1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
|
/*
* QEMU Firmware configuration device emulation
*
* Copyright (c) 2008 Gleb Natapov
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "sysemu.h"
#include "isa.h"
#include "fw_cfg.h"
/* debug firmware config */
//#define DEBUG_FW_CFG
#ifdef DEBUG_FW_CFG
#define FW_CFG_DPRINTF(fmt, ...) \
do { printf("FW_CFG: " fmt , ## __VA_ARGS__); } while (0)
#else
#define FW_CFG_DPRINTF(fmt, ...)
#endif
#define FW_CFG_SIZE 2
typedef struct _FWCfgEntry {
uint32_t len;
uint8_t *data;
void *callback_opaque;
FWCfgCallback callback;
} FWCfgEntry;
typedef struct _FWCfgState {
FWCfgEntry entries[2][FW_CFG_MAX_ENTRY];
uint16_t cur_entry;
uint32_t cur_offset;
} FWCfgState;
static void fw_cfg_write(FWCfgState *s, uint8_t value)
{
int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
FWCfgEntry *e = &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
FW_CFG_DPRINTF("write %d\n", value);
if (s->cur_entry & FW_CFG_WRITE_CHANNEL && s->cur_offset < e->len) {
e->data[s->cur_offset++] = value;
if (s->cur_offset == e->len) {
e->callback(e->callback_opaque, e->data);
s->cur_offset = 0;
}
}
}
static int fw_cfg_select(FWCfgState *s, uint16_t key)
{
int ret;
s->cur_offset = 0;
if ((key & FW_CFG_ENTRY_MASK) >= FW_CFG_MAX_ENTRY) {
s->cur_entry = FW_CFG_INVALID;
ret = 0;
} else {
s->cur_entry = key;
ret = 1;
}
FW_CFG_DPRINTF("select key %d (%sfound)\n", key, ret ? "" : "not ");
return ret;
}
static uint8_t fw_cfg_read(FWCfgState *s)
{
int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
FWCfgEntry *e = &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
uint8_t ret;
if (s->cur_entry == FW_CFG_INVALID || !e->data || s->cur_offset >= e->len)
ret = 0;
else
ret = e->data[s->cur_offset++];
FW_CFG_DPRINTF("read %d\n", ret);
return ret;
}
static uint32_t fw_cfg_io_readb(void *opaque, uint32_t addr)
{
return fw_cfg_read(opaque);
}
static void fw_cfg_io_writeb(void *opaque, uint32_t addr, uint32_t value)
{
fw_cfg_write(opaque, (uint8_t)value);
}
static void fw_cfg_io_writew(void *opaque, uint32_t addr, uint32_t value)
{
fw_cfg_select(opaque, (uint16_t)value);
}
static uint32_t fw_cfg_mem_readb(void *opaque, target_phys_addr_t addr)
{
return fw_cfg_read(opaque);
}
static void fw_cfg_mem_writeb(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
fw_cfg_write(opaque, (uint8_t)value);
}
static void fw_cfg_mem_writew(void *opaque, target_phys_addr_t addr,
uint32_t value)
{
fw_cfg_select(opaque, (uint16_t)value);
}
static CPUReadMemoryFunc * const fw_cfg_ctl_mem_read[3] = {
NULL,
NULL,
NULL,
};
static CPUWriteMemoryFunc * const fw_cfg_ctl_mem_write[3] = {
NULL,
fw_cfg_mem_writew,
NULL,
};
static CPUReadMemoryFunc * const fw_cfg_data_mem_read[3] = {
fw_cfg_mem_readb,
NULL,
NULL,
};
static CPUWriteMemoryFunc * const fw_cfg_data_mem_write[3] = {
fw_cfg_mem_writeb,
NULL,
NULL,
};
static void fw_cfg_reset(void *opaque)
{
FWCfgState *s = opaque;
fw_cfg_select(s, 0);
}
/* Save restore 32 bit int as uint16_t
This is a Big hack, but it is how the old state did it.
Or we broke compatibility in the state, or we can't use struct tm
*/
static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size)
{
uint32_t *v = pv;
*v = qemu_get_be16(f);
return 0;
}
static void put_unused(QEMUFile *f, void *pv, size_t size)
{
fprintf(stderr, "uint32_as_uint16 is only used for backward compatibilty.\n");
fprintf(stderr, "This functions shouldn't be called.\n");
}
const VMStateInfo vmstate_hack_uint32_as_uint16 = {
.name = "int32_as_uint16",
.get = get_uint32_as_uint16,
.put = put_unused,
};
#define VMSTATE_UINT16_HACK(_f, _s, _t) \
VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
static bool is_version_1(void *opaque, int version_id)
{
return version_id == 1;
}
static const VMStateDescription vmstate_fw_cfg = {
.name = "fw_cfg",
.version_id = 2,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField []) {
VMSTATE_UINT16(cur_entry, FWCfgState),
VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
VMSTATE_END_OF_LIST()
}
};
int fw_cfg_add_bytes(void *opaque, uint16_t key, uint8_t *data, uint32_t len)
{
FWCfgState *s = opaque;
int arch = !!(key & FW_CFG_ARCH_LOCAL);
key &= FW_CFG_ENTRY_MASK;
if (key >= FW_CFG_MAX_ENTRY)
return 0;
s->entries[arch][key].data = data;
s->entries[arch][key].len = len;
return 1;
}
int fw_cfg_add_i16(void *opaque, uint16_t key, uint16_t value)
{
uint16_t *copy;
copy = qemu_malloc(sizeof(value));
*copy = cpu_to_le16(value);
return fw_cfg_add_bytes(opaque, key, (uint8_t *)copy, sizeof(value));
}
int fw_cfg_add_i32(void *opaque, uint16_t key, uint32_t value)
{
uint32_t *copy;
copy = qemu_malloc(sizeof(value));
*copy = cpu_to_le32(value);
return fw_cfg_add_bytes(opaque, key, (uint8_t *)copy, sizeof(value));
}
int fw_cfg_add_i64(void *opaque, uint16_t key, uint64_t value)
{
uint64_t *copy;
copy = qemu_malloc(sizeof(value));
*copy = cpu_to_le64(value);
return fw_cfg_add_bytes(opaque, key, (uint8_t *)copy, sizeof(value));
}
int fw_cfg_add_callback(void *opaque, uint16_t key, FWCfgCallback callback,
void *callback_opaque, uint8_t *data, size_t len)
{
FWCfgState *s = opaque;
int arch = !!(key & FW_CFG_ARCH_LOCAL);
if (!(key & FW_CFG_WRITE_CHANNEL))
return 0;
key &= FW_CFG_ENTRY_MASK;
if (key >= FW_CFG_MAX_ENTRY || len > 65535)
return 0;
s->entries[arch][key].data = data;
s->entries[arch][key].len = len;
s->entries[arch][key].callback_opaque = callback_opaque;
s->entries[arch][key].callback = callback;
return 1;
}
void *fw_cfg_init(uint32_t ctl_port, uint32_t data_port,
target_phys_addr_t ctl_addr, target_phys_addr_t data_addr)
{
FWCfgState *s;
int io_ctl_memory, io_data_memory;
s = qemu_mallocz(sizeof(FWCfgState));
if (ctl_port) {
register_ioport_write(ctl_port, 2, 2, fw_cfg_io_writew, s);
}
if (data_port) {
register_ioport_read(data_port, 1, 1, fw_cfg_io_readb, s);
register_ioport_write(data_port, 1, 1, fw_cfg_io_writeb, s);
}
if (ctl_addr) {
io_ctl_memory = cpu_register_io_memory(fw_cfg_ctl_mem_read,
fw_cfg_ctl_mem_write, s);
cpu_register_physical_memory(ctl_addr, FW_CFG_SIZE, io_ctl_memory);
}
if (data_addr) {
io_data_memory = cpu_register_io_memory(fw_cfg_data_mem_read,
fw_cfg_data_mem_write, s);
cpu_register_physical_memory(data_addr, FW_CFG_SIZE, io_data_memory);
}
fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (uint8_t *)"QEMU", 4);
fw_cfg_add_bytes(s, FW_CFG_UUID, qemu_uuid, 16);
fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)(display_type == DT_NOGRAPHIC));
fw_cfg_add_i16(s, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
fw_cfg_add_i16(s, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
vmstate_register(-1, &vmstate_fw_cfg, s);
qemu_register_reset(fw_cfg_reset, s);
return s;
}
|