summaryrefslogtreecommitdiffstats
path: root/src/target-arm/cpu.h
blob: 1087075524a3b087f7173ddf6a95f109f83a4780 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
/*
 * ARM virtual CPU header
 *
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */
#ifndef CPU_ARM_H
#define CPU_ARM_H

#include "config.h"

#include "kvm-consts.h"

#if defined(TARGET_AARCH64)
  /* AArch64 definitions */
#  define TARGET_LONG_BITS 64
#else
#  define TARGET_LONG_BITS 32
#endif

#define TARGET_IS_BIENDIAN 1

#define CPUArchState struct CPUARMState

#include "qemu-common.h"
#include "exec/cpu-defs.h"

#include "fpu/softfloat.h"

#define EXCP_UDEF            1   /* undefined instruction */
#define EXCP_SWI             2   /* software interrupt */
#define EXCP_PREFETCH_ABORT  3
#define EXCP_DATA_ABORT      4
#define EXCP_IRQ             5
#define EXCP_FIQ             6
#define EXCP_BKPT            7
#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
#define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
#define EXCP_STREX          10
#define EXCP_HVC            11   /* HyperVisor Call */
#define EXCP_HYP_TRAP       12
#define EXCP_SMC            13   /* Secure Monitor Call */
#define EXCP_VIRQ           14
#define EXCP_VFIQ           15
#define EXCP_SEMIHOST       16   /* semihosting call (A64 only) */

#define ARMV7M_EXCP_RESET   1
#define ARMV7M_EXCP_NMI     2
#define ARMV7M_EXCP_HARD    3
#define ARMV7M_EXCP_MEM     4
#define ARMV7M_EXCP_BUS     5
#define ARMV7M_EXCP_USAGE   6
#define ARMV7M_EXCP_SVC     11
#define ARMV7M_EXCP_DEBUG   12
#define ARMV7M_EXCP_PENDSV  14
#define ARMV7M_EXCP_SYSTICK 15

/* ARM-specific interrupt pending bits.  */
#define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
#define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
#define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3

/* The usual mapping for an AArch64 system register to its AArch32
 * counterpart is for the 32 bit world to have access to the lower
 * half only (with writes leaving the upper half untouched). It's
 * therefore useful to be able to pass TCG the offset of the least
 * significant half of a uint64_t struct member.
 */
#ifdef HOST_WORDS_BIGENDIAN
#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
#define offsetofhigh32(S, M) offsetof(S, M)
#else
#define offsetoflow32(S, M) offsetof(S, M)
#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
#endif

/* Meanings of the ARMCPU object's four inbound GPIO lines */
#define ARM_CPU_IRQ 0
#define ARM_CPU_FIQ 1
#define ARM_CPU_VIRQ 2
#define ARM_CPU_VFIQ 3

struct arm_boot_info;

#define NB_MMU_MODES 7
#define TARGET_INSN_START_EXTRA_WORDS 1

/* We currently assume float and double are IEEE single and double
   precision respectively.
   Doing runtime conversions is tricky because VFP registers may contain
   integer values (eg. as the result of a FTOSI instruction).
   s<2n> maps to the least significant half of d<n>
   s<2n+1> maps to the most significant half of d<n>
 */

/* CPU state for each instance of a generic timer (in cp15 c14) */
typedef struct ARMGenericTimer {
    uint64_t cval; /* Timer CompareValue register */
    uint64_t ctl; /* Timer Control register */
} ARMGenericTimer;

#define GTIMER_PHYS 0
#define GTIMER_VIRT 1
#define GTIMER_HYP  2
#define GTIMER_SEC  3
#define NUM_GTIMERS 4

typedef struct {
    uint64_t raw_tcr;
    uint32_t mask;
    uint32_t base_mask;
} TCR;

typedef struct CPUARMState {
    /* Regs for current mode.  */
    uint32_t regs[16];

    /* 32/64 switch only happens when taking and returning from
     * exceptions so the overlap semantics are taken care of then
     * instead of having a complicated union.
     */
    /* Regs for A64 mode.  */
    uint64_t xregs[32];
    uint64_t pc;
    /* PSTATE isn't an architectural register for ARMv8. However, it is
     * convenient for us to assemble the underlying state into a 32 bit format
     * identical to the architectural format used for the SPSR. (This is also
     * what the Linux kernel's 'pstate' field in signal handlers and KVM's
     * 'pstate' register are.) Of the PSTATE bits:
     *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
     *    semantics as for AArch32, as described in the comments on each field)
     *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
     *  DAIF (exception masks) are kept in env->daif
     *  all other bits are stored in their correct places in env->pstate
     */
    uint32_t pstate;
    uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */

    /* Frequently accessed CPSR bits are stored separately for efficiency.
       This contains all the other bits.  Use cpsr_{read,write} to access
       the whole CPSR.  */
    uint32_t uncached_cpsr;
    uint32_t spsr;

    /* Banked registers.  */
    uint64_t banked_spsr[8];
    uint32_t banked_r13[8];
    uint32_t banked_r14[8];

    /* These hold r8-r12.  */
    uint32_t usr_regs[5];
    uint32_t fiq_regs[5];

    /* cpsr flag cache for faster execution */
    uint32_t CF; /* 0 or 1 */
    uint32_t VF; /* V is the bit 31. All other bits are undefined */
    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
    uint32_t ZF; /* Z set if zero.  */
    uint32_t QF; /* 0 or 1 */
    uint32_t GE; /* cpsr[19:16] */
    uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
    uint64_t daif; /* exception masks, in the bits they are in PSTATE */

    uint64_t elr_el[4]; /* AArch64 exception link regs  */
    uint64_t sp_el[4]; /* AArch64 banked stack pointers */

    /* System control coprocessor (cp15) */
    struct {
        uint32_t c0_cpuid;
        union { /* Cache size selection */
            struct {
                uint64_t _unused_csselr0;
                uint64_t csselr_ns;
                uint64_t _unused_csselr1;
                uint64_t csselr_s;
            };
            uint64_t csselr_el[4];
        };
        union { /* System control register. */
            struct {
                uint64_t _unused_sctlr;
                uint64_t sctlr_ns;
                uint64_t hsctlr;
                uint64_t sctlr_s;
            };
            uint64_t sctlr_el[4];
        };
        uint64_t cpacr_el1; /* Architectural feature access control register */
        uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
        uint64_t sder; /* Secure debug enable register. */
        uint32_t nsacr; /* Non-secure access control register. */
        union { /* MMU translation table base 0. */
            struct {
                uint64_t _unused_ttbr0_0;
                uint64_t ttbr0_ns;
                uint64_t _unused_ttbr0_1;
                uint64_t ttbr0_s;
            };
            uint64_t ttbr0_el[4];
        };
        union { /* MMU translation table base 1. */
            struct {
                uint64_t _unused_ttbr1_0;
                uint64_t ttbr1_ns;
                uint64_t _unused_ttbr1_1;
                uint64_t ttbr1_s;
            };
            uint64_t ttbr1_el[4];
        };
        uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
        /* MMU translation table base control. */
        TCR tcr_el[4];
        TCR vtcr_el2; /* Virtualization Translation Control.  */
        uint32_t c2_data; /* MPU data cacheable bits.  */
        uint32_t c2_insn; /* MPU instruction cacheable bits.  */
        union { /* MMU domain access control register
                 * MPU write buffer control.
                 */
            struct {
                uint64_t dacr_ns;
                uint64_t dacr_s;
            };
            struct {
                uint64_t dacr32_el2;
            };
        };
        uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
        uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
        uint64_t hcr_el2; /* Hypervisor configuration register */
        uint64_t scr_el3; /* Secure configuration register.  */
        union { /* Fault status registers.  */
            struct {
                uint64_t ifsr_ns;
                uint64_t ifsr_s;
            };
            struct {
                uint64_t ifsr32_el2;
            };
        };
        union {
            struct {
                uint64_t _unused_dfsr;
                uint64_t dfsr_ns;
                uint64_t hsr;
                uint64_t dfsr_s;
            };
            uint64_t esr_el[4];
        };
        uint32_t c6_region[8]; /* MPU base/size registers.  */
        union { /* Fault address registers. */
            struct {
                uint64_t _unused_far0;
#ifdef HOST_WORDS_BIGENDIAN
                uint32_t ifar_ns;
                uint32_t dfar_ns;
                uint32_t ifar_s;
                uint32_t dfar_s;
#else
                uint32_t dfar_ns;
                uint32_t ifar_ns;
                uint32_t dfar_s;
                uint32_t ifar_s;
#endif
                uint64_t _unused_far3;
            };
            uint64_t far_el[4];
        };
        uint64_t hpfar_el2;
        union { /* Translation result. */
            struct {
                uint64_t _unused_par_0;
                uint64_t par_ns;
                uint64_t _unused_par_1;
                uint64_t par_s;
            };
            uint64_t par_el[4];
        };

        uint32_t c6_rgnr;

        uint32_t c9_insn; /* Cache lockdown registers.  */
        uint32_t c9_data;
        uint64_t c9_pmcr; /* performance monitor control register */
        uint64_t c9_pmcnten; /* perf monitor counter enables */
        uint32_t c9_pmovsr; /* perf monitor overflow status */
        uint32_t c9_pmxevtyper; /* perf monitor event type */
        uint32_t c9_pmuserenr; /* perf monitor user enable */
        uint32_t c9_pminten; /* perf monitor interrupt enables */
        union { /* Memory attribute redirection */
            struct {
#ifdef HOST_WORDS_BIGENDIAN
                uint64_t _unused_mair_0;
                uint32_t mair1_ns;
                uint32_t mair0_ns;
                uint64_t _unused_mair_1;
                uint32_t mair1_s;
                uint32_t mair0_s;
#else
                uint64_t _unused_mair_0;
                uint32_t mair0_ns;
                uint32_t mair1_ns;
                uint64_t _unused_mair_1;
                uint32_t mair0_s;
                uint32_t mair1_s;
#endif
            };
            uint64_t mair_el[4];
        };
        union { /* vector base address register */
            struct {
                uint64_t _unused_vbar;
                uint64_t vbar_ns;
                uint64_t hvbar;
                uint64_t vbar_s;
            };
            uint64_t vbar_el[4];
        };
        uint32_t mvbar; /* (monitor) vector base address register */
        struct { /* FCSE PID. */
            uint32_t fcseidr_ns;
            uint32_t fcseidr_s;
        };
        union { /* Context ID. */
            struct {
                uint64_t _unused_contextidr_0;
                uint64_t contextidr_ns;
                uint64_t _unused_contextidr_1;
                uint64_t contextidr_s;
            };
            uint64_t contextidr_el[4];
        };
        union { /* User RW Thread register. */
            struct {
                uint64_t tpidrurw_ns;
                uint64_t tpidrprw_ns;
                uint64_t htpidr;
                uint64_t _tpidr_el3;
            };
            uint64_t tpidr_el[4];
        };
        /* The secure banks of these registers don't map anywhere */
        uint64_t tpidrurw_s;
        uint64_t tpidrprw_s;
        uint64_t tpidruro_s;

        union { /* User RO Thread register. */
            uint64_t tpidruro_ns;
            uint64_t tpidrro_el[1];
        };
        uint64_t c14_cntfrq; /* Counter Frequency register */
        uint64_t c14_cntkctl; /* Timer Control register */
        uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
        uint64_t cntvoff_el2; /* Counter Virtual Offset register */
        ARMGenericTimer c14_timer[NUM_GTIMERS];
        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
        uint32_t c15_threadid; /* TI debugger thread-ID.  */
        uint32_t c15_config_base_address; /* SCU base address.  */
        uint32_t c15_diagnostic; /* diagnostic register */
        uint32_t c15_power_diagnostic;
        uint32_t c15_power_control; /* power control */
        uint64_t dbgbvr[16]; /* breakpoint value registers */
        uint64_t dbgbcr[16]; /* breakpoint control registers */
        uint64_t dbgwvr[16]; /* watchpoint value registers */
        uint64_t dbgwcr[16]; /* watchpoint control registers */
        uint64_t mdscr_el1;
        uint64_t oslsr_el1; /* OS Lock Status */
        uint64_t mdcr_el2;
        /* If the counter is enabled, this stores the last time the counter
         * was reset. Otherwise it stores the counter value
         */
        uint64_t c15_ccnt;
        uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
        uint64_t vpidr_el2; /* Virtualization Processor ID Register */
        uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
    } cp15;

    struct {
        uint32_t other_sp;
        uint32_t vecbase;
        uint32_t basepri;
        uint32_t control;
        int current_sp;
        int exception;
    } v7m;

    /* Information associated with an exception about to be taken:
     * code which raises an exception must set cs->exception_index and
     * the relevant parts of this structure; the cpu_do_interrupt function
     * will then set the guest-visible registers as part of the exception
     * entry process.
     */
    struct {
        uint32_t syndrome; /* AArch64 format syndrome register */
        uint32_t fsr; /* AArch32 format fault status register info */
        uint64_t vaddress; /* virtual addr associated with exception, if any */
        uint32_t target_el; /* EL the exception should be targeted for */
        /* If we implement EL2 we will also need to store information
         * about the intermediate physical address for stage 2 faults.
         */
    } exception;

    /* Thumb-2 EE state.  */
    uint32_t teecr;
    uint32_t teehbr;

    /* VFP coprocessor state.  */
    struct {
        /* VFP/Neon register state. Note that the mapping between S, D and Q
         * views of the register bank differs between AArch64 and AArch32:
         * In AArch32:
         *  Qn = regs[2n+1]:regs[2n]
         *  Dn = regs[n]
         *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
         * (and regs[32] to regs[63] are inaccessible)
         * In AArch64:
         *  Qn = regs[2n+1]:regs[2n]
         *  Dn = regs[2n]
         *  Sn = regs[2n] bits 31..0
         * This corresponds to the architecturally defined mapping between
         * the two execution states, and means we do not need to explicitly
         * map these registers when changing states.
         */
        float64 regs[64] __attribute__((aligned(16)));

        uint32_t xregs[16];
        /* We store these fpcsr fields separately for convenience.  */
        int vec_len;
        int vec_stride;

        /* scratch space when Tn are not sufficient.  */
        uint32_t scratch[8];

        /* fp_status is the "normal" fp status. standard_fp_status retains
         * values corresponding to the ARM "Standard FPSCR Value", ie
         * default-NaN, flush-to-zero, round-to-nearest and is used by
         * any operations (generally Neon) which the architecture defines
         * as controlled by the standard FPSCR value rather than the FPSCR.
         *
         * To avoid having to transfer exception bits around, we simply
         * say that the FPSCR cumulative exception flags are the logical
         * OR of the flags in the two fp statuses. This relies on the
         * only thing which needs to read the exception flags being
         * an explicit FPSCR read.
         */
        float_status fp_status;
        float_status standard_fp_status;
    } vfp;
    uint64_t exclusive_addr;
    uint64_t exclusive_val;
    uint64_t exclusive_high;
#if defined(CONFIG_USER_ONLY)
    uint64_t exclusive_test;
    uint32_t exclusive_info;
#endif

    /* iwMMXt coprocessor state.  */
    struct {
        uint64_t regs[16];
        uint64_t val;

        uint32_t cregs[16];
    } iwmmxt;

    /* For mixed endian mode.  */
    bool bswap_code;

#if defined(CONFIG_USER_ONLY)
    /* For usermode syscall translation.  */
    int eabi;
#endif

    struct CPUBreakpoint *cpu_breakpoint[16];
    struct CPUWatchpoint *cpu_watchpoint[16];

    CPU_COMMON

    /* These fields after the common ones so they are preserved on reset.  */

    /* Internal CPU feature flags.  */
    uint64_t features;

    CPU_OPTIMIZATION_COMMON

    /* PMSAv7 MPU */
    struct {
        uint32_t *drbar;
        uint32_t *drsr;
        uint32_t *dracr;
    } pmsav7;

    void *nvic;
    const struct arm_boot_info *boot_info;
} CPUARMState;

#include "cpu-qom.h"

ARMCPU *cpu_arm_init(const char *cpu_model);
int cpu_arm_exec(CPUState *cpu);
target_ulong do_arm_semihosting(CPUARMState *env);
void aarch64_sync_32_to_64(CPUARMState *env);
void aarch64_sync_64_to_32(CPUARMState *env);

static inline bool is_a64(CPUARMState *env)
{
    return env->aarch64;
}

/* you can call this signal handler from your SIGBUS and SIGSEGV
   signal handlers to inform the virtual CPU of exceptions. non zero
   is returned if the signal was handled by the virtual CPU.  */
int cpu_arm_signal_handler(int host_signum, void *pinfo,
                           void *puc);

/**
 * pmccntr_sync
 * @env: CPUARMState
 *
 * Synchronises the counter in the PMCCNTR. This must always be called twice,
 * once before any action that might affect the timer and again afterwards.
 * The function is used to swap the state of the register if required.
 * This only happens when not in user mode (!CONFIG_USER_ONLY)
 */
void pmccntr_sync(CPUARMState *env);

/* SCTLR bit meanings. Several bits have been reused in newer
 * versions of the architecture; in that case we define constants
 * for both old and new bit meanings. Code which tests against those
 * bits should probably check or otherwise arrange that the CPU
 * is the architectural version it expects.
 */
#define SCTLR_M       (1U << 0)
#define SCTLR_A       (1U << 1)
#define SCTLR_C       (1U << 2)
#define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
#define SCTLR_SA      (1U << 3)
#define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
#define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
#define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
#define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
#define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
#define SCTLR_ITD     (1U << 7) /* v8 onward */
#define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
#define SCTLR_SED     (1U << 8) /* v8 onward */
#define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
#define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
#define SCTLR_F       (1U << 10) /* up to v6 */
#define SCTLR_SW      (1U << 10) /* v7 onward */
#define SCTLR_Z       (1U << 11)
#define SCTLR_I       (1U << 12)
#define SCTLR_V       (1U << 13)
#define SCTLR_RR      (1U << 14) /* up to v7 */
#define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
#define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
#define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
#define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
#define SCTLR_nTWI    (1U << 16) /* v8 onward */
#define SCTLR_HA      (1U << 17)
#define SCTLR_BR      (1U << 17) /* PMSA only */
#define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
#define SCTLR_nTWE    (1U << 18) /* v8 onward */
#define SCTLR_WXN     (1U << 19)
#define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
#define SCTLR_UWXN    (1U << 20) /* v7 onward */
#define SCTLR_FI      (1U << 21)
#define SCTLR_U       (1U << 22)
#define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
#define SCTLR_VE      (1U << 24) /* up to v7 */
#define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
#define SCTLR_EE      (1U << 25)
#define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
#define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
#define SCTLR_NMFI    (1U << 27)
#define SCTLR_TRE     (1U << 28)
#define SCTLR_AFE     (1U << 29)
#define SCTLR_TE      (1U << 30)

#define CPTR_TCPAC    (1U << 31)
#define CPTR_TTA      (1U << 20)
#define CPTR_TFP      (1U << 10)

#define CPSR_M (0x1fU)
#define CPSR_T (1U << 5)
#define CPSR_F (1U << 6)
#define CPSR_I (1U << 7)
#define CPSR_A (1U << 8)
#define CPSR_E (1U << 9)
#define CPSR_IT_2_7 (0xfc00U)
#define CPSR_GE (0xfU << 16)
#define CPSR_IL (1U << 20)
/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
 * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
 * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
 * where it is live state but not accessible to the AArch32 code.
 */
#define CPSR_RESERVED (0x7U << 21)
#define CPSR_J (1U << 24)
#define CPSR_IT_0_1 (3U << 25)
#define CPSR_Q (1U << 27)
#define CPSR_V (1U << 28)
#define CPSR_C (1U << 29)
#define CPSR_Z (1U << 30)
#define CPSR_N (1U << 31)
#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)

#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
    | CPSR_NZCV)
/* Bits writable in user mode.  */
#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
/* Mask of bits which may be set by exception return copying them from SPSR */
#define CPSR_ERET_MASK (~CPSR_RESERVED)

#define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
#define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
#define TTBCR_PD0    (1U << 4)
#define TTBCR_PD1    (1U << 5)
#define TTBCR_EPD0   (1U << 7)
#define TTBCR_IRGN0  (3U << 8)
#define TTBCR_ORGN0  (3U << 10)
#define TTBCR_SH0    (3U << 12)
#define TTBCR_T1SZ   (3U << 16)
#define TTBCR_A1     (1U << 22)
#define TTBCR_EPD1   (1U << 23)
#define TTBCR_IRGN1  (3U << 24)
#define TTBCR_ORGN1  (3U << 26)
#define TTBCR_SH1    (1U << 28)
#define TTBCR_EAE    (1U << 31)

/* Bit definitions for ARMv8 SPSR (PSTATE) format.
 * Only these are valid when in AArch64 mode; in
 * AArch32 mode SPSRs are basically CPSR-format.
 */
#define PSTATE_SP (1U)
#define PSTATE_M (0xFU)
#define PSTATE_nRW (1U << 4)
#define PSTATE_F (1U << 6)
#define PSTATE_I (1U << 7)
#define PSTATE_A (1U << 8)
#define PSTATE_D (1U << 9)
#define PSTATE_IL (1U << 20)
#define PSTATE_SS (1U << 21)
#define PSTATE_V (1U << 28)
#define PSTATE_C (1U << 29)
#define PSTATE_Z (1U << 30)
#define PSTATE_N (1U << 31)
#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
/* Mode values for AArch64 */
#define PSTATE_MODE_EL3h 13
#define PSTATE_MODE_EL3t 12
#define PSTATE_MODE_EL2h 9
#define PSTATE_MODE_EL2t 8
#define PSTATE_MODE_EL1h 5
#define PSTATE_MODE_EL1t 4
#define PSTATE_MODE_EL0t 0

/* Map EL and handler into a PSTATE_MODE.  */
static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
{
    return (el << 2) | handler;
}

/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
 * interprocessing, so we don't attempt to sync with the cpsr state used by
 * the 32 bit decoder.
 */
static inline uint32_t pstate_read(CPUARMState *env)
{
    int ZF;

    ZF = (env->ZF == 0);
    return (env->NF & 0x80000000) | (ZF << 30)
        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
        | env->pstate | env->daif;
}

static inline void pstate_write(CPUARMState *env, uint32_t val)
{
    env->ZF = (~val) & PSTATE_Z;
    env->NF = val;
    env->CF = (val >> 29) & 1;
    env->VF = (val << 3) & 0x80000000;
    env->daif = val & PSTATE_DAIF;
    env->pstate = val & ~CACHED_PSTATE_BITS;
}

/* Return the current CPSR value.  */
uint32_t cpsr_read(CPUARMState *env);
/* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.  */
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);

/* Return the current xPSR value.  */
static inline uint32_t xpsr_read(CPUARMState *env)
{
    int ZF;
    ZF = (env->ZF == 0);
    return (env->NF & 0x80000000) | (ZF << 30)
        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
        | ((env->condexec_bits & 0xfc) << 8)
        | env->v7m.exception;
}

/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
{
    if (mask & CPSR_NZCV) {
        env->ZF = (~val) & CPSR_Z;
        env->NF = val;
        env->CF = (val >> 29) & 1;
        env->VF = (val << 3) & 0x80000000;
    }
    if (mask & CPSR_Q)
        env->QF = ((val & CPSR_Q) != 0);
    if (mask & (1 << 24))
        env->thumb = ((val & (1 << 24)) != 0);
    if (mask & CPSR_IT_0_1) {
        env->condexec_bits &= ~3;
        env->condexec_bits |= (val >> 25) & 3;
    }
    if (mask & CPSR_IT_2_7) {
        env->condexec_bits &= 3;
        env->condexec_bits |= (val >> 8) & 0xfc;
    }
    if (mask & 0x1ff) {
        env->v7m.exception = val & 0x1ff;
    }
}

#define HCR_VM        (1ULL << 0)
#define HCR_SWIO      (1ULL << 1)
#define HCR_PTW       (1ULL << 2)
#define HCR_FMO       (1ULL << 3)
#define HCR_IMO       (1ULL << 4)
#define HCR_AMO       (1ULL << 5)
#define HCR_VF        (1ULL << 6)
#define HCR_VI        (1ULL << 7)
#define HCR_VSE       (1ULL << 8)
#define HCR_FB        (1ULL << 9)
#define HCR_BSU_MASK  (3ULL << 10)
#define HCR_DC        (1ULL << 12)
#define HCR_TWI       (1ULL << 13)
#define HCR_TWE       (1ULL << 14)
#define HCR_TID0      (1ULL << 15)
#define HCR_TID1      (1ULL << 16)
#define HCR_TID2      (1ULL << 17)
#define HCR_TID3      (1ULL << 18)
#define HCR_TSC       (1ULL << 19)
#define HCR_TIDCP     (1ULL << 20)
#define HCR_TACR      (1ULL << 21)
#define HCR_TSW       (1ULL << 22)
#define HCR_TPC       (1ULL << 23)
#define HCR_TPU       (1ULL << 24)
#define HCR_TTLB      (1ULL << 25)
#define HCR_TVM       (1ULL << 26)
#define HCR_TGE       (1ULL << 27)
#define HCR_TDZ       (1ULL << 28)
#define HCR_HCD       (1ULL << 29)
#define HCR_TRVM      (1ULL << 30)
#define HCR_RW        (1ULL << 31)
#define HCR_CD        (1ULL << 32)
#define HCR_ID        (1ULL << 33)
#define HCR_MASK      ((1ULL << 34) - 1)

#define SCR_NS                (1U << 0)
#define SCR_IRQ               (1U << 1)
#define SCR_FIQ               (1U << 2)
#define SCR_EA                (1U << 3)
#define SCR_FW                (1U << 4)
#define SCR_AW                (1U << 5)
#define SCR_NET               (1U << 6)
#define SCR_SMD               (1U << 7)
#define SCR_HCE               (1U << 8)
#define SCR_SIF               (1U << 9)
#define SCR_RW                (1U << 10)
#define SCR_ST                (1U << 11)
#define SCR_TWI               (1U << 12)
#define SCR_TWE               (1U << 13)
#define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
#define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)

/* Return the current FPSCR value.  */
uint32_t vfp_get_fpscr(CPUARMState *env);
void vfp_set_fpscr(CPUARMState *env, uint32_t val);

/* For A64 the FPSCR is split into two logically distinct registers,
 * FPCR and FPSR. However since they still use non-overlapping bits
 * we store the underlying state in fpscr and just mask on read/write.
 */
#define FPSR_MASK 0xf800009f
#define FPCR_MASK 0x07f79f00
static inline uint32_t vfp_get_fpsr(CPUARMState *env)
{
    return vfp_get_fpscr(env) & FPSR_MASK;
}

static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
{
    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
    vfp_set_fpscr(env, new_fpscr);
}

static inline uint32_t vfp_get_fpcr(CPUARMState *env)
{
    return vfp_get_fpscr(env) & FPCR_MASK;
}

static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
{
    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
    vfp_set_fpscr(env, new_fpscr);
}

enum arm_cpu_mode {
  ARM_CPU_MODE_USR = 0x10,
  ARM_CPU_MODE_FIQ = 0x11,
  ARM_CPU_MODE_IRQ = 0x12,
  ARM_CPU_MODE_SVC = 0x13,
  ARM_CPU_MODE_MON = 0x16,
  ARM_CPU_MODE_ABT = 0x17,
  ARM_CPU_MODE_HYP = 0x1a,
  ARM_CPU_MODE_UND = 0x1b,
  ARM_CPU_MODE_SYS = 0x1f
};

/* VFP system registers.  */
#define ARM_VFP_FPSID   0
#define ARM_VFP_FPSCR   1
#define ARM_VFP_MVFR2   5
#define ARM_VFP_MVFR1   6
#define ARM_VFP_MVFR0   7
#define ARM_VFP_FPEXC   8
#define ARM_VFP_FPINST  9
#define ARM_VFP_FPINST2 10

/* iwMMXt coprocessor control registers.  */
#define ARM_IWMMXT_wCID		0
#define ARM_IWMMXT_wCon		1
#define ARM_IWMMXT_wCSSF	2
#define ARM_IWMMXT_wCASF	3
#define ARM_IWMMXT_wCGR0	8
#define ARM_IWMMXT_wCGR1	9
#define ARM_IWMMXT_wCGR2	10
#define ARM_IWMMXT_wCGR3	11

/* If adding a feature bit which corresponds to a Linux ELF
 * HWCAP bit, remember to update the feature-bit-to-hwcap
 * mapping in linux-user/elfload.c:get_elf_hwcap().
 */
enum arm_features {
    ARM_FEATURE_VFP,
    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
    ARM_FEATURE_V6,
    ARM_FEATURE_V6K,
    ARM_FEATURE_V7,
    ARM_FEATURE_THUMB2,
    ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
    ARM_FEATURE_VFP3,
    ARM_FEATURE_VFP_FP16,
    ARM_FEATURE_NEON,
    ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
    ARM_FEATURE_M, /* Microcontroller profile.  */
    ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
    ARM_FEATURE_THUMB2EE,
    ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
    ARM_FEATURE_V4T,
    ARM_FEATURE_V5,
    ARM_FEATURE_STRONGARM,
    ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
    ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
    ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
    ARM_FEATURE_GENERIC_TIMER,
    ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
    ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
    ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
    ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
    ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
    ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
    ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
    ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
    ARM_FEATURE_V8,
    ARM_FEATURE_AARCH64, /* supports 64 bit mode */
    ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
    ARM_FEATURE_CBAR, /* has cp15 CBAR */
    ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
    ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
    ARM_FEATURE_EL2, /* has EL2 Virtualization support */
    ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
    ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
    ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
    ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
    ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
};

static inline int arm_feature(CPUARMState *env, int feature)
{
    return (env->features & (1ULL << feature)) != 0;
}

#if !defined(CONFIG_USER_ONLY)
/* Return true if exception levels below EL3 are in secure state,
 * or would be following an exception return to that level.
 * Unlike arm_is_secure() (which is always a question about the
 * _current_ state of the CPU) this doesn't care about the current
 * EL or mode.
 */
static inline bool arm_is_secure_below_el3(CPUARMState *env)
{
    if (arm_feature(env, ARM_FEATURE_EL3)) {
        return !(env->cp15.scr_el3 & SCR_NS);
    } else {
        /* If EL2 is not supported then the secure state is implementation
         * defined, in which case QEMU defaults to non-secure.
         */
        return false;
    }
}

/* Return true if the processor is in secure state */
static inline bool arm_is_secure(CPUARMState *env)
{
    if (arm_feature(env, ARM_FEATURE_EL3)) {
        if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
            /* CPU currently in AArch64 state and EL3 */
            return true;
        } else if (!is_a64(env) &&
                (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
            /* CPU currently in AArch32 state and monitor mode */
            return true;
        }
    }
    return arm_is_secure_below_el3(env);
}

#else
static inline bool arm_is_secure_below_el3(CPUARMState *env)
{
    return false;
}

static inline bool arm_is_secure(CPUARMState *env)
{
    return false;
}
#endif

/* Return true if the specified exception level is running in AArch64 state. */
static inline bool arm_el_is_aa64(CPUARMState *env, int el)
{
    /* We don't currently support EL2, and this isn't valid for EL0
     * (if we're in EL0, is_a64() is what you want, and if we're not in EL0
     * then the state of EL0 isn't well defined.)
     */
    assert(el == 1 || el == 3);

    /* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
     * is a QEMU-imposed simplification which we may wish to change later.
     * If we in future support EL2 and/or EL3, then the state of lower
     * exception levels is controlled by the HCR.RW and SCR.RW bits.
     */
    return arm_feature(env, ARM_FEATURE_AARCH64);
}

/* Function for determing whether guest cp register reads and writes should
 * access the secure or non-secure bank of a cp register.  When EL3 is
 * operating in AArch32 state, the NS-bit determines whether the secure
 * instance of a cp register should be used. When EL3 is AArch64 (or if
 * it doesn't exist at all) then there is no register banking, and all
 * accesses are to the non-secure version.
 */
static inline bool access_secure_reg(CPUARMState *env)
{
    bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
                !arm_el_is_aa64(env, 3) &&
                !(env->cp15.scr_el3 & SCR_NS));

    return ret;
}

/* Macros for accessing a specified CP register bank */
#define A32_BANKED_REG_GET(_env, _regname, _secure)    \
    ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)

#define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
    do {                                                \
        if (_secure) {                                   \
            (_env)->cp15._regname##_s = (_val);            \
        } else {                                        \
            (_env)->cp15._regname##_ns = (_val);           \
        }                                               \
    } while (0)

/* Macros for automatically accessing a specific CP register bank depending on
 * the current secure state of the system.  These macros are not intended for
 * supporting instruction translation reads/writes as these are dependent
 * solely on the SCR.NS bit and not the mode.
 */
#define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
    A32_BANKED_REG_GET((_env), _regname,                \
                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))

#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
    A32_BANKED_REG_SET((_env), _regname,                                    \
                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
                       (_val))

void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
                                 uint32_t cur_el, bool secure);

/* Interface between CPU and Interrupt controller.  */
void armv7m_nvic_set_pending(void *opaque, int irq);
int armv7m_nvic_acknowledge_irq(void *opaque);
void armv7m_nvic_complete_irq(void *opaque, int irq);

/* Interface for defining coprocessor registers.
 * Registers are defined in tables of arm_cp_reginfo structs
 * which are passed to define_arm_cp_regs().
 */

/* When looking up a coprocessor register we look for it
 * via an integer which encodes all of:
 *  coprocessor number
 *  Crn, Crm, opc1, opc2 fields
 *  32 or 64 bit register (ie is it accessed via MRC/MCR
 *    or via MRRC/MCRR?)
 *  non-secure/secure bank (AArch32 only)
 * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
 * (In this case crn and opc2 should be zero.)
 * For AArch64, there is no 32/64 bit size distinction;
 * instead all registers have a 2 bit op0, 3 bit op1 and op2,
 * and 4 bit CRn and CRm. The encoding patterns are chosen
 * to be easy to convert to and from the KVM encodings, and also
 * so that the hashtable can contain both AArch32 and AArch64
 * registers (to allow for interprocessing where we might run
 * 32 bit code on a 64 bit core).
 */
/* This bit is private to our hashtable cpreg; in KVM register
 * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
 * in the upper bits of the 64 bit ID.
 */
#define CP_REG_AA64_SHIFT 28
#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)

/* To enable banking of coprocessor registers depending on ns-bit we
 * add a bit to distinguish between secure and non-secure cpregs in the
 * hashtable.
 */
#define CP_REG_NS_SHIFT 29
#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)

#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
    ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
     ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))

#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
    (CP_REG_AA64_MASK |                                 \
     ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
     ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
     ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
     ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
     ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
     ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))

/* Convert a full 64 bit KVM register ID to the truncated 32 bit
 * version used as a key for the coprocessor register hashtable
 */
static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
{
    uint32_t cpregid = kvmid;
    if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
        cpregid |= CP_REG_AA64_MASK;
    } else {
        if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
            cpregid |= (1 << 15);
        }

        /* KVM is always non-secure so add the NS flag on AArch32 register
         * entries.
         */
         cpregid |= 1 << CP_REG_NS_SHIFT;
    }
    return cpregid;
}

/* Convert a truncated 32 bit hashtable key into the full
 * 64 bit KVM register ID.
 */
static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
{
    uint64_t kvmid;

    if (cpregid & CP_REG_AA64_MASK) {
        kvmid = cpregid & ~CP_REG_AA64_MASK;
        kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
    } else {
        kvmid = cpregid & ~(1 << 15);
        if (cpregid & (1 << 15)) {
            kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
        } else {
            kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
        }
    }
    return kvmid;
}

/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
 * special-behaviour cp reg and bits [15..8] indicate what behaviour
 * it has. Otherwise it is a simple cp reg, where CONST indicates that
 * TCG can assume the value to be constant (ie load at translate time)
 * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
 * indicates that the TB should not be ended after a write to this register
 * (the default is that the TB ends after cp writes). OVERRIDE permits
 * a register definition to override a previous definition for the
 * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
 * old must have the OVERRIDE bit set.
 * ALIAS indicates that this register is an alias view of some underlying
 * state which is also visible via another register, and that the other
 * register is handling migration and reset; registers marked ALIAS will not be
 * migrated but may have their state set by syncing of register state from KVM.
 * NO_RAW indicates that this register has no underlying state and does not
 * support raw access for state saving/loading; it will not be used for either
 * migration or KVM state synchronization. (Typically this is for "registers"
 * which are actually used as instructions for cache maintenance and so on.)
 * IO indicates that this register does I/O and therefore its accesses
 * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
 * registers which implement clocks or timers require this.
 */
#define ARM_CP_SPECIAL 1
#define ARM_CP_CONST 2
#define ARM_CP_64BIT 4
#define ARM_CP_SUPPRESS_TB_END 8
#define ARM_CP_OVERRIDE 16
#define ARM_CP_ALIAS 32
#define ARM_CP_IO 64
#define ARM_CP_NO_RAW 128
#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
#define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
/* Used only as a terminator for ARMCPRegInfo lists */
#define ARM_CP_SENTINEL 0xffff
/* Mask of only the flag bits in a type field */
#define ARM_CP_FLAG_MASK 0xff

/* Valid values for ARMCPRegInfo state field, indicating which of
 * the AArch32 and AArch64 execution states this register is visible in.
 * If the reginfo doesn't explicitly specify then it is AArch32 only.
 * If the reginfo is declared to be visible in both states then a second
 * reginfo is synthesised for the AArch32 view of the AArch64 register,
 * such that the AArch32 view is the lower 32 bits of the AArch64 one.
 * Note that we rely on the values of these enums as we iterate through
 * the various states in some places.
 */
enum {
    ARM_CP_STATE_AA32 = 0,
    ARM_CP_STATE_AA64 = 1,
    ARM_CP_STATE_BOTH = 2,
};

/* ARM CP register secure state flags.  These flags identify security state
 * attributes for a given CP register entry.
 * The existence of both or neither secure and non-secure flags indicates that
 * the register has both a secure and non-secure hash entry.  A single one of
 * these flags causes the register to only be hashed for the specified
 * security state.
 * Although definitions may have any combination of the S/NS bits, each
 * registered entry will only have one to identify whether the entry is secure
 * or non-secure.
 */
enum {
    ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
    ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
};

/* Return true if cptype is a valid type field. This is used to try to
 * catch errors where the sentinel has been accidentally left off the end
 * of a list of registers.
 */
static inline bool cptype_valid(int cptype)
{
    return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
        || ((cptype & ARM_CP_SPECIAL) &&
            ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
}

/* Access rights:
 * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
 * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
 * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
 * (ie any of the privileged modes in Secure state, or Monitor mode).
 * If a register is accessible in one privilege level it's always accessible
 * in higher privilege levels too. Since "Secure PL1" also follows this rule
 * (ie anything visible in PL2 is visible in S-PL1, some things are only
 * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
 * terminology a little and call this PL3.
 * In AArch64 things are somewhat simpler as the PLx bits line up exactly
 * with the ELx exception levels.
 *
 * If access permissions for a register are more complex than can be
 * described with these bits, then use a laxer set of restrictions, and
 * do the more restrictive/complex check inside a helper function.
 */
#define PL3_R 0x80
#define PL3_W 0x40
#define PL2_R (0x20 | PL3_R)
#define PL2_W (0x10 | PL3_W)
#define PL1_R (0x08 | PL2_R)
#define PL1_W (0x04 | PL2_W)
#define PL0_R (0x02 | PL1_R)
#define PL0_W (0x01 | PL1_W)

#define PL3_RW (PL3_R | PL3_W)
#define PL2_RW (PL2_R | PL2_W)
#define PL1_RW (PL1_R | PL1_W)
#define PL0_RW (PL0_R | PL0_W)

/* Return the current Exception Level (as per ARMv8; note that this differs
 * from the ARMv7 Privilege Level).
 */
static inline int arm_current_el(CPUARMState *env)
{
    if (arm_feature(env, ARM_FEATURE_M)) {
        return !((env->v7m.exception == 0) && (env->v7m.control & 1));
    }

    if (is_a64(env)) {
        return extract32(env->pstate, 2, 2);
    }

    switch (env->uncached_cpsr & 0x1f) {
    case ARM_CPU_MODE_USR:
        return 0;
    case ARM_CPU_MODE_HYP:
        return 2;
    case ARM_CPU_MODE_MON:
        return 3;
    default:
        if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
            /* If EL3 is 32-bit then all secure privileged modes run in
             * EL3
             */
            return 3;
        }

        return 1;
    }
}

typedef struct ARMCPRegInfo ARMCPRegInfo;

typedef enum CPAccessResult {
    /* Access is permitted */
    CP_ACCESS_OK = 0,
    /* Access fails due to a configurable trap or enable which would
     * result in a categorized exception syndrome giving information about
     * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
     * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
     * PL1 if in EL0, otherwise to the current EL).
     */
    CP_ACCESS_TRAP = 1,
    /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
     * Note that this is not a catch-all case -- the set of cases which may
     * result in this failure is specifically defined by the architecture.
     */
    CP_ACCESS_TRAP_UNCATEGORIZED = 2,
    /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
    CP_ACCESS_TRAP_EL2 = 3,
    CP_ACCESS_TRAP_EL3 = 4,
    /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
    CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
    CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
} CPAccessResult;

/* Access functions for coprocessor registers. These cannot fail and
 * may not raise exceptions.
 */
typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
                       uint64_t value);
/* Access permission check functions for coprocessor registers. */
typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
/* Hook function for register reset */
typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);

#define CP_ANY 0xff

/* Definition of an ARM coprocessor register */
struct ARMCPRegInfo {
    /* Name of register (useful mainly for debugging, need not be unique) */
    const char *name;
    /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
     * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
     * 'wildcard' field -- any value of that field in the MRC/MCR insn
     * will be decoded to this register. The register read and write
     * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
     * used by the program, so it is possible to register a wildcard and
     * then behave differently on read/write if necessary.
     * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
     * must both be zero.
     * For AArch64-visible registers, opc0 is also used.
     * Since there are no "coprocessors" in AArch64, cp is purely used as a
     * way to distinguish (for KVM's benefit) guest-visible system registers
     * from demuxed ones provided to preserve the "no side effects on
     * KVM register read/write from QEMU" semantics. cp==0x13 is guest
     * visible (to match KVM's encoding); cp==0 will be converted to
     * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
     */
    uint8_t cp;
    uint8_t crn;
    uint8_t crm;
    uint8_t opc0;
    uint8_t opc1;
    uint8_t opc2;
    /* Execution state in which this register is visible: ARM_CP_STATE_* */
    int state;
    /* Register type: ARM_CP_* bits/values */
    int type;
    /* Access rights: PL*_[RW] */
    int access;
    /* Security state: ARM_CP_SECSTATE_* bits/values */
    int secure;
    /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
     * this register was defined: can be used to hand data through to the
     * register read/write functions, since they are passed the ARMCPRegInfo*.
     */
    void *opaque;
    /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
     * fieldoffset is non-zero, the reset value of the register.
     */
    uint64_t resetvalue;
    /* Offset of the field in CPUARMState for this register.
     *
     * This is not needed if either:
     *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
     *  2. both readfn and writefn are specified
     */
    ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */

    /* Offsets of the secure and non-secure fields in CPUARMState for the
     * register if it is banked.  These fields are only used during the static
     * registration of a register.  During hashing the bank associated
     * with a given security state is copied to fieldoffset which is used from
     * there on out.
     *
     * It is expected that register definitions use either fieldoffset or
     * bank_fieldoffsets in the definition but not both.  It is also expected
     * that both bank offsets are set when defining a banked register.  This
     * use indicates that a register is banked.
     */
    ptrdiff_t bank_fieldoffsets[2];

    /* Function for making any access checks for this register in addition to
     * those specified by the 'access' permissions bits. If NULL, no extra
     * checks required. The access check is performed at runtime, not at
     * translate time.
     */
    CPAccessFn *accessfn;
    /* Function for handling reads of this register. If NULL, then reads
     * will be done by loading from the offset into CPUARMState specified
     * by fieldoffset.
     */
    CPReadFn *readfn;
    /* Function for handling writes of this register. If NULL, then writes
     * will be done by writing to the offset into CPUARMState specified
     * by fieldoffset.
     */
    CPWriteFn *writefn;
    /* Function for doing a "raw" read; used when we need to copy
     * coprocessor state to the kernel for KVM or out for
     * migration. This only needs to be provided if there is also a
     * readfn and it has side effects (for instance clear-on-read bits).
     */
    CPReadFn *raw_readfn;
    /* Function for doing a "raw" write; used when we need to copy KVM
     * kernel coprocessor state into userspace, or for inbound
     * migration. This only needs to be provided if there is also a
     * writefn and it masks out "unwritable" bits or has write-one-to-clear
     * or similar behaviour.
     */
    CPWriteFn *raw_writefn;
    /* Function for resetting the register. If NULL, then reset will be done
     * by writing resetvalue to the field specified in fieldoffset. If
     * fieldoffset is 0 then no reset will be done.
     */
    CPResetFn *resetfn;
};

/* Macros which are lvalues for the field in CPUARMState for the
 * ARMCPRegInfo *ri.
 */
#define CPREG_FIELD32(env, ri) \
    (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
#define CPREG_FIELD64(env, ri) \
    (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))

#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }

void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
                                    const ARMCPRegInfo *regs, void *opaque);
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
                                       const ARMCPRegInfo *regs, void *opaque);
static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
{
    define_arm_cp_regs_with_opaque(cpu, regs, 0);
}
static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
{
    define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
}
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);

/* CPWriteFn that can be used to implement writes-ignored behaviour */
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value);
/* CPReadFn that can be used for read-as-zero behaviour */
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);

/* CPResetFn that does nothing, for use if no reset is required even
 * if fieldoffset is non zero.
 */
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);

/* Return true if this reginfo struct's field in the cpu state struct
 * is 64 bits wide.
 */
static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
{
    return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
}

static inline bool cp_access_ok(int current_el,
                                const ARMCPRegInfo *ri, int isread)
{
    return (ri->access >> ((current_el * 2) + isread)) & 1;
}

/* Raw read of a coprocessor register (as needed for migration, etc) */
uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);

/**
 * write_list_to_cpustate
 * @cpu: ARMCPU
 *
 * For each register listed in the ARMCPU cpreg_indexes list, write
 * its value from the cpreg_values list into the ARMCPUState structure.
 * This updates TCG's working data structures from KVM data or
 * from incoming migration state.
 *
 * Returns: true if all register values were updated correctly,
 * false if some register was unknown or could not be written.
 * Note that we do not stop early on failure -- we will attempt
 * writing all registers in the list.
 */
bool write_list_to_cpustate(ARMCPU *cpu);

/**
 * write_cpustate_to_list:
 * @cpu: ARMCPU
 *
 * For each register listed in the ARMCPU cpreg_indexes list, write
 * its value from the ARMCPUState structure into the cpreg_values list.
 * This is used to copy info from TCG's working data structures into
 * KVM or for outbound migration.
 *
 * Returns: true if all register values were read correctly,
 * false if some register was unknown or could not be read.
 * Note that we do not stop early on failure -- we will attempt
 * reading all registers in the list.
 */
bool write_cpustate_to_list(ARMCPU *cpu);

/* Does the core conform to the "MicroController" profile. e.g. Cortex-M3.
   Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
   conventional cores (ie. Application or Realtime profile).  */

#define IS_M(env) arm_feature(env, ARM_FEATURE_M)

#define ARM_CPUID_TI915T      0x54029152
#define ARM_CPUID_TI925T      0x54029252

#if defined(CONFIG_USER_ONLY)
#define TARGET_PAGE_BITS 12
#else
/* The ARM MMU allows 1k pages.  */
/* ??? Linux doesn't actually use these, and they're deprecated in recent
   architecture revisions.  Maybe a configure option to disable them.  */
#define TARGET_PAGE_BITS 12
#endif

#if defined(TARGET_AARCH64)
#  define TARGET_PHYS_ADDR_SPACE_BITS 48
#  define TARGET_VIRT_ADDR_SPACE_BITS 64
#else
#  define TARGET_PHYS_ADDR_SPACE_BITS 40
#  define TARGET_VIRT_ADDR_SPACE_BITS 32
#endif

static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
                                     unsigned int target_el)
{
    CPUARMState *env = (CPUARMState *)cs->env_ptr;
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);
    bool pstate_unmasked;
    int8_t unmasked = 0;

    /* Don't take exceptions if they target a lower EL.
     * This check should catch any exceptions that would not be taken but left
     * pending.
     */
    if (cur_el > target_el) {
        return false;
    }

    switch (excp_idx) {
    case EXCP_FIQ:
        pstate_unmasked = !(env->daif & PSTATE_F);
        break;

    case EXCP_IRQ:
        pstate_unmasked = !(env->daif & PSTATE_I);
        break;

    case EXCP_VFIQ:
        if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
            /* VFIQs are only taken when hypervized and non-secure.  */
            return false;
        }
        return !(env->daif & PSTATE_F);
    case EXCP_VIRQ:
        if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
            /* VIRQs are only taken when hypervized and non-secure.  */
            return false;
        }
        return !(env->daif & PSTATE_I);
    default:
        g_assert_not_reached();
    }

    /* Use the target EL, current execution state and SCR/HCR settings to
     * determine whether the corresponding CPSR bit is used to mask the
     * interrupt.
     */
    if ((target_el > cur_el) && (target_el != 1)) {
        /* Exceptions targeting a higher EL may not be maskable */
        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
            /* 64-bit masking rules are simple: exceptions to EL3
             * can't be masked, and exceptions to EL2 can only be
             * masked from Secure state. The HCR and SCR settings
             * don't affect the masking logic, only the interrupt routing.
             */
            if (target_el == 3 || !secure) {
                unmasked = 1;
            }
        } else {
            /* The old 32-bit-only environment has a more complicated
             * masking setup. HCR and SCR bits not only affect interrupt
             * routing but also change the behaviour of masking.
             */
            bool hcr, scr;

            switch (excp_idx) {
            case EXCP_FIQ:
                /* If FIQs are routed to EL3 or EL2 then there are cases where
                 * we override the CPSR.F in determining if the exception is
                 * masked or not. If neither of these are set then we fall back
                 * to the CPSR.F setting otherwise we further assess the state
                 * below.
                 */
                hcr = (env->cp15.hcr_el2 & HCR_FMO);
                scr = (env->cp15.scr_el3 & SCR_FIQ);

                /* When EL3 is 32-bit, the SCR.FW bit controls whether the
                 * CPSR.F bit masks FIQ interrupts when taken in non-secure
                 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
                 * when non-secure but only when FIQs are only routed to EL3.
                 */
                scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
                break;
            case EXCP_IRQ:
                /* When EL3 execution state is 32-bit, if HCR.IMO is set then
                 * we may override the CPSR.I masking when in non-secure state.
                 * The SCR.IRQ setting has already been taken into consideration
                 * when setting the target EL, so it does not have a further
                 * affect here.
                 */
                hcr = (env->cp15.hcr_el2 & HCR_IMO);
                scr = false;
                break;
            default:
                g_assert_not_reached();
            }

            if ((scr || hcr) && !secure) {
                unmasked = 1;
            }
        }
    }

    /* The PSTATE bits only mask the interrupt if we have not overriden the
     * ability above.
     */
    return unmasked || pstate_unmasked;
}

#define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))

#define cpu_exec cpu_arm_exec
#define cpu_signal_handler cpu_arm_signal_handler
#define cpu_list arm_cpu_list

/* ARM has the following "translation regimes" (as the ARM ARM calls them):
 *
 * If EL3 is 64-bit:
 *  + NonSecure EL1 & 0 stage 1
 *  + NonSecure EL1 & 0 stage 2
 *  + NonSecure EL2
 *  + Secure EL1 & EL0
 *  + Secure EL3
 * If EL3 is 32-bit:
 *  + NonSecure PL1 & 0 stage 1
 *  + NonSecure PL1 & 0 stage 2
 *  + NonSecure PL2
 *  + Secure PL0 & PL1
 * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
 *
 * For QEMU, an mmu_idx is not quite the same as a translation regime because:
 *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
 *     may differ in access permissions even if the VA->PA map is the same
 *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
 *     translation, which means that we have one mmu_idx that deals with two
 *     concatenated translation regimes [this sort of combined s1+2 TLB is
 *     architecturally permitted]
 *  3. we don't need to allocate an mmu_idx to translations that we won't be
 *     handling via the TLB. The only way to do a stage 1 translation without
 *     the immediate stage 2 translation is via the ATS or AT system insns,
 *     which can be slow-pathed and always do a page table walk.
 *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
 *     translation regimes, because they map reasonably well to each other
 *     and they can't both be active at the same time.
 * This gives us the following list of mmu_idx values:
 *
 * NS EL0 (aka NS PL0) stage 1+2
 * NS EL1 (aka NS PL1) stage 1+2
 * NS EL2 (aka NS PL2)
 * S EL3 (aka S PL1)
 * S EL0 (aka S PL0)
 * S EL1 (not used if EL3 is 32 bit)
 * NS EL0+1 stage 2
 *
 * (The last of these is an mmu_idx because we want to be able to use the TLB
 * for the accesses done as part of a stage 1 page table walk, rather than
 * having to walk the stage 2 page table over and over.)
 *
 * Our enumeration includes at the end some entries which are not "true"
 * mmu_idx values in that they don't have corresponding TLBs and are only
 * valid for doing slow path page table walks.
 *
 * The constant names here are patterned after the general style of the names
 * of the AT/ATS operations.
 * The values used are carefully arranged to make mmu_idx => EL lookup easy.
 */
typedef enum ARMMMUIdx {
    ARMMMUIdx_S12NSE0 = 0,
    ARMMMUIdx_S12NSE1 = 1,
    ARMMMUIdx_S1E2 = 2,
    ARMMMUIdx_S1E3 = 3,
    ARMMMUIdx_S1SE0 = 4,
    ARMMMUIdx_S1SE1 = 5,
    ARMMMUIdx_S2NS = 6,
    /* Indexes below here don't have TLBs and are used only for AT system
     * instructions or for the first stage of an S12 page table walk.
     */
    ARMMMUIdx_S1NSE0 = 7,
    ARMMMUIdx_S1NSE1 = 8,
} ARMMMUIdx;

#define MMU_USER_IDX 0

/* Return the exception level we're running at if this is our mmu_idx */
static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
{
    assert(mmu_idx < ARMMMUIdx_S2NS);
    return mmu_idx & 3;
}

/* Determine the current mmu_idx to use for normal loads/stores */
static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
{
    int el = arm_current_el(env);

    if (el < 2 && arm_is_secure_below_el3(env)) {
        return ARMMMUIdx_S1SE0 + el;
    }
    return el;
}

/* Return the Exception Level targeted by debug exceptions;
 * currently always EL1 since we don't implement EL2 or EL3.
 */
static inline int arm_debug_target_el(CPUARMState *env)
{
    bool secure = arm_is_secure(env);
    bool route_to_el2 = false;

    if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
        route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
                       env->cp15.mdcr_el2 & (1 << 8);
    }

    if (route_to_el2) {
        return 2;
    } else if (arm_feature(env, ARM_FEATURE_EL3) &&
               !arm_el_is_aa64(env, 3) && secure) {
        return 3;
    } else {
        return 1;
    }
}

static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
{
    if (arm_current_el(env) == arm_debug_target_el(env)) {
        if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
            || (env->daif & PSTATE_D)) {
            return false;
        }
    }
    return true;
}

static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
{
    if (arm_current_el(env) == 0 && arm_el_is_aa64(env, 1)) {
        return aa64_generate_debug_exceptions(env);
    }
    return arm_current_el(env) != 2;
}

/* Return true if debugging exceptions are currently enabled.
 * This corresponds to what in ARM ARM pseudocode would be
 *    if UsingAArch32() then
 *        return AArch32.GenerateDebugExceptions()
 *    else
 *        return AArch64.GenerateDebugExceptions()
 * We choose to push the if() down into this function for clarity,
 * since the pseudocode has it at all callsites except for the one in
 * CheckSoftwareStep(), where it is elided because both branches would
 * always return the same value.
 *
 * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
 * don't yet implement those exception levels or their associated trap bits.
 */
static inline bool arm_generate_debug_exceptions(CPUARMState *env)
{
    if (env->aarch64) {
        return aa64_generate_debug_exceptions(env);
    } else {
        return aa32_generate_debug_exceptions(env);
    }
}

/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
 * implicitly means this always returns false in pre-v8 CPUs.)
 */
static inline bool arm_singlestep_active(CPUARMState *env)
{
    return extract32(env->cp15.mdscr_el1, 0, 1)
        && arm_el_is_aa64(env, arm_debug_target_el(env))
        && arm_generate_debug_exceptions(env);
}

#include "exec/cpu-all.h"

/* Bit usage in the TB flags field: bit 31 indicates whether we are
 * in 32 or 64 bit mode. The meaning of the other bits depends on that.
 * We put flags which are shared between 32 and 64 bit mode at the top
 * of the word, and flags which apply to only one mode at the bottom.
 */
#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
#define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
#define ARM_TBFLAG_MMUIDX_SHIFT 28
#define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
#define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
#define ARM_TBFLAG_PSTATE_SS_SHIFT 26
#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
/* Target EL if we take a floating-point-disabled exception */
#define ARM_TBFLAG_FPEXC_EL_SHIFT 24
#define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)

/* Bit usage when in AArch32 state: */
#define ARM_TBFLAG_THUMB_SHIFT      0
#define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
#define ARM_TBFLAG_VECLEN_SHIFT     1
#define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
#define ARM_TBFLAG_VECSTRIDE_SHIFT  4
#define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
#define ARM_TBFLAG_VFPEN_SHIFT      7
#define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
#define ARM_TBFLAG_CONDEXEC_SHIFT   8
#define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
#define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
#define ARM_TBFLAG_BSWAP_CODE_MASK  (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
/* We store the bottom two bits of the CPAR as TB flags and handle
 * checks on the other bits at runtime
 */
#define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
#define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
/* Indicates whether cp register reads and writes by guest code should access
 * the secure or nonsecure bank of banked registers; note that this is not
 * the same thing as the current security state of the processor!
 */
#define ARM_TBFLAG_NS_SHIFT         19
#define ARM_TBFLAG_NS_MASK          (1 << ARM_TBFLAG_NS_SHIFT)

/* Bit usage when in AArch64 state: currently we have no A64 specific bits */

/* some convenience accessor macros */
#define ARM_TBFLAG_AARCH64_STATE(F) \
    (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
#define ARM_TBFLAG_MMUIDX(F) \
    (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
#define ARM_TBFLAG_SS_ACTIVE(F) \
    (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
#define ARM_TBFLAG_PSTATE_SS(F) \
    (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
#define ARM_TBFLAG_FPEXC_EL(F) \
    (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
#define ARM_TBFLAG_THUMB(F) \
    (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
#define ARM_TBFLAG_VECLEN(F) \
    (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
#define ARM_TBFLAG_VECSTRIDE(F) \
    (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
#define ARM_TBFLAG_VFPEN(F) \
    (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
#define ARM_TBFLAG_CONDEXEC(F) \
    (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
#define ARM_TBFLAG_BSWAP_CODE(F) \
    (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
#define ARM_TBFLAG_XSCALE_CPAR(F) \
    (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
#define ARM_TBFLAG_NS(F) \
    (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)

/* Return the exception level to which FP-disabled exceptions should
 * be taken, or 0 if FP is enabled.
 */
static inline int fp_exception_el(CPUARMState *env)
{
    int fpen;
    int cur_el = arm_current_el(env);

    /* CPACR and the CPTR registers don't exist before v6, so FP is
     * always accessible
     */
    if (!arm_feature(env, ARM_FEATURE_V6)) {
        return 0;
    }

    /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
     * 0, 2 : trap EL0 and EL1/PL1 accesses
     * 1    : trap only EL0 accesses
     * 3    : trap no accesses
     */
    fpen = extract32(env->cp15.cpacr_el1, 20, 2);
    switch (fpen) {
    case 0:
    case 2:
        if (cur_el == 0 || cur_el == 1) {
            /* Trap to PL1, which might be EL1 or EL3 */
            if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
                return 3;
            }
            return 1;
        }
        if (cur_el == 3 && !is_a64(env)) {
            /* Secure PL1 running at EL3 */
            return 3;
        }
        break;
    case 1:
        if (cur_el == 0) {
            return 1;
        }
        break;
    case 3:
        break;
    }

    /* For the CPTR registers we don't need to guard with an ARM_FEATURE
     * check because zero bits in the registers mean "don't trap".
     */

    /* CPTR_EL2 : present in v7VE or v8 */
    if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
        && !arm_is_secure_below_el3(env)) {
        /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
        return 2;
    }

    /* CPTR_EL3 : present in v8 */
    if (extract32(env->cp15.cptr_el[3], 10, 1)) {
        /* Trap all FP ops to EL3 */
        return 3;
    }

    return 0;
}

static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
                                        target_ulong *cs_base, int *flags)
{
    if (is_a64(env)) {
        *pc = env->pc;
        *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
    } else {
        *pc = env->regs[15];
        *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
            | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
            | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
            | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
            | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
        if (!(access_secure_reg(env))) {
            *flags |= ARM_TBFLAG_NS_MASK;
        }
        if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
            || arm_el_is_aa64(env, 1)) {
            *flags |= ARM_TBFLAG_VFPEN_MASK;
        }
        *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
                   << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
    }

    *flags |= (cpu_mmu_index(env, false) << ARM_TBFLAG_MMUIDX_SHIFT);
    /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
     * states defined in the ARM ARM for software singlestep:
     *  SS_ACTIVE   PSTATE.SS   State
     *     0            x       Inactive (the TB flag for SS is always 0)
     *     1            0       Active-pending
     *     1            1       Active-not-pending
     */
    if (arm_singlestep_active(env)) {
        *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
        if (is_a64(env)) {
            if (env->pstate & PSTATE_SS) {
                *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
            }
        } else {
            if (env->uncached_cpsr & PSTATE_SS) {
                *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
            }
        }
    }
    *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;

    *cs_base = 0;
}

static inline target_ulong cpu_get_pc(CPUARMState *env)
{
#if defined(TARGET_AARCH64)
    return env->pc;
#else
    return env->regs[15];
#endif
}

static inline int cpu_check_state(CPUARMState *env,
                                  target_ulong cs_base, int flags)
{
    int f;
    if (is_a64(env)) {
        f = ARM_TBFLAG_AARCH64_STATE_MASK;
    } else {
        f = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
            | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
            | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
            | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
            | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
        if (!(access_secure_reg(env))) {
            f |= ARM_TBFLAG_NS_MASK;
        }
        if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
            || arm_el_is_aa64(env, 1)) {
            f |= ARM_TBFLAG_VFPEN_MASK;
        }
        f |= (extract32(env->cp15.c15_cpar, 0, 2)
                   << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
    }

    f |= (cpu_mmu_index(env, false) << ARM_TBFLAG_MMUIDX_SHIFT);
    /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
     * states defined in the ARM ARM for software singlestep:
     *  SS_ACTIVE   PSTATE.SS   State
     *     0            x       Inactive (the TB flag for SS is always 0)
     *     1            0       Active-pending
     *     1            1       Active-not-pending
     */
    if (arm_singlestep_active(env)) {
        f |= ARM_TBFLAG_SS_ACTIVE_MASK;
        if (is_a64(env)) {
            if (env->pstate & PSTATE_SS) {
                f |= ARM_TBFLAG_PSTATE_SS_MASK;
            }
        } else {
            if (env->uncached_cpsr & PSTATE_SS) {
                f |= ARM_TBFLAG_PSTATE_SS_MASK;
            }
        }
    }
    f |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
    return f == flags;
}

#include "exec/exec-all.h"

enum {
    QEMU_PSCI_CONDUIT_DISABLED = 0,
    QEMU_PSCI_CONDUIT_SMC = 1,
    QEMU_PSCI_CONDUIT_HVC = 2,
};

#endif
OpenPOWER on IntegriCloud