1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
|
/*
* Copyright (c) 2007, Neocleus Corporation.
* Copyright (c) 2007, Intel Corporation.
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
* Alex Novik <alex@neocleus.com>
* Allen Kay <allen.m.kay@intel.com>
* Guy Zana <guy@neocleus.com>
*
* This file implements direct PCI assignment to a HVM guest
*/
/*
* Interrupt Disable policy:
*
* INTx interrupt:
* Initialize(register_real_device)
* Map INTx(xc_physdev_map_pirq):
* <fail>
* - Set real Interrupt Disable bit to '1'.
* - Set machine_irq and assigned_device->machine_irq to '0'.
* * Don't bind INTx.
*
* Bind INTx(xc_domain_bind_pt_pci_irq):
* <fail>
* - Set real Interrupt Disable bit to '1'.
* - Unmap INTx.
* - Decrement xen_pt_mapped_machine_irq[machine_irq]
* - Set assigned_device->machine_irq to '0'.
*
* Write to Interrupt Disable bit by guest software(xen_pt_cmd_reg_write)
* Write '0'
* - Set real bit to '0' if assigned_device->machine_irq isn't '0'.
*
* Write '1'
* - Set real bit to '1'.
*
* MSI interrupt:
* Initialize MSI register(xen_pt_msi_setup, xen_pt_msi_update)
* Bind MSI(xc_domain_update_msi_irq)
* <fail>
* - Unmap MSI.
* - Set dev->msi->pirq to '-1'.
*
* MSI-X interrupt:
* Initialize MSI-X register(xen_pt_msix_update_one)
* Bind MSI-X(xc_domain_update_msi_irq)
* <fail>
* - Unmap MSI-X.
* - Set entry->pirq to '-1'.
*/
#include <sys/ioctl.h>
#include "pci/pci.h"
#include "xen.h"
#include "xen_backend.h"
#include "xen_pt.h"
#include "range.h"
#include "exec-memory.h"
#define XEN_PT_NR_IRQS (256)
static uint8_t xen_pt_mapped_machine_irq[XEN_PT_NR_IRQS] = {0};
void xen_pt_log(const PCIDevice *d, const char *f, ...)
{
va_list ap;
va_start(ap, f);
if (d) {
fprintf(stderr, "[%02x:%02x.%d] ", pci_bus_num(d->bus),
PCI_SLOT(d->devfn), PCI_FUNC(d->devfn));
}
vfprintf(stderr, f, ap);
va_end(ap);
}
/* Config Space */
static int xen_pt_pci_config_access_check(PCIDevice *d, uint32_t addr, int len)
{
/* check offset range */
if (addr >= 0xFF) {
XEN_PT_ERR(d, "Failed to access register with offset exceeding 0xFF. "
"(addr: 0x%02x, len: %d)\n", addr, len);
return -1;
}
/* check read size */
if ((len != 1) && (len != 2) && (len != 4)) {
XEN_PT_ERR(d, "Failed to access register with invalid access length. "
"(addr: 0x%02x, len: %d)\n", addr, len);
return -1;
}
/* check offset alignment */
if (addr & (len - 1)) {
XEN_PT_ERR(d, "Failed to access register with invalid access size "
"alignment. (addr: 0x%02x, len: %d)\n", addr, len);
return -1;
}
return 0;
}
int xen_pt_bar_offset_to_index(uint32_t offset)
{
int index = 0;
/* check Exp ROM BAR */
if (offset == PCI_ROM_ADDRESS) {
return PCI_ROM_SLOT;
}
/* calculate BAR index */
index = (offset - PCI_BASE_ADDRESS_0) >> 2;
if (index >= PCI_NUM_REGIONS) {
return -1;
}
return index;
}
static uint32_t xen_pt_pci_read_config(PCIDevice *d, uint32_t addr, int len)
{
XenPCIPassthroughState *s = DO_UPCAST(XenPCIPassthroughState, dev, d);
uint32_t val = 0;
XenPTRegGroup *reg_grp_entry = NULL;
XenPTReg *reg_entry = NULL;
int rc = 0;
int emul_len = 0;
uint32_t find_addr = addr;
if (xen_pt_pci_config_access_check(d, addr, len)) {
goto exit;
}
/* find register group entry */
reg_grp_entry = xen_pt_find_reg_grp(s, addr);
if (reg_grp_entry) {
/* check 0-Hardwired register group */
if (reg_grp_entry->reg_grp->grp_type == XEN_PT_GRP_TYPE_HARDWIRED) {
/* no need to emulate, just return 0 */
val = 0;
goto exit;
}
}
/* read I/O device register value */
rc = xen_host_pci_get_block(&s->real_device, addr, (uint8_t *)&val, len);
if (rc < 0) {
XEN_PT_ERR(d, "pci_read_block failed. return value: %d.\n", rc);
memset(&val, 0xff, len);
}
/* just return the I/O device register value for
* passthrough type register group */
if (reg_grp_entry == NULL) {
goto exit;
}
/* adjust the read value to appropriate CFC-CFF window */
val <<= (addr & 3) << 3;
emul_len = len;
/* loop around the guest requested size */
while (emul_len > 0) {
/* find register entry to be emulated */
reg_entry = xen_pt_find_reg(reg_grp_entry, find_addr);
if (reg_entry) {
XenPTRegInfo *reg = reg_entry->reg;
uint32_t real_offset = reg_grp_entry->base_offset + reg->offset;
uint32_t valid_mask = 0xFFFFFFFF >> ((4 - emul_len) << 3);
uint8_t *ptr_val = NULL;
valid_mask <<= (find_addr - real_offset) << 3;
ptr_val = (uint8_t *)&val + (real_offset & 3);
/* do emulation based on register size */
switch (reg->size) {
case 1:
if (reg->u.b.read) {
rc = reg->u.b.read(s, reg_entry, ptr_val, valid_mask);
}
break;
case 2:
if (reg->u.w.read) {
rc = reg->u.w.read(s, reg_entry,
(uint16_t *)ptr_val, valid_mask);
}
break;
case 4:
if (reg->u.dw.read) {
rc = reg->u.dw.read(s, reg_entry,
(uint32_t *)ptr_val, valid_mask);
}
break;
}
if (rc < 0) {
xen_shutdown_fatal_error("Internal error: Invalid read "
"emulation. (%s, rc: %d)\n",
__func__, rc);
return 0;
}
/* calculate next address to find */
emul_len -= reg->size;
if (emul_len > 0) {
find_addr = real_offset + reg->size;
}
} else {
/* nothing to do with passthrough type register,
* continue to find next byte */
emul_len--;
find_addr++;
}
}
/* need to shift back before returning them to pci bus emulator */
val >>= ((addr & 3) << 3);
exit:
XEN_PT_LOG_CONFIG(d, addr, val, len);
return val;
}
static void xen_pt_pci_write_config(PCIDevice *d, uint32_t addr,
uint32_t val, int len)
{
XenPCIPassthroughState *s = DO_UPCAST(XenPCIPassthroughState, dev, d);
int index = 0;
XenPTRegGroup *reg_grp_entry = NULL;
int rc = 0;
uint32_t read_val = 0;
int emul_len = 0;
XenPTReg *reg_entry = NULL;
uint32_t find_addr = addr;
XenPTRegInfo *reg = NULL;
if (xen_pt_pci_config_access_check(d, addr, len)) {
return;
}
XEN_PT_LOG_CONFIG(d, addr, val, len);
/* check unused BAR register */
index = xen_pt_bar_offset_to_index(addr);
if ((index >= 0) && (val > 0 && val < XEN_PT_BAR_ALLF) &&
(s->bases[index].bar_flag == XEN_PT_BAR_FLAG_UNUSED)) {
XEN_PT_WARN(d, "Guest attempt to set address to unused Base Address "
"Register. (addr: 0x%02x, len: %d)\n", addr, len);
}
/* find register group entry */
reg_grp_entry = xen_pt_find_reg_grp(s, addr);
if (reg_grp_entry) {
/* check 0-Hardwired register group */
if (reg_grp_entry->reg_grp->grp_type == XEN_PT_GRP_TYPE_HARDWIRED) {
/* ignore silently */
XEN_PT_WARN(d, "Access to 0-Hardwired register. "
"(addr: 0x%02x, len: %d)\n", addr, len);
return;
}
}
rc = xen_host_pci_get_block(&s->real_device, addr,
(uint8_t *)&read_val, len);
if (rc < 0) {
XEN_PT_ERR(d, "pci_read_block failed. return value: %d.\n", rc);
memset(&read_val, 0xff, len);
}
/* pass directly to the real device for passthrough type register group */
if (reg_grp_entry == NULL) {
goto out;
}
memory_region_transaction_begin();
pci_default_write_config(d, addr, val, len);
/* adjust the read and write value to appropriate CFC-CFF window */
read_val <<= (addr & 3) << 3;
val <<= (addr & 3) << 3;
emul_len = len;
/* loop around the guest requested size */
while (emul_len > 0) {
/* find register entry to be emulated */
reg_entry = xen_pt_find_reg(reg_grp_entry, find_addr);
if (reg_entry) {
reg = reg_entry->reg;
uint32_t real_offset = reg_grp_entry->base_offset + reg->offset;
uint32_t valid_mask = 0xFFFFFFFF >> ((4 - emul_len) << 3);
uint8_t *ptr_val = NULL;
valid_mask <<= (find_addr - real_offset) << 3;
ptr_val = (uint8_t *)&val + (real_offset & 3);
/* do emulation based on register size */
switch (reg->size) {
case 1:
if (reg->u.b.write) {
rc = reg->u.b.write(s, reg_entry, ptr_val,
read_val >> ((real_offset & 3) << 3),
valid_mask);
}
break;
case 2:
if (reg->u.w.write) {
rc = reg->u.w.write(s, reg_entry, (uint16_t *)ptr_val,
(read_val >> ((real_offset & 3) << 3)),
valid_mask);
}
break;
case 4:
if (reg->u.dw.write) {
rc = reg->u.dw.write(s, reg_entry, (uint32_t *)ptr_val,
(read_val >> ((real_offset & 3) << 3)),
valid_mask);
}
break;
}
if (rc < 0) {
xen_shutdown_fatal_error("Internal error: Invalid write"
" emulation. (%s, rc: %d)\n",
__func__, rc);
return;
}
/* calculate next address to find */
emul_len -= reg->size;
if (emul_len > 0) {
find_addr = real_offset + reg->size;
}
} else {
/* nothing to do with passthrough type register,
* continue to find next byte */
emul_len--;
find_addr++;
}
}
/* need to shift back before passing them to xen_host_pci_device */
val >>= (addr & 3) << 3;
memory_region_transaction_commit();
out:
if (!(reg && reg->no_wb)) {
/* unknown regs are passed through */
rc = xen_host_pci_set_block(&s->real_device, addr,
(uint8_t *)&val, len);
if (rc < 0) {
XEN_PT_ERR(d, "pci_write_block failed. return value: %d.\n", rc);
}
}
}
/* register regions */
static uint64_t xen_pt_bar_read(void *o, hwaddr addr,
unsigned size)
{
PCIDevice *d = o;
/* if this function is called, that probably means that there is a
* misconfiguration of the IOMMU. */
XEN_PT_ERR(d, "Should not read BAR through QEMU. @0x"TARGET_FMT_plx"\n",
addr);
return 0;
}
static void xen_pt_bar_write(void *o, hwaddr addr, uint64_t val,
unsigned size)
{
PCIDevice *d = o;
/* Same comment as xen_pt_bar_read function */
XEN_PT_ERR(d, "Should not write BAR through QEMU. @0x"TARGET_FMT_plx"\n",
addr);
}
static const MemoryRegionOps ops = {
.endianness = DEVICE_NATIVE_ENDIAN,
.read = xen_pt_bar_read,
.write = xen_pt_bar_write,
};
static int xen_pt_register_regions(XenPCIPassthroughState *s)
{
int i = 0;
XenHostPCIDevice *d = &s->real_device;
/* Register PIO/MMIO BARs */
for (i = 0; i < PCI_ROM_SLOT; i++) {
XenHostPCIIORegion *r = &d->io_regions[i];
uint8_t type;
if (r->base_addr == 0 || r->size == 0) {
continue;
}
s->bases[i].access.u = r->base_addr;
if (r->type & XEN_HOST_PCI_REGION_TYPE_IO) {
type = PCI_BASE_ADDRESS_SPACE_IO;
} else {
type = PCI_BASE_ADDRESS_SPACE_MEMORY;
if (r->type & XEN_HOST_PCI_REGION_TYPE_PREFETCH) {
type |= PCI_BASE_ADDRESS_MEM_PREFETCH;
}
if (r->type & XEN_HOST_PCI_REGION_TYPE_MEM_64) {
type |= PCI_BASE_ADDRESS_MEM_TYPE_64;
}
}
memory_region_init_io(&s->bar[i], &ops, &s->dev,
"xen-pci-pt-bar", r->size);
pci_register_bar(&s->dev, i, type, &s->bar[i]);
XEN_PT_LOG(&s->dev, "IO region %i registered (size=0x%lx"PRIx64
" base_addr=0x%lx"PRIx64" type: %#x)\n",
i, r->size, r->base_addr, type);
}
/* Register expansion ROM address */
if (d->rom.base_addr && d->rom.size) {
uint32_t bar_data = 0;
/* Re-set BAR reported by OS, otherwise ROM can't be read. */
if (xen_host_pci_get_long(d, PCI_ROM_ADDRESS, &bar_data)) {
return 0;
}
if ((bar_data & PCI_ROM_ADDRESS_MASK) == 0) {
bar_data |= d->rom.base_addr & PCI_ROM_ADDRESS_MASK;
xen_host_pci_set_long(d, PCI_ROM_ADDRESS, bar_data);
}
s->bases[PCI_ROM_SLOT].access.maddr = d->rom.base_addr;
memory_region_init_rom_device(&s->rom, NULL, NULL,
"xen-pci-pt-rom", d->rom.size);
pci_register_bar(&s->dev, PCI_ROM_SLOT, PCI_BASE_ADDRESS_MEM_PREFETCH,
&s->rom);
XEN_PT_LOG(&s->dev, "Expansion ROM registered (size=0x%08"PRIx64
" base_addr=0x%08"PRIx64")\n",
d->rom.size, d->rom.base_addr);
}
return 0;
}
static void xen_pt_unregister_regions(XenPCIPassthroughState *s)
{
XenHostPCIDevice *d = &s->real_device;
int i;
for (i = 0; i < PCI_NUM_REGIONS - 1; i++) {
XenHostPCIIORegion *r = &d->io_regions[i];
if (r->base_addr == 0 || r->size == 0) {
continue;
}
memory_region_destroy(&s->bar[i]);
}
if (d->rom.base_addr && d->rom.size) {
memory_region_destroy(&s->rom);
}
}
/* region mapping */
static int xen_pt_bar_from_region(XenPCIPassthroughState *s, MemoryRegion *mr)
{
int i = 0;
for (i = 0; i < PCI_NUM_REGIONS - 1; i++) {
if (mr == &s->bar[i]) {
return i;
}
}
if (mr == &s->rom) {
return PCI_ROM_SLOT;
}
return -1;
}
/*
* This function checks if an io_region overlaps an io_region from another
* device. The io_region to check is provided with (addr, size and type)
* A callback can be provided and will be called for every region that is
* overlapped.
* The return value indicates if the region is overlappsed */
struct CheckBarArgs {
XenPCIPassthroughState *s;
pcibus_t addr;
pcibus_t size;
uint8_t type;
bool rc;
};
static void xen_pt_check_bar_overlap(PCIBus *bus, PCIDevice *d, void *opaque)
{
struct CheckBarArgs *arg = opaque;
XenPCIPassthroughState *s = arg->s;
uint8_t type = arg->type;
int i;
if (d->devfn == s->dev.devfn) {
return;
}
/* xxx: This ignores bridges. */
for (i = 0; i < PCI_NUM_REGIONS; i++) {
const PCIIORegion *r = &d->io_regions[i];
if (!r->size) {
continue;
}
if ((type & PCI_BASE_ADDRESS_SPACE_IO)
!= (r->type & PCI_BASE_ADDRESS_SPACE_IO)) {
continue;
}
if (ranges_overlap(arg->addr, arg->size, r->addr, r->size)) {
XEN_PT_WARN(&s->dev,
"Overlapped to device [%02x:%02x.%d] Region: %i"
" (addr: %#"FMT_PCIBUS", len: %#"FMT_PCIBUS")\n",
pci_bus_num(bus), PCI_SLOT(d->devfn),
PCI_FUNC(d->devfn), i, r->addr, r->size);
arg->rc = true;
}
}
}
static void xen_pt_region_update(XenPCIPassthroughState *s,
MemoryRegionSection *sec, bool adding)
{
PCIDevice *d = &s->dev;
MemoryRegion *mr = sec->mr;
int bar = -1;
int rc;
int op = adding ? DPCI_ADD_MAPPING : DPCI_REMOVE_MAPPING;
struct CheckBarArgs args = {
.s = s,
.addr = sec->offset_within_address_space,
.size = sec->size,
.rc = false,
};
bar = xen_pt_bar_from_region(s, mr);
if (bar == -1 && (!s->msix || &s->msix->mmio != mr)) {
return;
}
if (s->msix && &s->msix->mmio == mr) {
if (adding) {
s->msix->mmio_base_addr = sec->offset_within_address_space;
rc = xen_pt_msix_update_remap(s, s->msix->bar_index);
}
return;
}
args.type = d->io_regions[bar].type;
pci_for_each_device(d->bus, pci_bus_num(d->bus),
xen_pt_check_bar_overlap, &args);
if (args.rc) {
XEN_PT_WARN(d, "Region: %d (addr: %#"FMT_PCIBUS
", len: %#"FMT_PCIBUS") is overlapped.\n",
bar, sec->offset_within_address_space, sec->size);
}
if (d->io_regions[bar].type & PCI_BASE_ADDRESS_SPACE_IO) {
uint32_t guest_port = sec->offset_within_address_space;
uint32_t machine_port = s->bases[bar].access.pio_base;
uint32_t size = sec->size;
rc = xc_domain_ioport_mapping(xen_xc, xen_domid,
guest_port, machine_port, size,
op);
if (rc) {
XEN_PT_ERR(d, "%s ioport mapping failed! (rc: %i)\n",
adding ? "create new" : "remove old", rc);
}
} else {
pcibus_t guest_addr = sec->offset_within_address_space;
pcibus_t machine_addr = s->bases[bar].access.maddr
+ sec->offset_within_region;
pcibus_t size = sec->size;
rc = xc_domain_memory_mapping(xen_xc, xen_domid,
XEN_PFN(guest_addr + XC_PAGE_SIZE - 1),
XEN_PFN(machine_addr + XC_PAGE_SIZE - 1),
XEN_PFN(size + XC_PAGE_SIZE - 1),
op);
if (rc) {
XEN_PT_ERR(d, "%s mem mapping failed! (rc: %i)\n",
adding ? "create new" : "remove old", rc);
}
}
}
static void xen_pt_region_add(MemoryListener *l, MemoryRegionSection *sec)
{
XenPCIPassthroughState *s = container_of(l, XenPCIPassthroughState,
memory_listener);
xen_pt_region_update(s, sec, true);
}
static void xen_pt_region_del(MemoryListener *l, MemoryRegionSection *sec)
{
XenPCIPassthroughState *s = container_of(l, XenPCIPassthroughState,
memory_listener);
xen_pt_region_update(s, sec, false);
}
static void xen_pt_io_region_add(MemoryListener *l, MemoryRegionSection *sec)
{
XenPCIPassthroughState *s = container_of(l, XenPCIPassthroughState,
io_listener);
xen_pt_region_update(s, sec, true);
}
static void xen_pt_io_region_del(MemoryListener *l, MemoryRegionSection *sec)
{
XenPCIPassthroughState *s = container_of(l, XenPCIPassthroughState,
io_listener);
xen_pt_region_update(s, sec, false);
}
static const MemoryListener xen_pt_memory_listener = {
.region_add = xen_pt_region_add,
.region_del = xen_pt_region_del,
.priority = 10,
};
static const MemoryListener xen_pt_io_listener = {
.region_add = xen_pt_io_region_add,
.region_del = xen_pt_io_region_del,
.priority = 10,
};
/* init */
static int xen_pt_initfn(PCIDevice *d)
{
XenPCIPassthroughState *s = DO_UPCAST(XenPCIPassthroughState, dev, d);
int rc = 0;
uint8_t machine_irq = 0;
int pirq = XEN_PT_UNASSIGNED_PIRQ;
/* register real device */
XEN_PT_LOG(d, "Assigning real physical device %02x:%02x.%d"
" to devfn %#x\n",
s->hostaddr.bus, s->hostaddr.slot, s->hostaddr.function,
s->dev.devfn);
rc = xen_host_pci_device_get(&s->real_device,
s->hostaddr.domain, s->hostaddr.bus,
s->hostaddr.slot, s->hostaddr.function);
if (rc) {
XEN_PT_ERR(d, "Failed to \"open\" the real pci device. rc: %i\n", rc);
return -1;
}
s->is_virtfn = s->real_device.is_virtfn;
if (s->is_virtfn) {
XEN_PT_LOG(d, "%04x:%02x:%02x.%d is a SR-IOV Virtual Function\n",
s->real_device.domain, bus, slot, func);
}
/* Initialize virtualized PCI configuration (Extended 256 Bytes) */
if (xen_host_pci_get_block(&s->real_device, 0, d->config,
PCI_CONFIG_SPACE_SIZE) == -1) {
xen_host_pci_device_put(&s->real_device);
return -1;
}
s->memory_listener = xen_pt_memory_listener;
s->io_listener = xen_pt_io_listener;
/* Handle real device's MMIO/PIO BARs */
xen_pt_register_regions(s);
/* reinitialize each config register to be emulated */
if (xen_pt_config_init(s)) {
XEN_PT_ERR(d, "PCI Config space initialisation failed.\n");
xen_host_pci_device_put(&s->real_device);
return -1;
}
/* Bind interrupt */
if (!s->dev.config[PCI_INTERRUPT_PIN]) {
XEN_PT_LOG(d, "no pin interrupt\n");
goto out;
}
machine_irq = s->real_device.irq;
rc = xc_physdev_map_pirq(xen_xc, xen_domid, machine_irq, &pirq);
if (rc < 0) {
XEN_PT_ERR(d, "Mapping machine irq %u to pirq %i failed, (rc: %d)\n",
machine_irq, pirq, rc);
/* Disable PCI intx assertion (turn on bit10 of devctl) */
xen_host_pci_set_word(&s->real_device,
PCI_COMMAND,
pci_get_word(s->dev.config + PCI_COMMAND)
| PCI_COMMAND_INTX_DISABLE);
machine_irq = 0;
s->machine_irq = 0;
} else {
machine_irq = pirq;
s->machine_irq = pirq;
xen_pt_mapped_machine_irq[machine_irq]++;
}
/* bind machine_irq to device */
if (machine_irq != 0) {
uint8_t e_intx = xen_pt_pci_intx(s);
rc = xc_domain_bind_pt_pci_irq(xen_xc, xen_domid, machine_irq,
pci_bus_num(d->bus),
PCI_SLOT(d->devfn),
e_intx);
if (rc < 0) {
XEN_PT_ERR(d, "Binding of interrupt %i failed! (rc: %d)\n",
e_intx, rc);
/* Disable PCI intx assertion (turn on bit10 of devctl) */
xen_host_pci_set_word(&s->real_device, PCI_COMMAND,
*(uint16_t *)(&s->dev.config[PCI_COMMAND])
| PCI_COMMAND_INTX_DISABLE);
xen_pt_mapped_machine_irq[machine_irq]--;
if (xen_pt_mapped_machine_irq[machine_irq] == 0) {
if (xc_physdev_unmap_pirq(xen_xc, xen_domid, machine_irq)) {
XEN_PT_ERR(d, "Unmapping of machine interrupt %i failed!"
" (rc: %d)\n", machine_irq, rc);
}
}
s->machine_irq = 0;
}
}
out:
memory_listener_register(&s->memory_listener, &address_space_memory);
memory_listener_register(&s->io_listener, &address_space_io);
XEN_PT_LOG(d, "Real physical device %02x:%02x.%d registered successfuly!\n",
bus, slot, func);
return 0;
}
static void xen_pt_unregister_device(PCIDevice *d)
{
XenPCIPassthroughState *s = DO_UPCAST(XenPCIPassthroughState, dev, d);
uint8_t machine_irq = s->machine_irq;
uint8_t intx = xen_pt_pci_intx(s);
int rc;
if (machine_irq) {
rc = xc_domain_unbind_pt_irq(xen_xc, xen_domid, machine_irq,
PT_IRQ_TYPE_PCI,
pci_bus_num(d->bus),
PCI_SLOT(s->dev.devfn),
intx,
0 /* isa_irq */);
if (rc < 0) {
XEN_PT_ERR(d, "unbinding of interrupt INT%c failed."
" (machine irq: %i, rc: %d)"
" But bravely continuing on..\n",
'a' + intx, machine_irq, rc);
}
}
if (s->msi) {
xen_pt_msi_disable(s);
}
if (s->msix) {
xen_pt_msix_disable(s);
}
if (machine_irq) {
xen_pt_mapped_machine_irq[machine_irq]--;
if (xen_pt_mapped_machine_irq[machine_irq] == 0) {
rc = xc_physdev_unmap_pirq(xen_xc, xen_domid, machine_irq);
if (rc < 0) {
XEN_PT_ERR(d, "unmapping of interrupt %i failed. (rc: %d)"
" But bravely continuing on..\n",
machine_irq, rc);
}
}
}
/* delete all emulated config registers */
xen_pt_config_delete(s);
xen_pt_unregister_regions(s);
memory_listener_unregister(&s->memory_listener);
memory_listener_unregister(&s->io_listener);
xen_host_pci_device_put(&s->real_device);
}
static Property xen_pci_passthrough_properties[] = {
DEFINE_PROP_PCI_HOST_DEVADDR("hostaddr", XenPCIPassthroughState, hostaddr),
DEFINE_PROP_END_OF_LIST(),
};
static void xen_pci_passthrough_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->init = xen_pt_initfn;
k->exit = xen_pt_unregister_device;
k->config_read = xen_pt_pci_read_config;
k->config_write = xen_pt_pci_write_config;
dc->desc = "Assign an host PCI device with Xen";
dc->props = xen_pci_passthrough_properties;
};
static TypeInfo xen_pci_passthrough_info = {
.name = "xen-pci-passthrough",
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(XenPCIPassthroughState),
.class_init = xen_pci_passthrough_class_init,
};
static void xen_pci_passthrough_register_types(void)
{
type_register_static(&xen_pci_passthrough_info);
}
type_init(xen_pci_passthrough_register_types)
|