /* Amount of load we'd subtract */ - tmp = sg_div_cpu_power(busiest, - busiest_load_per_task * SCHED_LOAD_SCALE); - if (max_load > tmp) - pwr_move += busiest->__cpu_power * - min(busiest_load_per_task, max_load - tmp); - - /* Amount of load we'd add */ - if (max_load * busiest->__cpu_power < - busiest_load_per_task * SCHED_LOAD_SCALE) - tmp = sg_div_cpu_power(this, - max_load * busiest->__cpu_power); - else - tmp = sg_div_cpu_power(this, - busiest_load_per_task * SCHED_LOAD_SCALE); - pwr_move += this->__cpu_power * - min(this_load_per_task, this_load + tmp); - pwr_move /= SCHED_LOAD_SCALE; + memset(&sds, 0, sizeof(sds)); - /* Move if we gain throughput */ - if (pwr_move > pwr_now) - *imbalance = busiest_load_per_task; - } + /* + * Compute the various statistics relavent for load balancing at + * this level. + */ + update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus, + balance, &sds); + + /* Cases where imbalance does not exist from POV of this_cpu */ + /* 1) this_cpu is not the appropriate cpu to perform load balancing + * at this level. + * 2) There is no busy sibling group to pull from. + * 3) This group is the busiest group. + * 4) This group is more busy than the avg busieness at this + * sched_domain. + * 5) The imbalance is within the specified limit. + * 6) Any rebalance would lead to ping-pong + */ + if (balance && !(*balance)) + goto ret; - return busiest; + if (!sds.busiest || sds.busiest_nr_running == 0) + goto out_balanced; -out_balanced: -#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) - if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) - goto ret; + if (sds.this_load >= sds.max_load) + goto out_balanced; - if (this == group_leader && group_leader != group_min) { - *imbalance = min_load_per_task; - if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) { - cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu = - cpumask_first(sched_group_cpus(group_leader)); - } - return group_min; - } -#endif + sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr; + + if (sds.this_load >= sds.avg_load) + goto out_balanced; + + if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) + goto out_balanced; + + sds.busiest_load_per_task /= sds.busiest_nr_running; + if (sds.group_imb) + sds.busiest_load_per_task = + min(sds.busiest_load_per_task, sds.avg_load); + + /* + * We're trying to get all the cpus to the average_load, so we don't + * want to push ourselves above the average load, nor do we wish to + * reduce the max loaded cpu below the average load, as either of these + * actions would just result in more rebalancing later, and ping-pong + * tasks around. Thus we look for the minimum possible imbalance. + * Negative imbalances (*we* are more loaded than anyone else) will + * be counted as no imbalance for these purposes -- we can't fix that + * by pulling tasks to us. Be careful of negative numbers as they'll + * appear as very large values with unsigned longs. + */ + if (sds.max_load <= sds.busiest_load_per_task) + goto out_balanced; + + /* Looks like there is an imbalance. Compute it */ + calculate_imbalance(&sds, this_cpu, imbalance); + return sds.busiest; + +out_balanced: + /* + * There is no obvious imbalance. But check if we can do some balancing + * to save power. + */ + if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) + return sds.busiest; ret: *imbalance = 0; return NULL; @@ -4057,6 +4426,11 @@ static void run_rebalance_domains(struct softirq_action *h) #endif } +static inline int on_null_domain(int cpu) +{ + return !rcu_dereference(cpu_rq(cpu)->sd); +} + /* * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. * @@ -4114,7 +4488,9 @@ static inline void trigger_load_balance(struct rq *rq, int cpu) cpumask_test_cpu(cpu, nohz.cpu_mask)) return; #endif - if (time_after_eq(jiffies, rq->next_balance)) + /* Don't need to rebalance while attached to NULL domain */ + if (time_after_eq(jiffies, rq->next_balance) && + likely(!on_null_domain(cpu))) raise_softirq(SCHED_SOFTIRQ); } @@ -4508,11 +4884,33 @@ static inline void schedule_debug(struct task_struct *prev) #endif } +static void put_prev_task(struct rq *rq, struct task_struct *prev) +{ + if (prev->state == TASK_RUNNING) { + u64 runtime = prev->se.sum_exec_runtime; + + runtime -= prev->se.prev_sum_exec_runtime; + runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost); + + /* + * In order to avoid avg_overlap growing stale when we are + * indeed overlapping and hence not getting put to sleep, grow + * the avg_overlap on preemption. + * + * We use the average preemption runtime because that + * correlates to the amount of cache footprint a task can + * build up. + */ + update_avg(&prev->se.avg_overlap, runtime); + } + prev->sched_class->put_prev_task(rq, prev); +} + /* * Pick up the highest-prio task: */ static inline struct task_struct * -pick_next_task(struct rq *rq, struct task_struct *prev) +pick_next_task(struct rq *rq) { const struct sched_class *class; struct task_struct *p; @@ -4586,8 +4984,8 @@ need_resched_nonpreemptible: if (unlikely(!rq->nr_running)) idle_balance(cpu, rq); - prev->sched_class->put_prev_task(rq, prev); - next = pick_next_task(rq, prev); + put_prev_task(rq, prev); + next = pick_next_task(rq); if (likely(prev != next)) { sched_info_switch(prev, next); @@ -4642,7 +5040,7 @@ asmlinkage void __sched preempt_schedule(void) * between schedule and now. */ barrier(); - } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); + } while (need_resched()); } EXPORT_SYMBOL(preempt_schedule); @@ -4671,7 +5069,7 @@ asmlinkage void __sched preempt_schedule_irq(void) * between schedule and now. */ barrier(); - } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); + } while (need_resched()); } #endif /* CONFIG_PREEMPT */ @@ -5145,7 +5543,7 @@ SYSCALL_DEFINE1(nice, int, increment) if (increment > 40) increment = 40; - nice = PRIO_TO_NICE(current->static_prio) + increment; + nice = TASK_NICE(current) + increment; if (nice < -20) nice = -20; if (nice > 19) @@ -6423,7 +6821,7 @@ static void migrate_dead_tasks(unsigned int dead_cpu) if (!rq->nr_running) break; update_rq_clock(rq); - next = pick_next_task(rq, rq->curr); + next = pick_next_task(rq); if (!next) break; next->sched_class->put_prev_task(rq, next); @@ -8218,11 +8616,15 @@ static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) __set_bit(MAX_RT_PRIO, array->bitmap); #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED - rt_rq->highest_prio = MAX_RT_PRIO; + rt_rq->highest_prio.curr = MAX_RT_PRIO; +#ifdef CONFIG_SMP + rt_rq->highest_prio.next = MAX_RT_PRIO; +#endif #endif #ifdef CONFIG_SMP rt_rq->rt_nr_migratory = 0; rt_rq->overloaded = 0; + plist_head_init(&rq->rt.pushable_tasks, &rq->lock); #endif rt_rq->rt_time = 0; @@ -9598,7 +10000,7 @@ static void cpuacct_charge(struct task_struct *tsk, u64 cputime) struct cpuacct *ca; int cpu; - if (!cpuacct_subsys.active) + if (unlikely(!cpuacct_subsys.active)) return; cpu = task_cpu(tsk); diff --git a/kernel/sched_clock.c b/kernel/sched_clock.c index a0b0852..390f332 100644 --- a/kernel/sched_clock.c +++ b/kernel/sched_clock.c @@ -24,11 +24,11 @@ * The clock: sched_clock_cpu() is monotonic per cpu, and should be somewhat * consistent between cpus (never more than 2 jiffies difference). */ -#include <linux/sched.h> -#include <linux/percpu.h> #include <linux/spinlock.h> -#include <linux/ktime.h> #include <linux/module.h> +#include <linux/percpu.h> +#include <linux/ktime.h> +#include <linux/sched.h> /* * Scheduler clock - returns current time in nanosec units. @@ -43,6 +43,7 @@ unsigned long long __attribute__((weak)) sched_clock(void) static __read_mostly int sched_clock_running; #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK +__read_mostly int sched_clock_stable; struct sched_clock_data { /* @@ -87,7 +88,7 @@ void sched_clock_init(void) } /* - * min,max except they take wrapping into account + * min, max except they take wrapping into account */ static inline u64 wrap_min(u64 x, u64 y) @@ -111,15 +112,13 @@ static u64 __update_sched_clock(struct sched_clock_data *scd, u64 now) s64 delta = now - scd->tick_raw; u64 clock, min_clock, max_clock; - WARN_ON_ONCE(!irqs_disabled()); - if (unlikely(delta < 0)) delta = 0; /* * scd->clock = clamp(scd->tick_gtod + delta, - * max(scd->tick_gtod, scd->clock), - * scd->tick_gtod + TICK_NSEC); + * max(scd->tick_gtod, scd->clock), + * scd->tick_gtod + TICK_NSEC); */ clock = scd->tick_gtod + delta; @@ -148,12 +147,13 @@ static void lock_double_clock(struct sched_clock_data *data1, u64 sched_clock_cpu(int cpu) { - struct sched_clock_data *scd = cpu_sdc(cpu); u64 now, clock, this_clock, remote_clock; + struct sched_clock_data *scd; - if (unlikely(!sched_clock_running)) - return 0ull; + if (sched_clock_stable) + return sched_clock(); + scd = cpu_sdc(cpu); WARN_ON_ONCE(!irqs_disabled()); now = sched_clock(); @@ -195,14 +195,18 @@ u64 sched_clock_cpu(int cpu) void sched_clock_tick(void) { - struct sched_clock_data *scd = this_scd(); + struct sched_clock_data *scd; u64 now, now_gtod; + if (sched_clock_stable) + return; + if (unlikely(!sched_clock_running)) return; WARN_ON_ONCE(!irqs_disabled()); + scd = this_scd(); now_gtod = ktime_to_ns(ktime_get()); now = sched_clock(); @@ -250,7 +254,7 @@ u64 sched_clock_cpu(int cpu) return sched_clock(); } -#endif +#endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ unsigned long long cpu_clock(int cpu) { diff --git a/kernel/sched_debug.c b/kernel/sched_debug.c index 16eeba4e..467ca72 100644 --- a/kernel/sched_debug.c +++ b/kernel/sched_debug.c @@ -272,7 +272,6 @@ static void print_cpu(struct seq_file *m, int cpu) P(nr_switches); P(nr_load_updates); P(nr_uninterruptible); - SEQ_printf(m, " .%-30s: %lu\n", "jiffies", jiffies); PN(next_balance); P(curr->pid); PN(clock); @@ -287,9 +286,6 @@ static void print_cpu(struct seq_file *m, int cpu) #ifdef CONFIG_SCHEDSTATS #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n); - P(yld_exp_empty); - P(yld_act_empty); - P(yld_both_empty); P(yld_count); P(sched_switch); @@ -314,7 +310,7 @@ static int sched_debug_show(struct seq_file *m, void *v) u64 now = ktime_to_ns(ktime_get()); int cpu; - SEQ_printf(m, "Sched Debug Version: v0.08, %s %.*s\n", + SEQ_printf(m, "Sched Debug Version: v0.09, %s %.*s\n", init_utsname()->release, (int)strcspn(init_utsname()->version, " "), init_utsname()->version); @@ -325,6 +321,7 @@ static int sched_debug_show(struct seq_file *m, void *v) SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) #define PN(x) \ SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) + P(jiffies); PN(sysctl_sched_latency); PN(sysctl_sched_min_granularity); PN(sysctl_sched_wakeup_granularity); @@ -397,6 +394,7 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m) PN(se.vruntime); PN(se.sum_exec_runtime); PN(se.avg_overlap); + PN(se.avg_wakeup); nr_switches = p->nvcsw + p->nivcsw; diff --git a/kernel/sched_fair.c b/kernel/sched_fair.c index 0566f2a..3816f21 100644 --- a/kernel/sched_fair.c +++ b/kernel/sched_fair.c @@ -1314,16 +1314,63 @@ out: } #endif /* CONFIG_SMP */ -static unsigned long wakeup_gran(struct sched_entity *se) +/* + * Adaptive granularity + * + * se->avg_wakeup gives the average time a task runs until it does a wakeup, + * with the limit of wakeup_gran -- when it never does a wakeup. + * + * So the smaller avg_wakeup is the faster we want this task to preempt, + * but we don't want to treat the preemptee unfairly and therefore allow it + * to run for at least the amount of time we'd like to run. + * + * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one + * + * NOTE: we use *nr_running to scale with load, this nicely matches the + * degrading latency on load. + */ +static unsigned long +adaptive_gran(struct sched_entity *curr, struct sched_entity *se) +{ + u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; + u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running; + u64 gran = 0; + + if (this_run < expected_wakeup) + gran = expected_wakeup - this_run; + + return min_t(s64, gran, sysctl_sched_wakeup_granularity); +} + +static unsigned long +wakeup_gran(struct sched_entity *curr, struct sched_entity *se) { unsigned long gran = sysctl_sched_wakeup_granularity; + if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN)) + gran = adaptive_gran(curr, se); + /* - * More easily preempt - nice tasks, while not making it harder for - * + nice tasks. + * Since its curr running now, convert the gran from real-time + * to virtual-time in his units. */ - if (!sched_feat(ASYM_GRAN) || se->load.weight > NICE_0_LOAD) - gran = calc_delta_fair(sysctl_sched_wakeup_granularity, se); + if (sched_feat(ASYM_GRAN)) { + /* + * By using 'se' instead of 'curr' we penalize light tasks, so + * they get preempted easier. That is, if 'se' < 'curr' then + * the resulting gran will be larger, therefore penalizing the + * lighter, if otoh 'se' > 'curr' then the resulting gran will + * be smaller, again penalizing the lighter task. + * + * This is especially important for buddies when the leftmost + * task is higher priority than the buddy. + */ + if (unlikely(se->load.weight != NICE_0_LOAD)) + gran = calc_delta_fair(gran, se); + } else { + if (unlikely(curr->load.weight != NICE_0_LOAD)) + gran = calc_delta_fair(gran, curr); + } return gran; } @@ -1350,7 +1397,7 @@ wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) if (vdiff <= 0) return -1; - gran = wakeup_gran(curr); + gran = wakeup_gran(curr, se); if (vdiff > gran) return 1; diff --git a/kernel/sched_features.h b/kernel/sched_features.h index da5d93b..76f6175 100644 --- a/kernel/sched_features.h +++ b/kernel/sched_features.h @@ -1,5 +1,6 @@ SCHED_FEAT(NEW_FAIR_SLEEPERS, 1) -SCHED_FEAT(NORMALIZED_SLEEPER, 1) +SCHED_FEAT(NORMALIZED_SLEEPER, 0) +SCHED_FEAT(ADAPTIVE_GRAN, 1) SCHED_FEAT(WAKEUP_PREEMPT, 1) SCHED_FEAT(START_DEBIT, 1) SCHED_FEAT(AFFINE_WAKEUPS, 1) diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c index bac1061..c79dc784 100644 --- a/kernel/sched_rt.c +++ b/kernel/sched_rt.c @@ -3,6 +3,40 @@ * policies) */ +static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) +{ + return container_of(rt_se, struct task_struct, rt); +} + +#ifdef CONFIG_RT_GROUP_SCHED + +static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) +{ + return rt_rq->rq; +} + +static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) +{ + return rt_se->rt_rq; +} + +#else /* CONFIG_RT_GROUP_SCHED */ + +static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) +{ + return container_of(rt_rq, struct rq, rt); +} + +static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) +{ + struct task_struct *p = rt_task_of(rt_se); + struct rq *rq = task_rq(p); + + return &rq->rt; +} + +#endif /* CONFIG_RT_GROUP_SCHED */ + #ifdef CONFIG_SMP static inline int rt_overloaded(struct rq *rq) @@ -37,25 +71,69 @@ static inline void rt_clear_overload(struct rq *rq) cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); } -static void update_rt_migration(struct rq *rq) +static void update_rt_migration(struct rt_rq *rt_rq) { - if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) { - if (!rq->rt.overloaded) { - rt_set_overload(rq); - rq->rt.overloaded = 1; + if (rt_rq->rt_nr_migratory && (rt_rq->rt_nr_running > 1)) { + if (!rt_rq->overloaded) { + rt_set_overload(rq_of_rt_rq(rt_rq)); + rt_rq->overloaded = 1; } - } else if (rq->rt.overloaded) { - rt_clear_overload(rq); - rq->rt.overloaded = 0; + } else if (rt_rq->overloaded) { + rt_clear_overload(rq_of_rt_rq(rt_rq)); + rt_rq->overloaded = 0; } } -#endif /* CONFIG_SMP */ -static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) +static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ + if (rt_se->nr_cpus_allowed > 1) + rt_rq->rt_nr_migratory++; + + update_rt_migration(rt_rq); +} + +static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ + if (rt_se->nr_cpus_allowed > 1) + rt_rq->rt_nr_migratory--; + + update_rt_migration(rt_rq); +} + +static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) +{ + plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); + plist_node_init(&p->pushable_tasks, p->prio); + plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); +} + +static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) +{ + plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); +} + +#else + +static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) { - return container_of(rt_se, struct task_struct, rt); } +static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) +{ +} + +static inline +void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ +} + +static inline +void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ +} + +#endif /* CONFIG_SMP */ + static inline int on_rt_rq(struct sched_rt_entity *rt_se) { return !list_empty(&rt_se->run_list); @@ -79,16 +157,6 @@ static inline u64 sched_rt_period(struct rt_rq *rt_rq) #define for_each_leaf_rt_rq(rt_rq, rq) \ list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) -static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) -{ - return rt_rq->rq; -} - -static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) -{ - return rt_se->rt_rq; -} - #define for_each_sched_rt_entity(rt_se) \ for (; rt_se; rt_se = rt_se->parent) @@ -108,7 +176,7 @@ static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) if (rt_rq->rt_nr_running) { if (rt_se && !on_rt_rq(rt_se)) enqueue_rt_entity(rt_se); - if (rt_rq->highest_prio < curr->prio) + if (rt_rq->highest_prio.curr < curr->prio) resched_task(curr); } } @@ -176,19 +244,6 @@ static inline u64 sched_rt_period(struct rt_rq *rt_rq) #define for_each_leaf_rt_rq(rt_rq, rq) \ for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) -static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) -{ - return container_of(rt_rq, struct rq, rt); -} - -static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) -{ - struct task_struct *p = rt_task_of(rt_se); - struct rq *rq = task_rq(p); - - return &rq->rt; -} - #define for_each_sched_rt_entity(rt_se) \ for (; rt_se; rt_se = NULL) @@ -473,7 +528,7 @@ static inline int rt_se_prio(struct sched_rt_entity *rt_se) struct rt_rq *rt_rq = group_rt_rq(rt_se); if (rt_rq) - return rt_rq->highest_prio; + return rt_rq->highest_prio.curr; #endif return rt_task_of(rt_se)->prio; @@ -547,91 +602,174 @@ static void update_curr_rt(struct rq *rq) } } -static inline -void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +#if defined CONFIG_SMP + +static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu); + +static inline int next_prio(struct rq *rq) { - WARN_ON(!rt_prio(rt_se_prio(rt_se))); - rt_rq->rt_nr_running++; -#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED - if (rt_se_prio(rt_se) < rt_rq->highest_prio) { -#ifdef CONFIG_SMP - struct rq *rq = rq_of_rt_rq(rt_rq); -#endif + struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu); + + if (next && rt_prio(next->prio)) + return next->prio; + else + return MAX_RT_PRIO; +} + +static void +inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) +{ + struct rq *rq = rq_of_rt_rq(rt_rq); + + if (prio < prev_prio) { + + /* + * If the new task is higher in priority than anything on the + * run-queue, we know that the previous high becomes our + * next-highest. + */ + rt_rq->highest_prio.next = prev_prio; - rt_rq->highest_prio = rt_se_prio(rt_se); -#ifdef CONFIG_SMP if (rq->online) - cpupri_set(&rq->rd->cpupri, rq->cpu, - rt_se_prio(rt_se)); -#endif - } -#endif -#ifdef CONFIG_SMP - if (rt_se->nr_cpus_allowed > 1) { - struct rq *rq = rq_of_rt_rq(rt_rq); + cpupri_set(&rq->rd->cpupri, rq->cpu, prio); - rq->rt.rt_nr_migratory++; - } + } else if (prio == rt_rq->highest_prio.curr) + /* + * If the next task is equal in priority to the highest on + * the run-queue, then we implicitly know that the next highest + * task cannot be any lower than current + */ + rt_rq->highest_prio.next = prio; + else if (prio < rt_rq->highest_prio.next) + /* + * Otherwise, we need to recompute next-highest + */ + rt_rq->highest_prio.next = next_prio(rq); +} - update_rt_migration(rq_of_rt_rq(rt_rq)); -#endif -#ifdef CONFIG_RT_GROUP_SCHED - if (rt_se_boosted(rt_se)) - rt_rq->rt_nr_boosted++; +static void +dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) +{ + struct rq *rq = rq_of_rt_rq(rt_rq); - if (rt_rq->tg) - start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); -#else - start_rt_bandwidth(&def_rt_bandwidth); -#endif + if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next)) + rt_rq->highest_prio.next = next_prio(rq); + + if (rq->online && rt_rq->highest_prio.curr != prev_prio) + cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); } +#else /* CONFIG_SMP */ + static inline -void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) -{ -#ifdef CONFIG_SMP - int highest_prio = rt_rq->highest_prio; -#endif +void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} +static inline +void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} + +#endif /* CONFIG_SMP */ - WARN_ON(!rt_prio(rt_se_prio(rt_se))); - WARN_ON(!rt_rq->rt_nr_running); - rt_rq->rt_nr_running--; #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED +static void +inc_rt_prio(struct rt_rq *rt_rq, int prio) +{ + int prev_prio = rt_rq->highest_prio.curr; + + if (prio < prev_prio) + rt_rq->highest_prio.curr = prio; + + inc_rt_prio_smp(rt_rq, prio, prev_prio); +} + +static void +dec_rt_prio(struct rt_rq *rt_rq, int prio) +{ + int prev_prio = rt_rq->highest_prio.curr; + if (rt_rq->rt_nr_running) { - struct rt_prio_array *array; - WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio); - if (rt_se_prio(rt_se) == rt_rq->highest_prio) { - /* recalculate */ - array = &rt_rq->active; - rt_rq->highest_prio = + WARN_ON(prio < prev_prio); + + /* + * This may have been our highest task, and therefore + * we may have some recomputation to do + */ + if (prio == prev_prio) { + struct rt_prio_array *array = &rt_rq->active; + + rt_rq->highest_prio.curr = sched_find_first_bit(array->bitmap); - } /* otherwise leave rq->highest prio alone */ + } + } else - rt_rq->highest_prio = MAX_RT_PRIO; -#endif -#ifdef CONFIG_SMP - if (rt_se->nr_cpus_allowed > 1) { - struct rq *rq = rq_of_rt_rq(rt_rq); - rq->rt.rt_nr_migratory--; - } + rt_rq->highest_prio.curr = MAX_RT_PRIO; - if (rt_rq->highest_prio != highest_prio) { - struct rq *rq = rq_of_rt_rq(rt_rq); + dec_rt_prio_smp(rt_rq, prio, prev_prio); +} - if (rq->online) - cpupri_set(&rq->rd->cpupri, rq->cpu, - rt_rq->highest_prio); - } +#else + +static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} +static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} + +#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ - update_rt_migration(rq_of_rt_rq(rt_rq)); -#endif /* CONFIG_SMP */ #ifdef CONFIG_RT_GROUP_SCHED + +static void +inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ + if (rt_se_boosted(rt_se)) + rt_rq->rt_nr_boosted++; + + if (rt_rq->tg) + start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); +} + +static void +dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ if (rt_se_boosted(rt_se)) rt_rq->rt_nr_boosted--; WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); -#endif +} + +#else /* CONFIG_RT_GROUP_SCHED */ + +static void +inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ + start_rt_bandwidth(&def_rt_bandwidth); +} + +static inline +void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} + +#endif /* CONFIG_RT_GROUP_SCHED */ + +static inline +void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ + int prio = rt_se_prio(rt_se); + + WARN_ON(!rt_prio(prio)); + rt_rq->rt_nr_running++; + + inc_rt_prio(rt_rq, prio); + inc_rt_migration(rt_se, rt_rq); + inc_rt_group(rt_se, rt_rq); +} + +static inline +void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ + WARN_ON(!rt_prio(rt_se_prio(rt_se))); + WARN_ON(!rt_rq->rt_nr_running); + rt_rq->rt_nr_running--; + + dec_rt_prio(rt_rq, rt_se_prio(rt_se)); + dec_rt_migration(rt_se, rt_rq); + dec_rt_group(rt_se, rt_rq); } static void __enqueue_rt_entity(struct sched_rt_entity *rt_se) @@ -718,6 +856,9 @@ static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup) enqueue_rt_entity(rt_se); + if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) + enqueue_pushable_task(rq, p); + inc_cpu_load(rq, p->se.load.weight); } @@ -728,6 +869,8 @@ static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep) update_curr_rt(rq); dequeue_rt_entity(rt_se); + dequeue_pushable_task(rq, p); + dec_cpu_load(rq, p->se.load.weight); } @@ -878,7 +1021,7 @@ static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, return next; } -static struct task_struct *pick_next_task_rt(struct rq *rq) +static struct task_struct *_pick_next_task_rt(struct rq *rq) { struct sched_rt_entity *rt_se; struct task_struct *p; @@ -900,6 +1043,18 @@ static struct task_struct *pick_next_task_rt(struct rq *rq) p = rt_task_of(rt_se); p->se.exec_start = rq->clock; + + return p; +} + +static struct task_struct *pick_next_task_rt(struct rq *rq) +{ + struct task_struct *p = _pick_next_task_rt(rq); + + /* The running task is never eligible for pushing */ + if (p) + dequeue_pushable_task(rq, p); + return p; } @@ -907,6 +1062,13 @@ static void put_prev_task_rt(struct rq *rq, struct task_struct *p) { update_curr_rt(rq); p->se.exec_start = 0; + + /* + * The previous task needs to be made eligible for pushing + * if it is still active + */ + if (p->se.on_rq && p->rt.nr_cpus_allowed > 1) + enqueue_pushable_task(rq, p); } #ifdef CONFIG_SMP @@ -1072,7 +1234,7 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) } /* If this rq is still suitable use it. */ - if (lowest_rq->rt.highest_prio > task->prio) + if (lowest_rq->rt.highest_prio.curr > task->prio) break; /* try again */ @@ -1083,6 +1245,31 @@ static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) return lowest_rq; } +static inline int has_pushable_tasks(struct rq *rq) +{ + return !plist_head_empty(&rq->rt.pushable_tasks); +} + +static struct task_struct *pick_next_pushable_task(struct rq *rq) +{ + struct task_struct *p; + + if (!has_pushable_tasks(rq)) + return NULL; + + p = plist_first_entry(&rq->rt.pushable_tasks, + struct task_struct, pushable_tasks); + + BUG_ON(rq->cpu != task_cpu(p)); + BUG_ON(task_current(rq, p)); + BUG_ON(p->rt.nr_cpus_allowed <= 1); + + BUG_ON(!p->se.on_rq); + BUG_ON(!rt_task(p)); + + return p; +} + /* * If the current CPU has more than one RT task, see if the non * running task can migrate over to a CPU that is running a task @@ -1092,13 +1279,11 @@ static int push_rt_task(struct rq *rq) { struct task_struct *next_task; struct rq *lowest_rq; - int ret = 0; - int paranoid = RT_MAX_TRIES; if (!rq->rt.overloaded) return 0; - next_task = pick_next_highest_task_rt(rq, -1); + next_task = pick_next_pushable_task(rq); if (!next_task) return 0; @@ -1127,16 +1312,34 @@ static int push_rt_task(struct rq *rq) struct task_struct *task; /* * find lock_lowest_rq releases rq->lock - * so it is possible that next_task has changed. - * If it has, then try again. + * so it is possible that next_task has migrated. + * + * We need to make sure that the task is still on the same + * run-queue and is also still the next task eligible for + * pushing. */ - task = pick_next_highest_task_rt(rq, -1); - if (unlikely(task != next_task) && task && paranoid--) { - put_task_struct(next_task); - next_task = task; - goto retry; + task = pick_next_pushable_task(rq); + if (task_cpu(next_task) == rq->cpu && task == next_task) { + /* + * If we get here, the task hasnt moved at all, but + * it has failed to push. We will not try again, + * since the other cpus will pull from us when they + * are ready. + */ + dequeue_pushable_task(rq, next_task); + goto out; } - goto out; + + if (!task) + /* No more tasks, just exit */ + goto out; + + /* + * Something has shifted, try again. + */ + put_task_struct(next_task); + next_task = task; + goto retry; } deactivate_task(rq, next_task, 0); @@ -1147,23 +1350,12 @@ static int push_rt_task(struct rq *rq) double_unlock_balance(rq, lowest_rq); - ret = 1; out: put_task_struct(next_task); - return ret; + return 1; } -/* - * TODO: Currently we just use the second highest prio task on - * the queue, and stop when it can't migrate (or there's - * no more RT tasks). There may be a case where a lower - * priority RT task has a different affinity than the - * higher RT task. In this case the lower RT task could - * possibly be able to migrate where as the higher priority - * RT task could not. We currently ignore this issue. - * Enhancements are welcome! - */ static void push_rt_tasks(struct rq *rq) { /* push_rt_task will return true if it moved an RT */ @@ -1174,33 +1366,35 @@ static void push_rt_tasks(struct rq *rq) static int pull_rt_task(struct rq *this_rq) { int this_cpu = this_rq->cpu, ret = 0, cpu; - struct task_struct *p, *next; + struct task_struct *p; struct rq *src_rq; if (likely(!rt_overloaded(this_rq))) return 0; - next = pick_next_task_rt(this_rq); - for_each_cpu(cpu, this_rq->rd->rto_mask) { if (this_cpu == cpu) continue; src_rq = cpu_rq(cpu); + + /* + * Don't bother taking the src_rq->lock if the next highest + * task is known to be lower-priority than our current task. + * This may look racy, but if this value is about to go + * logically higher, the src_rq will push this task away. + * And if its going logically lower, we do not care + */ + if (src_rq->rt.highest_prio.next >= + this_rq->rt.highest_prio.curr) + continue; + /* * We can potentially drop this_rq's lock in * double_lock_balance, and another CPU could - * steal our next task - hence we must cause - * the caller to recalculate the next task - * in that case: + * alter this_rq */ - if (double_lock_balance(this_rq, src_rq)) { - struct task_struct *old_next = next; - - next = pick_next_task_rt(this_rq); - if (next != old_next) - ret = 1; - } + double_lock_balance(this_rq, src_rq); /* * Are there still pullable RT tasks? @@ -1214,7 +1408,7 @@ static int pull_rt_task(struct rq *this_rq) * Do we have an RT task that preempts * the to-be-scheduled task? */ - if (p && (!next || (p->prio < next->prio))) { + if (p && (p->prio < this_rq->rt.highest_prio.curr)) { WARN_ON(p == src_rq->curr); WARN_ON(!p->se.on_rq); @@ -1224,12 +1418,9 @@ static int pull_rt_task(struct rq *this_rq) * This is just that p is wakeing up and hasn't * had a chance to schedule. We only pull * p if it is lower in priority than the - * current task on the run queue or - * this_rq next task is lower in prio than - * the current task on that rq. + * current task on the run queue */ - if (p->prio < src_rq->curr->prio || - (next && next->prio < src_rq->curr->prio)) + if (p->prio < src_rq->curr->prio) goto skip; ret = 1; @@ -1242,13 +1433,7 @@ static int pull_rt_task(struct rq *this_rq) * case there's an even higher prio task * in another runqueue. (low likelyhood * but possible) - * - * Update next so that we won't pick a task - * on another cpu with a priority lower (or equal) - * than the one we just picked. */ - next = p; - } skip: double_unlock_balance(this_rq, src_rq); @@ -1260,24 +1445,27 @@ static int pull_rt_task(struct rq *this_rq) static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) { /* Try to pull RT tasks here if we lower this rq's prio */ - if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio) + if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio) pull_rt_task(rq); } +/* + * assumes rq->lock is held + */ +static int needs_post_schedule_rt(struct rq *rq) +{ + return has_pushable_tasks(rq); +} + static void post_schedule_rt(struct rq *rq) { /* - * If we have more than one rt_task queued, then - * see if we can push the other rt_tasks off to other CPUS. - * Note we may release the rq lock, and since - * the lock was owned by prev, we need to release it - * first via finish_lock_switch and then reaquire it here. + * This is only called if needs_post_schedule_rt() indicates that + * we need to push tasks away */ - if (unlikely(rq->rt.overloaded)) { - spin_lock_irq(&rq->lock); - push_rt_tasks(rq); - spin_unlock_irq(&rq->lock); - } + spin_lock_irq(&rq->lock); + push_rt_tasks(rq); + spin_unlock_irq(&rq->lock); } /* @@ -1288,7 +1476,8 @@ static void task_wake_up_rt(struct rq *rq, struct task_struct *p) { if (!task_running(rq, p) && !test_tsk_need_resched(rq->curr) && - rq->rt.overloaded) + has_pushable_tasks(rq) && + p->rt.nr_cpus_allowed > 1) push_rt_tasks(rq); } @@ -1324,6 +1513,24 @@ static void set_cpus_allowed_rt(struct task_struct *p, if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) { struct rq *rq = task_rq(p); + if (!task_current(rq, p)) { + /* + * Make sure we dequeue this task from the pushable list + * before going further. It will either remain off of + * the list because we are no longer pushable, or it + * will be requeued. + */ + if (p->rt.nr_cpus_allowed > 1) + dequeue_pushable_task(rq, p); + + /* + * Requeue if our weight is changing and still > 1 + */ + if (weight > 1) + enqueue_pushable_task(rq, p); + + } + if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) { rq->rt.rt_nr_migratory++; } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) { @@ -1331,7 +1538,7 @@ static void set_cpus_allowed_rt(struct task_struct *p, rq->rt.rt_nr_migratory--; } - update_rt_migration(rq); + update_rt_migration(&rq->rt); } cpumask_copy(&p->cpus_allowed, new_mask); @@ -1346,7 +1553,7 @@ static void rq_online_rt(struct rq *rq) __enable_runtime(rq); - cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio); + cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); } /* Assumes rq->lock is held */ @@ -1438,7 +1645,7 @@ static void prio_changed_rt(struct rq *rq, struct task_struct *p, * can release the rq lock and p could migrate. * Only reschedule if p is still on the same runqueue. */ - if (p->prio > rq->rt.highest_prio && rq->curr == p) + if (p->prio > rq->rt.highest_prio.curr && rq->curr == p) resched_task(p); #else /* For UP simply resched on drop of prio */ @@ -1509,6 +1716,9 @@ static void set_curr_task_rt(struct rq *rq) struct task_struct *p = rq->curr; p->se.exec_start = rq->clock; + + /* The running task is never eligible for pushing */ + dequeue_pushable_task(rq, p); } static const struct sched_class rt_sched_class = { @@ -1531,6 +1741,7 @@ static const struct sched_class rt_sched_class = { .rq_online = rq_online_rt, .rq_offline = rq_offline_rt, .pre_schedule = pre_schedule_rt, + .needs_post_schedule = needs_post_schedule_rt, .post_schedule = post_schedule_rt, .task_wake_up = task_wake_up_rt, .switched_from = switched_from_rt, diff --git a/kernel/sched_stats.h b/kernel/sched_stats.h index a8f93dd..32d2bd4 100644 --- a/kernel/sched_stats.h +++ b/kernel/sched_stats.h @@ -4,7 +4,7 @@ * bump this up when changing the output format or the meaning of an existing * format, so that tools can adapt (or abort) */ -#define SCHEDSTAT_VERSION 14 +#define SCHEDSTAT_VERSION 15 static int show_schedstat(struct seq_file *seq, void *v) { @@ -26,9 +26,8 @@ static int show_schedstat(struct seq_file *seq, void *v) /* runqueue-specific stats */ seq_printf(seq, - "cpu%d %u %u %u %u %u %u %u %u %u %llu %llu %lu", - cpu, rq->yld_both_empty, - rq->yld_act_empty, rq->yld_exp_empty, rq->yld_count, + "cpu%d %u %u %u %u %u %u %llu %llu %lu", + cpu, rq->yld_count, rq->sched_switch, rq->sched_count, rq->sched_goidle, rq->ttwu_count, rq->ttwu_local, rq->rq_cpu_time, diff --git a/lib/Kconfig b/lib/Kconfig index cea9e30..54aaf4f 100644 --- a/lib/Kconfig +++ b/lib/Kconfig @@ -136,12 +136,6 @@ config TEXTSEARCH_BM config TEXTSEARCH_FSM tristate -# -# plist support is select#ed if needed -# -config PLIST - boolean - config HAS_IOMEM boolean depends on !NO_IOMEM diff --git a/lib/Makefile b/lib/Makefile index 0dd9229..8bdc647 100644 --- a/lib/Makefile +++ b/lib/Makefile @@ -11,7 +11,8 @@ lib-y := ctype.o string.o vsprintf.o cmdline.o \ rbtree.o radix-tree.o dump_stack.o \ idr.o int_sqrt.o extable.o prio_tree.o \ sha1.o irq_regs.o reciprocal_div.o argv_split.o \ - proportions.o prio_heap.o ratelimit.o show_mem.o is_single_threaded.o + proportions.o prio_heap.o ratelimit.o show_mem.o \ + is_single_threaded.o plist.o lib-$(CONFIG_MMU) += ioremap.o lib-$(CONFIG_SMP) += cpumask.o @@ -40,7 +41,6 @@ lib-$(CONFIG_GENERIC_FIND_NEXT_BIT) += find_next_bit.o lib-$(CONFIG_GENERIC_FIND_LAST_BIT) += find_last_bit.o obj-$(CONFIG_GENERIC_HWEIGHT) += hweight.o obj-$(CONFIG_LOCK_KERNEL) += kernel_lock.o -obj-$(CONFIG_PLIST) += plist.o obj-$(CONFIG_DEBUG_PREEMPT) += smp_processor_id.o obj-$(CONFIG_DEBUG_LIST) += list_debug.o obj-$(CONFIG_DEBUG_OBJECTS) += debugobjects.o diff --git a/lib/kernel_lock.c b/lib/kernel_lock.c index 01a3c22..39f1029 100644 --- a/lib/kernel_lock.c +++ b/lib/kernel_lock.c @@ -39,7 +39,7 @@ static __cacheline_aligned_in_smp DEFINE_SPINLOCK(kernel_flag); int __lockfunc __reacquire_kernel_lock(void) { while (!_raw_spin_trylock(&kernel_flag)) { - if (test_thread_flag(TIF_NEED_RESCHED)) + if (need_resched()) return -EAGAIN; cpu_relax(); } |