1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
|
/*
* ARM mach-virt emulation
*
* Copyright (c) 2013 Linaro Limited
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*
* Emulate a virtual board which works by passing Linux all the information
* it needs about what devices are present via the device tree.
* There are some restrictions about what we can do here:
* + we can only present devices whose Linux drivers will work based
* purely on the device tree with no platform data at all
* + we want to present a very stripped-down minimalist platform,
* both because this reduces the security attack surface from the guest
* and also because it reduces our exposure to being broken when
* the kernel updates its device tree bindings and requires further
* information in a device binding that we aren't providing.
* This is essentially the same approach kvmtool uses.
*/
#include "hw/sysbus.h"
#include "hw/arm/arm.h"
#include "hw/arm/primecell.h"
#include "hw/devices.h"
#include "net/net.h"
#include "sysemu/device_tree.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "exec/address-spaces.h"
#include "qemu/bitops.h"
#include "qemu/error-report.h"
#define NUM_VIRTIO_TRANSPORTS 32
/* Number of external interrupt lines to configure the GIC with */
#define NUM_IRQS 128
#define GIC_FDT_IRQ_TYPE_SPI 0
#define GIC_FDT_IRQ_TYPE_PPI 1
#define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1
#define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2
#define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4
#define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8
#define GIC_FDT_IRQ_PPI_CPU_START 8
#define GIC_FDT_IRQ_PPI_CPU_WIDTH 8
enum {
VIRT_FLASH,
VIRT_MEM,
VIRT_CPUPERIPHS,
VIRT_GIC_DIST,
VIRT_GIC_CPU,
VIRT_UART,
VIRT_MMIO,
VIRT_RTC,
};
typedef struct MemMapEntry {
hwaddr base;
hwaddr size;
} MemMapEntry;
typedef struct VirtBoardInfo {
struct arm_boot_info bootinfo;
const char *cpu_model;
const MemMapEntry *memmap;
const int *irqmap;
int smp_cpus;
void *fdt;
int fdt_size;
uint32_t clock_phandle;
} VirtBoardInfo;
/* Addresses and sizes of our components.
* 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
* 128MB..256MB is used for miscellaneous device I/O.
* 256MB..1GB is reserved for possible future PCI support (ie where the
* PCI memory window will go if we add a PCI host controller).
* 1GB and up is RAM (which may happily spill over into the
* high memory region beyond 4GB).
* This represents a compromise between how much RAM can be given to
* a 32 bit VM and leaving space for expansion and in particular for PCI.
* Note that devices should generally be placed at multiples of 0x10000,
* to accommodate guests using 64K pages.
*/
static const MemMapEntry a15memmap[] = {
/* Space up to 0x8000000 is reserved for a boot ROM */
[VIRT_FLASH] = { 0, 0x08000000 },
[VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
/* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
[VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
[VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
[VIRT_UART] = { 0x09000000, 0x00001000 },
[VIRT_RTC] = { 0x09010000, 0x00001000 },
[VIRT_MMIO] = { 0x0a000000, 0x00000200 },
/* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
/* 0x10000000 .. 0x40000000 reserved for PCI */
[VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
};
static const int a15irqmap[] = {
[VIRT_UART] = 1,
[VIRT_RTC] = 2,
[VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
};
static VirtBoardInfo machines[] = {
{
.cpu_model = "cortex-a15",
.memmap = a15memmap,
.irqmap = a15irqmap,
},
{
.cpu_model = "cortex-a57",
.memmap = a15memmap,
.irqmap = a15irqmap,
},
{
.cpu_model = "host",
.memmap = a15memmap,
.irqmap = a15irqmap,
},
};
static VirtBoardInfo *find_machine_info(const char *cpu)
{
int i;
for (i = 0; i < ARRAY_SIZE(machines); i++) {
if (strcmp(cpu, machines[i].cpu_model) == 0) {
return &machines[i];
}
}
return NULL;
}
static void create_fdt(VirtBoardInfo *vbi)
{
void *fdt = create_device_tree(&vbi->fdt_size);
if (!fdt) {
error_report("create_device_tree() failed");
exit(1);
}
vbi->fdt = fdt;
/* Header */
qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
/*
* /chosen and /memory nodes must exist for load_dtb
* to fill in necessary properties later
*/
qemu_fdt_add_subnode(fdt, "/chosen");
qemu_fdt_add_subnode(fdt, "/memory");
qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
/* Clock node, for the benefit of the UART. The kernel device tree
* binding documentation claims the PL011 node clock properties are
* optional but in practice if you omit them the kernel refuses to
* probe for the device.
*/
vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
qemu_fdt_add_subnode(fdt, "/apb-pclk");
qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
"clk24mhz");
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
}
static void fdt_add_psci_node(const VirtBoardInfo *vbi)
{
void *fdt = vbi->fdt;
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
/* No PSCI for TCG yet */
if (kvm_enabled()) {
uint32_t cpu_suspend_fn;
uint32_t cpu_off_fn;
uint32_t cpu_on_fn;
uint32_t migrate_fn;
qemu_fdt_add_subnode(fdt, "/psci");
if (armcpu->psci_version == 2) {
const char comp[] = "arm,psci-0.2\0arm,psci";
qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
} else {
cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
}
} else {
qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
}
qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
}
}
static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
{
/* Note that on A15 h/w these interrupts are level-triggered,
* but for the GIC implementation provided by both QEMU and KVM
* they are edge-triggered.
*/
uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
qemu_fdt_add_subnode(vbi->fdt, "/timer");
qemu_fdt_setprop_string(vbi->fdt, "/timer",
"compatible", "arm,armv7-timer");
qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
GIC_FDT_IRQ_TYPE_PPI, 13, irqflags,
GIC_FDT_IRQ_TYPE_PPI, 14, irqflags,
GIC_FDT_IRQ_TYPE_PPI, 11, irqflags,
GIC_FDT_IRQ_TYPE_PPI, 10, irqflags);
}
static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
{
int cpu;
qemu_fdt_add_subnode(vbi->fdt, "/cpus");
qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
qemu_fdt_add_subnode(vbi->fdt, nodename);
qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
armcpu->dtb_compatible);
if (vbi->smp_cpus > 1) {
qemu_fdt_setprop_string(vbi->fdt, nodename,
"enable-method", "psci");
}
qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu);
g_free(nodename);
}
}
static void fdt_add_gic_node(const VirtBoardInfo *vbi)
{
uint32_t gic_phandle;
gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle);
qemu_fdt_add_subnode(vbi->fdt, "/intc");
/* 'cortex-a15-gic' means 'GIC v2' */
qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
"arm,cortex-a15-gic");
qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
2, vbi->memmap[VIRT_GIC_DIST].base,
2, vbi->memmap[VIRT_GIC_DIST].size,
2, vbi->memmap[VIRT_GIC_CPU].base,
2, vbi->memmap[VIRT_GIC_CPU].size);
qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle);
}
static void create_gic(const VirtBoardInfo *vbi, qemu_irq *pic)
{
/* We create a standalone GIC v2 */
DeviceState *gicdev;
SysBusDevice *gicbusdev;
const char *gictype = "arm_gic";
int i;
if (kvm_irqchip_in_kernel()) {
gictype = "kvm-arm-gic";
}
gicdev = qdev_create(NULL, gictype);
qdev_prop_set_uint32(gicdev, "revision", 2);
qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
/* Note that the num-irq property counts both internal and external
* interrupts; there are always 32 of the former (mandated by GIC spec).
*/
qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
qdev_init_nofail(gicdev);
gicbusdev = SYS_BUS_DEVICE(gicdev);
sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
/* Wire the outputs from each CPU's generic timer to the
* appropriate GIC PPI inputs, and the GIC's IRQ output to
* the CPU's IRQ input.
*/
for (i = 0; i < smp_cpus; i++) {
DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
int ppibase = NUM_IRQS + i * 32;
/* physical timer; we wire it up to the non-secure timer's ID,
* since a real A15 always has TrustZone but QEMU doesn't.
*/
qdev_connect_gpio_out(cpudev, 0,
qdev_get_gpio_in(gicdev, ppibase + 30));
/* virtual timer */
qdev_connect_gpio_out(cpudev, 1,
qdev_get_gpio_in(gicdev, ppibase + 27));
sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
}
for (i = 0; i < NUM_IRQS; i++) {
pic[i] = qdev_get_gpio_in(gicdev, i);
}
fdt_add_gic_node(vbi);
}
static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
{
char *nodename;
hwaddr base = vbi->memmap[VIRT_UART].base;
hwaddr size = vbi->memmap[VIRT_UART].size;
int irq = vbi->irqmap[VIRT_UART];
const char compat[] = "arm,pl011\0arm,primecell";
const char clocknames[] = "uartclk\0apb_pclk";
sysbus_create_simple("pl011", base, pic[irq]);
nodename = g_strdup_printf("/pl011@%" PRIx64, base);
qemu_fdt_add_subnode(vbi->fdt, nodename);
/* Note that we can't use setprop_string because of the embedded NUL */
qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
compat, sizeof(compat));
qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
2, base, 2, size);
qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
GIC_FDT_IRQ_TYPE_SPI, irq,
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
vbi->clock_phandle, vbi->clock_phandle);
qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
clocknames, sizeof(clocknames));
qemu_fdt_setprop_string(vbi->fdt, "/chosen", "linux,stdout-path", nodename);
g_free(nodename);
}
static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
{
char *nodename;
hwaddr base = vbi->memmap[VIRT_RTC].base;
hwaddr size = vbi->memmap[VIRT_RTC].size;
int irq = vbi->irqmap[VIRT_RTC];
const char compat[] = "arm,pl031\0arm,primecell";
sysbus_create_simple("pl031", base, pic[irq]);
nodename = g_strdup_printf("/pl031@%" PRIx64, base);
qemu_fdt_add_subnode(vbi->fdt, nodename);
qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
2, base, 2, size);
qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
GIC_FDT_IRQ_TYPE_SPI, irq,
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
g_free(nodename);
}
static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
{
int i;
hwaddr size = vbi->memmap[VIRT_MMIO].size;
/* Note that we have to create the transports in forwards order
* so that command line devices are inserted lowest address first,
* and then add dtb nodes in reverse order so that they appear in
* the finished device tree lowest address first.
*/
for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
int irq = vbi->irqmap[VIRT_MMIO] + i;
hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
sysbus_create_simple("virtio-mmio", base, pic[irq]);
}
for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
char *nodename;
int irq = vbi->irqmap[VIRT_MMIO] + i;
hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
qemu_fdt_add_subnode(vbi->fdt, nodename);
qemu_fdt_setprop_string(vbi->fdt, nodename,
"compatible", "virtio,mmio");
qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
2, base, 2, size);
qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
GIC_FDT_IRQ_TYPE_SPI, irq,
GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
g_free(nodename);
}
}
static void create_one_flash(const char *name, hwaddr flashbase,
hwaddr flashsize)
{
/* Create and map a single flash device. We use the same
* parameters as the flash devices on the Versatile Express board.
*/
DriveInfo *dinfo = drive_get_next(IF_PFLASH);
DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
const uint64_t sectorlength = 256 * 1024;
if (dinfo && qdev_prop_set_drive(dev, "drive", dinfo->bdrv)) {
abort();
}
qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
qdev_prop_set_uint64(dev, "sector-length", sectorlength);
qdev_prop_set_uint8(dev, "width", 4);
qdev_prop_set_uint8(dev, "device-width", 2);
qdev_prop_set_uint8(dev, "big-endian", 0);
qdev_prop_set_uint16(dev, "id0", 0x89);
qdev_prop_set_uint16(dev, "id1", 0x18);
qdev_prop_set_uint16(dev, "id2", 0x00);
qdev_prop_set_uint16(dev, "id3", 0x00);
qdev_prop_set_string(dev, "name", name);
qdev_init_nofail(dev);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase);
}
static void create_flash(const VirtBoardInfo *vbi)
{
/* Create two flash devices to fill the VIRT_FLASH space in the memmap.
* Any file passed via -bios goes in the first of these.
*/
hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
char *nodename;
if (bios_name) {
const char *fn;
if (drive_get(IF_PFLASH, 0, 0)) {
error_report("The contents of the first flash device may be "
"specified with -bios or with -drive if=pflash... "
"but you cannot use both options at once");
exit(1);
}
fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (!fn || load_image_targphys(fn, flashbase, flashsize) < 0) {
error_report("Could not load ROM image '%s'", bios_name);
exit(1);
}
}
create_one_flash("virt.flash0", flashbase, flashsize);
create_one_flash("virt.flash1", flashbase + flashsize, flashsize);
nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
qemu_fdt_add_subnode(vbi->fdt, nodename);
qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
2, flashbase, 2, flashsize,
2, flashbase + flashsize, 2, flashsize);
qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
g_free(nodename);
}
static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
{
const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
*fdt_size = board->fdt_size;
return board->fdt;
}
static void machvirt_init(MachineState *machine)
{
qemu_irq pic[NUM_IRQS];
MemoryRegion *sysmem = get_system_memory();
int n;
MemoryRegion *ram = g_new(MemoryRegion, 1);
const char *cpu_model = machine->cpu_model;
VirtBoardInfo *vbi;
if (!cpu_model) {
cpu_model = "cortex-a15";
}
vbi = find_machine_info(cpu_model);
if (!vbi) {
error_report("mach-virt: CPU %s not supported", cpu_model);
exit(1);
}
vbi->smp_cpus = smp_cpus;
/*
* Only supported method of starting secondary CPUs is PSCI and
* PSCI is not yet supported with TCG, so limit smp_cpus to 1
* if we're not using KVM.
*/
if (!kvm_enabled() && smp_cpus > 1) {
error_report("mach-virt: must enable KVM to use multiple CPUs");
exit(1);
}
if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
error_report("mach-virt: cannot model more than 30GB RAM");
exit(1);
}
create_fdt(vbi);
fdt_add_timer_nodes(vbi);
for (n = 0; n < smp_cpus; n++) {
ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
Object *cpuobj;
if (!oc) {
fprintf(stderr, "Unable to find CPU definition\n");
exit(1);
}
cpuobj = object_new(object_class_get_name(oc));
/* Secondary CPUs start in PSCI powered-down state */
if (n > 0) {
object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
}
if (object_property_find(cpuobj, "reset-cbar", NULL)) {
object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
"reset-cbar", &error_abort);
}
object_property_set_bool(cpuobj, true, "realized", NULL);
}
fdt_add_cpu_nodes(vbi);
fdt_add_psci_node(vbi);
memory_region_init_ram(ram, NULL, "mach-virt.ram", machine->ram_size,
&error_abort);
vmstate_register_ram_global(ram);
memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
create_flash(vbi);
create_gic(vbi, pic);
create_uart(vbi, pic);
create_rtc(vbi, pic);
/* Create mmio transports, so the user can create virtio backends
* (which will be automatically plugged in to the transports). If
* no backend is created the transport will just sit harmlessly idle.
*/
create_virtio_devices(vbi, pic);
vbi->bootinfo.ram_size = machine->ram_size;
vbi->bootinfo.kernel_filename = machine->kernel_filename;
vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
vbi->bootinfo.initrd_filename = machine->initrd_filename;
vbi->bootinfo.nb_cpus = smp_cpus;
vbi->bootinfo.board_id = -1;
vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
vbi->bootinfo.get_dtb = machvirt_dtb;
arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
}
static QEMUMachine machvirt_a15_machine = {
.name = "virt",
.desc = "ARM Virtual Machine",
.init = machvirt_init,
.max_cpus = 8,
};
static void machvirt_machine_init(void)
{
qemu_register_machine(&machvirt_a15_machine);
}
machine_init(machvirt_machine_init);
|