diff options
author | Glauber Costa <glommer@parallels.com> | 2012-12-18 14:23:10 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2012-12-18 15:02:15 -0800 |
commit | ebe945c27628fca03723582eba138acc2e2f3d15 (patch) | |
tree | 5998e8dd874aedf3b8873d0ffeaf658d10505655 | |
parent | 92e793495597af4135d94314113bf13eafb0e663 (diff) | |
download | op-kernel-dev-ebe945c27628fca03723582eba138acc2e2f3d15.zip op-kernel-dev-ebe945c27628fca03723582eba138acc2e2f3d15.tar.gz |
memcg: add comments clarifying aspects of cache attribute propagation
This patch clarifies two aspects of cache attribute propagation.
First, the expected context for the for_each_memcg_cache macro in
memcontrol.h. The usages already in the codebase are safe. In mm/slub.c,
it is trivially safe because the lock is acquired right before the loop.
In mm/slab.c, it is less so: the lock is acquired by an outer function a
few steps back in the stack, so a VM_BUG_ON() is added to make sure it is
indeed safe.
A comment is also added to detail why we are returning the value of the
parent cache and ignoring the children's when we propagate the attributes.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-rw-r--r-- | include/linux/memcontrol.h | 6 | ||||
-rw-r--r-- | mm/slab.c | 1 | ||||
-rw-r--r-- | mm/slub.c | 21 |
3 files changed, 24 insertions, 4 deletions
diff --git a/include/linux/memcontrol.h b/include/linux/memcontrol.h index ea02ff9..0108a56 100644 --- a/include/linux/memcontrol.h +++ b/include/linux/memcontrol.h @@ -422,6 +422,12 @@ static inline void sock_release_memcg(struct sock *sk) extern struct static_key memcg_kmem_enabled_key; extern int memcg_limited_groups_array_size; + +/* + * Helper macro to loop through all memcg-specific caches. Callers must still + * check if the cache is valid (it is either valid or NULL). + * the slab_mutex must be held when looping through those caches + */ #define for_each_memcg_cache_index(_idx) \ for ((_idx) = 0; i < memcg_limited_groups_array_size; (_idx)++) @@ -4099,6 +4099,7 @@ static int do_tune_cpucache(struct kmem_cache *cachep, int limit, if ((ret < 0) || !is_root_cache(cachep)) return ret; + VM_BUG_ON(!mutex_is_locked(&slab_mutex)); for_each_memcg_cache_index(i) { c = cache_from_memcg(cachep, i); if (c) @@ -5108,12 +5108,25 @@ static ssize_t slab_attr_store(struct kobject *kobj, if (s->max_attr_size < len) s->max_attr_size = len; + /* + * This is a best effort propagation, so this function's return + * value will be determined by the parent cache only. This is + * basically because not all attributes will have a well + * defined semantics for rollbacks - most of the actions will + * have permanent effects. + * + * Returning the error value of any of the children that fail + * is not 100 % defined, in the sense that users seeing the + * error code won't be able to know anything about the state of + * the cache. + * + * Only returning the error code for the parent cache at least + * has well defined semantics. The cache being written to + * directly either failed or succeeded, in which case we loop + * through the descendants with best-effort propagation. + */ for_each_memcg_cache_index(i) { struct kmem_cache *c = cache_from_memcg(s, i); - /* - * This function's return value is determined by the - * parent cache only - */ if (c) attribute->store(c, buf, len); } |