/* * Software MMU support for LLVM */ #if DATA_SIZE == 1 # define llvm_le_ld_name glue(glue(llvm_ret_ld, USUFFIX), MMUSUFFIX) # define llvm_be_ld_name llvm_le_ld_name # define llvm_le_lds_name glue(glue(llvm_ret_ld, SSUFFIX), MMUSUFFIX) # define llvm_be_lds_name llvm_le_lds_name # define llvm_le_st_name glue(glue(llvm_ret_st, SUFFIX), MMUSUFFIX) # define llvm_be_st_name llvm_le_st_name #else # define llvm_le_ld_name glue(glue(llvm_le_ld, USUFFIX), MMUSUFFIX) # define llvm_be_ld_name glue(glue(llvm_be_ld, USUFFIX), MMUSUFFIX) # define llvm_le_lds_name glue(glue(llvm_le_ld, SSUFFIX), MMUSUFFIX) # define llvm_be_lds_name glue(glue(llvm_be_ld, SSUFFIX), MMUSUFFIX) # define llvm_le_st_name glue(glue(llvm_le_st, SUFFIX), MMUSUFFIX) # define llvm_be_st_name glue(glue(llvm_be_st, SUFFIX), MMUSUFFIX) #endif #ifdef TARGET_WORDS_BIGENDIAN # define llvm_te_ld_name llvm_be_ld_name # define llvm_te_st_name llvm_be_st_name #else # define llvm_te_ld_name llvm_le_ld_name # define llvm_te_st_name llvm_le_st_name #endif #ifndef SOFTMMU_CODE_ACCESS WORD_TYPE llvm_le_ld_name(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi) { unsigned mmu_idx = get_mmuidx((uint16_t)oi); int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); tlbaddr_t tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; uintptr_t haddr; DATA_TYPE res; uintptr_t retaddr; env->restore_val = oi >> 16; /* Adjust the given return address. */ retaddr = GETPC(); /* If the TLB entry is for a different page, reload and try again. */ if (page_val(addr, env) != (tlb_addr & TLB_NONIO_MASK)) { if ((addr & (DATA_SIZE - 1)) != 0 && (get_memop(oi) & MO_AMASK) == MO_ALIGN) { cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, mmu_idx, retaddr); } if (!VICTIM_TLB_HIT(ADDR_READ)) { tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, mmu_idx, retaddr); } tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; } /* Handle an IO access. */ if (unlikely(tlb_addr & TLB_IO_MASK)) { CPUIOTLBEntry *iotlbentry; if ((addr & (DATA_SIZE - 1)) != 0) { goto do_unaligned_access; } iotlbentry = &env->iotlb[mmu_idx][index]; /* ??? Note that the io helpers always read data in the target byte ordering. We should push the LE/BE request down into io. */ res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr); res = TGT_LE(res); return res; } /* Handle slow unaligned access (it spans two pages or IO). */ if (DATA_SIZE > 1 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 >= TARGET_PAGE_SIZE)) { target_ulong addr1, addr2; DATA_TYPE res1, res2; unsigned shift; do_unaligned_access: if ((get_memop(oi) & MO_AMASK) == MO_ALIGN) { cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, mmu_idx, retaddr); } addr1 = addr & ~(DATA_SIZE - 1); addr2 = addr1 + DATA_SIZE; /* Note the adjustment at the beginning of the function. Undo that for the recursion. */ res1 = helper_le_ld_name(env, addr1, oi, retaddr + GETPC_ADJ); res2 = helper_le_ld_name(env, addr2, oi, retaddr + GETPC_ADJ); shift = (addr & (DATA_SIZE - 1)) * 8; /* Little-endian combine. */ res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift)); return res; } /* Handle aligned access or unaligned access in the same page. */ if ((addr & (DATA_SIZE - 1)) != 0 && (get_memop(oi) & MO_AMASK) == MO_ALIGN) { cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, mmu_idx, retaddr); } haddr = addr + env->tlb_table[mmu_idx][index].addend; #if DATA_SIZE == 1 res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr); #else res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr); #endif return res; } #if DATA_SIZE > 1 WORD_TYPE llvm_be_ld_name(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi) { unsigned mmu_idx = get_mmuidx((uint16_t)oi); int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); tlbaddr_t tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; uintptr_t haddr; DATA_TYPE res; uintptr_t retaddr; env->restore_val = oi >> 16; /* Adjust the given return address. */ retaddr = GETPC(); /* If the TLB entry is for a different page, reload and try again. */ if (page_val(addr, env) != (tlb_addr & TLB_NONIO_MASK)) { if ((addr & (DATA_SIZE - 1)) != 0 && (get_memop(oi) & MO_AMASK) == MO_ALIGN) { cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, mmu_idx, retaddr); } if (!VICTIM_TLB_HIT(ADDR_READ)) { tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, mmu_idx, retaddr); } tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ; } /* Handle an IO access. */ if (unlikely(tlb_addr & TLB_IO_MASK)) { CPUIOTLBEntry *iotlbentry; if ((addr & (DATA_SIZE - 1)) != 0) { goto do_unaligned_access; } iotlbentry = &env->iotlb[mmu_idx][index]; /* ??? Note that the io helpers always read data in the target byte ordering. We should push the LE/BE request down into io. */ res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr); res = TGT_BE(res); return res; } /* Handle slow unaligned access (it spans two pages or IO). */ if (DATA_SIZE > 1 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 >= TARGET_PAGE_SIZE)) { target_ulong addr1, addr2; DATA_TYPE res1, res2; unsigned shift; do_unaligned_access: if ((get_memop(oi) & MO_AMASK) == MO_ALIGN) { cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, mmu_idx, retaddr); } addr1 = addr & ~(DATA_SIZE - 1); addr2 = addr1 + DATA_SIZE; /* Note the adjustment at the beginning of the function. Undo that for the recursion. */ res1 = helper_be_ld_name(env, addr1, oi, retaddr + GETPC_ADJ); res2 = helper_be_ld_name(env, addr2, oi, retaddr + GETPC_ADJ); shift = (addr & (DATA_SIZE - 1)) * 8; /* Big-endian combine. */ res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift)); return res; } /* Handle aligned access or unaligned access in the same page. */ if ((addr & (DATA_SIZE - 1)) != 0 && (get_memop(oi) & MO_AMASK) == MO_ALIGN) { cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE, mmu_idx, retaddr); } haddr = addr + env->tlb_table[mmu_idx][index].addend; res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr); return res; } #endif /* DATA_SIZE > 1 */ /* Provide signed versions of the load routines as well. We can of course avoid this for 64-bit data, or for 32-bit data on 32-bit host. */ #if DATA_SIZE * 8 < TCG_TARGET_REG_BITS WORD_TYPE llvm_le_lds_name(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi) { env->restore_val = oi >> 16; return (SDATA_TYPE)helper_le_ld_name(env, addr, (uint16_t)oi, GETRA()); } # if DATA_SIZE > 1 WORD_TYPE llvm_be_lds_name(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi) { env->restore_val = oi >> 16; return (SDATA_TYPE)helper_be_ld_name(env, addr, (uint16_t)oi, GETRA()); } # endif #endif void llvm_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val, TCGMemOpIdx oi) { unsigned mmu_idx = get_mmuidx((uint16_t)oi); int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); tlbaddr_t tlb_addr = env->tlb_table[mmu_idx][index].addr_write; uintptr_t haddr; uintptr_t retaddr; env->restore_val = oi >> 16; /* Adjust the given return address. */ retaddr = GETPC(); /* If the TLB entry is for a different page, reload and try again. */ if (page_val(addr, env) != (tlb_addr & TLB_NONIO_MASK)) { if ((addr & (DATA_SIZE - 1)) != 0 && (get_memop(oi) & MO_AMASK) == MO_ALIGN) { cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); } if (!VICTIM_TLB_HIT(addr_write)) { tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); } tlb_addr = env->tlb_table[mmu_idx][index].addr_write; } /* Handle an IO access. */ if (unlikely(tlb_addr & TLB_IO_MASK)) { CPUIOTLBEntry *iotlbentry; if ((addr & (DATA_SIZE - 1)) != 0) { goto do_unaligned_access; } iotlbentry = &env->iotlb[mmu_idx][index]; /* ??? Note that the io helpers always read data in the target byte ordering. We should push the LE/BE request down into io. */ val = TGT_LE(val); glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr); return; } /* Handle slow unaligned access (it spans two pages or IO). */ if (DATA_SIZE > 1 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 >= TARGET_PAGE_SIZE)) { int i; do_unaligned_access: if ((get_memop(oi) & MO_AMASK) == MO_ALIGN) { cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); } /* XXX: not efficient, but simple */ /* Note: relies on the fact that tlb_fill() does not remove the * previous page from the TLB cache. */ for (i = DATA_SIZE - 1; i >= 0; i--) { /* Little-endian extract. */ uint8_t val8 = val >> (i * 8); /* Note the adjustment at the beginning of the function. Undo that for the recursion. */ glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8, oi, retaddr + GETPC_ADJ); } return; } /* Handle aligned access or unaligned access in the same page. */ if ((addr & (DATA_SIZE - 1)) != 0 && (get_memop(oi) & MO_AMASK) == MO_ALIGN) { cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); } haddr = addr + env->tlb_table[mmu_idx][index].addend; #if DATA_SIZE == 1 glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val); #else glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val); #endif } #if DATA_SIZE > 1 void llvm_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val, TCGMemOpIdx oi) { unsigned mmu_idx = get_mmuidx((uint16_t)oi); int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); tlbaddr_t tlb_addr = env->tlb_table[mmu_idx][index].addr_write; uintptr_t haddr; uintptr_t retaddr; env->restore_val = oi >> 16; /* Adjust the given return address. */ retaddr = GETPC(); /* If the TLB entry is for a different page, reload and try again. */ if (page_val(addr, env) != (tlb_addr & TLB_NONIO_MASK)) { if ((addr & (DATA_SIZE - 1)) != 0 && (get_memop(oi) & MO_AMASK) == MO_ALIGN) { cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); } if (!VICTIM_TLB_HIT(addr_write)) { tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); } tlb_addr = env->tlb_table[mmu_idx][index].addr_write; } /* Handle an IO access. */ if (unlikely(tlb_addr & TLB_IO_MASK)) { CPUIOTLBEntry *iotlbentry; if ((addr & (DATA_SIZE - 1)) != 0) { goto do_unaligned_access; } iotlbentry = &env->iotlb[mmu_idx][index]; /* ??? Note that the io helpers always read data in the target byte ordering. We should push the LE/BE request down into io. */ val = TGT_BE(val); glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr); return; } /* Handle slow unaligned access (it spans two pages or IO). */ if (DATA_SIZE > 1 && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1 >= TARGET_PAGE_SIZE)) { int i; do_unaligned_access: if ((get_memop(oi) & MO_AMASK) == MO_ALIGN) { cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); } /* XXX: not efficient, but simple */ /* Note: relies on the fact that tlb_fill() does not remove the * previous page from the TLB cache. */ for (i = DATA_SIZE - 1; i >= 0; i--) { /* Big-endian extract. */ uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8)); /* Note the adjustment at the beginning of the function. Undo that for the recursion. */ glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8, oi, retaddr + GETPC_ADJ); } return; } /* Handle aligned access or unaligned access in the same page. */ if ((addr & (DATA_SIZE - 1)) != 0 && (get_memop(oi) & MO_AMASK) == MO_ALIGN) { cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr); } haddr = addr + env->tlb_table[mmu_idx][index].addend; glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val); } #endif /* DATA_SIZE > 1 */ #endif /* !defined(SOFTMMU_CODE_ACCESS) */ #undef llvm_le_ld_name #undef llvm_be_ld_name #undef llvm_le_lds_name #undef llvm_be_lds_name #undef llvm_le_st_name #undef llvm_be_st_name #undef llvm_te_ld_name #undef llvm_te_st_name