summaryrefslogtreecommitdiffstats
path: root/hw/armv7m.c
blob: 059a356e216553c8853e0394c13f3aeac8a90f16 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
/*
 * ARMV7M System emulation.
 *
 * Copyright (c) 2006-2007 CodeSourcery.
 * Written by Paul Brook
 *
 * This code is licenced under the GPL.
 */

#include "sysbus.h"
#include "arm-misc.h"
#include "sysemu.h"

/* Bitbanded IO.  Each word corresponds to a single bit.  */

/* Get the byte address of the real memory for a bitband acess.  */
static inline uint32_t bitband_addr(void * opaque, uint32_t addr)
{
    uint32_t res;

    res = *(uint32_t *)opaque;
    res |= (addr & 0x1ffffff) >> 5;
    return res;

}

static uint32_t bitband_readb(void *opaque, target_phys_addr_t offset)
{
    uint8_t v;
    cpu_physical_memory_read(bitband_addr(opaque, offset), &v, 1);
    return (v & (1 << ((offset >> 2) & 7))) != 0;
}

static void bitband_writeb(void *opaque, target_phys_addr_t offset,
                           uint32_t value)
{
    uint32_t addr;
    uint8_t mask;
    uint8_t v;
    addr = bitband_addr(opaque, offset);
    mask = (1 << ((offset >> 2) & 7));
    cpu_physical_memory_read(addr, &v, 1);
    if (value & 1)
        v |= mask;
    else
        v &= ~mask;
    cpu_physical_memory_write(addr, &v, 1);
}

static uint32_t bitband_readw(void *opaque, target_phys_addr_t offset)
{
    uint32_t addr;
    uint16_t mask;
    uint16_t v;
    addr = bitband_addr(opaque, offset) & ~1;
    mask = (1 << ((offset >> 2) & 15));
    mask = tswap16(mask);
    cpu_physical_memory_read(addr, (uint8_t *)&v, 2);
    return (v & mask) != 0;
}

static void bitband_writew(void *opaque, target_phys_addr_t offset,
                           uint32_t value)
{
    uint32_t addr;
    uint16_t mask;
    uint16_t v;
    addr = bitband_addr(opaque, offset) & ~1;
    mask = (1 << ((offset >> 2) & 15));
    mask = tswap16(mask);
    cpu_physical_memory_read(addr, (uint8_t *)&v, 2);
    if (value & 1)
        v |= mask;
    else
        v &= ~mask;
    cpu_physical_memory_write(addr, (uint8_t *)&v, 2);
}

static uint32_t bitband_readl(void *opaque, target_phys_addr_t offset)
{
    uint32_t addr;
    uint32_t mask;
    uint32_t v;
    addr = bitband_addr(opaque, offset) & ~3;
    mask = (1 << ((offset >> 2) & 31));
    mask = tswap32(mask);
    cpu_physical_memory_read(addr, (uint8_t *)&v, 4);
    return (v & mask) != 0;
}

static void bitband_writel(void *opaque, target_phys_addr_t offset,
                           uint32_t value)
{
    uint32_t addr;
    uint32_t mask;
    uint32_t v;
    addr = bitband_addr(opaque, offset) & ~3;
    mask = (1 << ((offset >> 2) & 31));
    mask = tswap32(mask);
    cpu_physical_memory_read(addr, (uint8_t *)&v, 4);
    if (value & 1)
        v |= mask;
    else
        v &= ~mask;
    cpu_physical_memory_write(addr, (uint8_t *)&v, 4);
}

static CPUReadMemoryFunc * const bitband_readfn[] = {
   bitband_readb,
   bitband_readw,
   bitband_readl
};

static CPUWriteMemoryFunc * const bitband_writefn[] = {
   bitband_writeb,
   bitband_writew,
   bitband_writel
};

typedef struct {
    SysBusDevice busdev;
    uint32_t base;
} BitBandState;

static int bitband_init(SysBusDevice *dev)
{
    BitBandState *s = FROM_SYSBUS(BitBandState, dev);
    int iomemtype;

    iomemtype = cpu_register_io_memory(bitband_readfn, bitband_writefn,
                                       &s->base);
    sysbus_init_mmio(dev, 0x02000000, iomemtype);
    return 0;
}

static void armv7m_bitband_init(void)
{
    DeviceState *dev;

    dev = qdev_create(NULL, "ARM,bitband-memory");
    qdev_prop_set_uint32(dev, "base", 0x20000000);
    qdev_init(dev);
    sysbus_mmio_map(sysbus_from_qdev(dev), 0, 0x22000000);

    dev = qdev_create(NULL, "ARM,bitband-memory");
    qdev_prop_set_uint32(dev, "base", 0x40000000);
    qdev_init(dev);
    sysbus_mmio_map(sysbus_from_qdev(dev), 0, 0x42000000);
}

/* Board init.  */
/* Init CPU and memory for a v7-M based board.
   flash_size and sram_size are in kb.
   Returns the NVIC array.  */

qemu_irq *armv7m_init(int flash_size, int sram_size,
                      const char *kernel_filename, const char *cpu_model)
{
    CPUState *env;
    DeviceState *nvic;
    /* FIXME: make this local state.  */
    static qemu_irq pic[64];
    qemu_irq *cpu_pic;
    uint32_t pc;
    int image_size;
    uint64_t entry;
    uint64_t lowaddr;
    int i;

    flash_size *= 1024;
    sram_size *= 1024;

    if (!cpu_model)
	cpu_model = "cortex-m3";
    env = cpu_init(cpu_model);
    if (!env) {
        fprintf(stderr, "Unable to find CPU definition\n");
        exit(1);
    }

#if 0
    /* > 32Mb SRAM gets complicated because it overlaps the bitband area.
       We don't have proper commandline options, so allocate half of memory
       as SRAM, up to a maximum of 32Mb, and the rest as code.  */
    if (ram_size > (512 + 32) * 1024 * 1024)
        ram_size = (512 + 32) * 1024 * 1024;
    sram_size = (ram_size / 2) & TARGET_PAGE_MASK;
    if (sram_size > 32 * 1024 * 1024)
        sram_size = 32 * 1024 * 1024;
    code_size = ram_size - sram_size;
#endif

    /* Flash programming is done via the SCU, so pretend it is ROM.  */
    cpu_register_physical_memory(0, flash_size,
                                 qemu_ram_alloc(flash_size) | IO_MEM_ROM);
    cpu_register_physical_memory(0x20000000, sram_size,
                                 qemu_ram_alloc(sram_size) | IO_MEM_RAM);
    armv7m_bitband_init();

    nvic = qdev_create(NULL, "armv7m_nvic");
    env->v7m.nvic = nvic;
    qdev_init(nvic);
    cpu_pic = arm_pic_init_cpu(env);
    sysbus_connect_irq(sysbus_from_qdev(nvic), 0, cpu_pic[ARM_PIC_CPU_IRQ]);
    for (i = 0; i < 64; i++) {
        pic[i] = qdev_get_gpio_in(nvic, i);
    }

    image_size = load_elf(kernel_filename, 0, &entry, &lowaddr, NULL);
    if (image_size < 0) {
        image_size = load_image_targphys(kernel_filename, 0, flash_size);
	lowaddr = 0;
    }
    if (image_size < 0) {
        fprintf(stderr, "qemu: could not load kernel '%s'\n",
                kernel_filename);
        exit(1);
    }

    /* If the image was loaded at address zero then assume it is a
       regular ROM image and perform the normal CPU reset sequence.
       Otherwise jump directly to the entry point.  */
    if (lowaddr == 0) {
	env->regs[13] = ldl_phys(0);
	pc = ldl_phys(4);
    } else {
	pc = entry;
    }
    env->thumb = pc & 1;
    env->regs[15] = pc & ~1;

    /* Hack to map an additional page of ram at the top of the address
       space.  This stops qemu complaining about executing code outside RAM
       when returning from an exception.  */
    cpu_register_physical_memory(0xfffff000, 0x1000,
                                 qemu_ram_alloc(0x1000) | IO_MEM_RAM);

    return pic;
}

static SysBusDeviceInfo bitband_info = {
    .init = bitband_init,
    .qdev.name  = "ARM,bitband-memory",
    .qdev.size  = sizeof(BitBandState),
    .qdev.props = (Property[]) {
        DEFINE_PROP_UINT32("base", BitBandState, base, 0),
        DEFINE_PROP_END_OF_LIST(),
    }
};

static void armv7m_register_devices(void)
{
    sysbus_register_withprop(&bitband_info);
}

device_init(armv7m_register_devices)
OpenPOWER on IntegriCloud