/* * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the Open Source and Linux Lab nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "sysemu/sysemu.h" #include "hw/boards.h" #include "hw/loader.h" #include "elf.h" #include "exec/memory.h" #include "exec/address-spaces.h" #include "hw/char/serial.h" #include "net/net.h" #include "hw/sysbus.h" #include "hw/block/flash.h" #include "sysemu/block-backend.h" #include "sysemu/char.h" #include "sysemu/device_tree.h" #include "qemu/error-report.h" #include "bootparam.h" typedef struct LxBoardDesc { hwaddr flash_base; size_t flash_size; size_t flash_boot_base; size_t flash_sector_size; size_t sram_size; } LxBoardDesc; typedef struct Lx60FpgaState { MemoryRegion iomem; uint32_t leds; uint32_t switches; } Lx60FpgaState; static void lx60_fpga_reset(void *opaque) { Lx60FpgaState *s = opaque; s->leds = 0; s->switches = 0; } static uint64_t lx60_fpga_read(void *opaque, hwaddr addr, unsigned size) { Lx60FpgaState *s = opaque; switch (addr) { case 0x0: /*build date code*/ return 0x09272011; case 0x4: /*processor clock frequency, Hz*/ return 10000000; case 0x8: /*LEDs (off = 0, on = 1)*/ return s->leds; case 0xc: /*DIP switches (off = 0, on = 1)*/ return s->switches; } return 0; } static void lx60_fpga_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { Lx60FpgaState *s = opaque; switch (addr) { case 0x8: /*LEDs (off = 0, on = 1)*/ s->leds = val; break; case 0x10: /*board reset*/ if (val == 0xdead) { qemu_system_reset_request(); } break; } } static const MemoryRegionOps lx60_fpga_ops = { .read = lx60_fpga_read, .write = lx60_fpga_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static Lx60FpgaState *lx60_fpga_init(MemoryRegion *address_space, hwaddr base) { Lx60FpgaState *s = g_malloc(sizeof(Lx60FpgaState)); memory_region_init_io(&s->iomem, NULL, &lx60_fpga_ops, s, "lx60.fpga", 0x10000); memory_region_add_subregion(address_space, base, &s->iomem); lx60_fpga_reset(s); qemu_register_reset(lx60_fpga_reset, s); return s; } static void lx60_net_init(MemoryRegion *address_space, hwaddr base, hwaddr descriptors, hwaddr buffers, qemu_irq irq, NICInfo *nd) { DeviceState *dev; SysBusDevice *s; MemoryRegion *ram; dev = qdev_create(NULL, "open_eth"); qdev_set_nic_properties(dev, nd); qdev_init_nofail(dev); s = SYS_BUS_DEVICE(dev); sysbus_connect_irq(s, 0, irq); memory_region_add_subregion(address_space, base, sysbus_mmio_get_region(s, 0)); memory_region_add_subregion(address_space, descriptors, sysbus_mmio_get_region(s, 1)); ram = g_malloc(sizeof(*ram)); memory_region_init_ram(ram, OBJECT(s), "open_eth.ram", 16384, &error_fatal); vmstate_register_ram_global(ram); memory_region_add_subregion(address_space, buffers, ram); } static pflash_t *xtfpga_flash_init(MemoryRegion *address_space, const LxBoardDesc *board, DriveInfo *dinfo, int be) { SysBusDevice *s; DeviceState *dev = qdev_create(NULL, "cfi.pflash01"); qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), &error_abort); qdev_prop_set_uint32(dev, "num-blocks", board->flash_size / board->flash_sector_size); qdev_prop_set_uint64(dev, "sector-length", board->flash_sector_size); qdev_prop_set_uint8(dev, "width", 4); qdev_prop_set_bit(dev, "big-endian", be); qdev_prop_set_string(dev, "name", "lx60.io.flash"); qdev_init_nofail(dev); s = SYS_BUS_DEVICE(dev); memory_region_add_subregion(address_space, board->flash_base, sysbus_mmio_get_region(s, 0)); return OBJECT_CHECK(pflash_t, (dev), "cfi.pflash01"); } static uint64_t translate_phys_addr(void *opaque, uint64_t addr) { XtensaCPU *cpu = opaque; return cpu_get_phys_page_debug(CPU(cpu), addr); } static void lx60_reset(void *opaque) { XtensaCPU *cpu = opaque; cpu_reset(CPU(cpu)); } static uint64_t lx60_io_read(void *opaque, hwaddr addr, unsigned size) { return 0; } static void lx60_io_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { } static const MemoryRegionOps lx60_io_ops = { .read = lx60_io_read, .write = lx60_io_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static void lx_init(const LxBoardDesc *board, MachineState *machine) { #ifdef TARGET_WORDS_BIGENDIAN int be = 1; #else int be = 0; #endif MemoryRegion *system_memory = get_system_memory(); XtensaCPU *cpu = NULL; CPUXtensaState *env = NULL; MemoryRegion *ram, *rom, *system_io; DriveInfo *dinfo; pflash_t *flash = NULL; QemuOpts *machine_opts = qemu_get_machine_opts(); const char *cpu_model = machine->cpu_model; const char *kernel_filename = qemu_opt_get(machine_opts, "kernel"); const char *kernel_cmdline = qemu_opt_get(machine_opts, "append"); const char *dtb_filename = qemu_opt_get(machine_opts, "dtb"); const char *initrd_filename = qemu_opt_get(machine_opts, "initrd"); int n; if (!cpu_model) { cpu_model = XTENSA_DEFAULT_CPU_MODEL; } for (n = 0; n < smp_cpus; n++) { cpu = cpu_xtensa_init(cpu_model); if (cpu == NULL) { error_report("unable to find CPU definition '%s'", cpu_model); exit(EXIT_FAILURE); } env = &cpu->env; env->sregs[PRID] = n; qemu_register_reset(lx60_reset, cpu); /* Need MMU initialized prior to ELF loading, * so that ELF gets loaded into virtual addresses */ cpu_reset(CPU(cpu)); } ram = g_malloc(sizeof(*ram)); memory_region_init_ram(ram, NULL, "lx60.dram", machine->ram_size, &error_fatal); vmstate_register_ram_global(ram); memory_region_add_subregion(system_memory, 0, ram); system_io = g_malloc(sizeof(*system_io)); memory_region_init_io(system_io, NULL, &lx60_io_ops, NULL, "lx60.io", 224 * 1024 * 1024); memory_region_add_subregion(system_memory, 0xf0000000, system_io); lx60_fpga_init(system_io, 0x0d020000); if (nd_table[0].used) { lx60_net_init(system_io, 0x0d030000, 0x0d030400, 0x0d800000, xtensa_get_extint(env, 1), nd_table); } if (!serial_hds[0]) { serial_hds[0] = qemu_chr_new("serial0", "null", NULL); } serial_mm_init(system_io, 0x0d050020, 2, xtensa_get_extint(env, 0), 115200, serial_hds[0], DEVICE_NATIVE_ENDIAN); dinfo = drive_get(IF_PFLASH, 0, 0); if (dinfo) { flash = xtfpga_flash_init(system_io, board, dinfo, be); } /* Use presence of kernel file name as 'boot from SRAM' switch. */ if (kernel_filename) { uint32_t entry_point = env->pc; size_t bp_size = 3 * get_tag_size(0); /* first/last and memory tags */ uint32_t tagptr = 0xfe000000 + board->sram_size; uint32_t cur_tagptr; BpMemInfo memory_location = { .type = tswap32(MEMORY_TYPE_CONVENTIONAL), .start = tswap32(0), .end = tswap32(machine->ram_size), }; uint32_t lowmem_end = machine->ram_size < 0x08000000 ? machine->ram_size : 0x08000000; uint32_t cur_lowmem = QEMU_ALIGN_UP(lowmem_end / 2, 4096); rom = g_malloc(sizeof(*rom)); memory_region_init_ram(rom, NULL, "lx60.sram", board->sram_size, &error_fatal); vmstate_register_ram_global(rom); memory_region_add_subregion(system_memory, 0xfe000000, rom); if (kernel_cmdline) { bp_size += get_tag_size(strlen(kernel_cmdline) + 1); } if (dtb_filename) { bp_size += get_tag_size(sizeof(uint32_t)); } if (initrd_filename) { bp_size += get_tag_size(sizeof(BpMemInfo)); } /* Put kernel bootparameters to the end of that SRAM */ tagptr = (tagptr - bp_size) & ~0xff; cur_tagptr = put_tag(tagptr, BP_TAG_FIRST, 0, NULL); cur_tagptr = put_tag(cur_tagptr, BP_TAG_MEMORY, sizeof(memory_location), &memory_location); if (kernel_cmdline) { cur_tagptr = put_tag(cur_tagptr, BP_TAG_COMMAND_LINE, strlen(kernel_cmdline) + 1, kernel_cmdline); } if (dtb_filename) { int fdt_size; void *fdt = load_device_tree(dtb_filename, &fdt_size); uint32_t dtb_addr = tswap32(cur_lowmem); if (!fdt) { error_report("could not load DTB '%s'", dtb_filename); exit(EXIT_FAILURE); } cpu_physical_memory_write(cur_lowmem, fdt, fdt_size); cur_tagptr = put_tag(cur_tagptr, BP_TAG_FDT, sizeof(dtb_addr), &dtb_addr); cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + fdt_size, 4096); } if (initrd_filename) { BpMemInfo initrd_location = { 0 }; int initrd_size = load_ramdisk(initrd_filename, cur_lowmem, lowmem_end - cur_lowmem); if (initrd_size < 0) { initrd_size = load_image_targphys(initrd_filename, cur_lowmem, lowmem_end - cur_lowmem); } if (initrd_size < 0) { error_report("could not load initrd '%s'", initrd_filename); exit(EXIT_FAILURE); } initrd_location.start = tswap32(cur_lowmem); initrd_location.end = tswap32(cur_lowmem + initrd_size); cur_tagptr = put_tag(cur_tagptr, BP_TAG_INITRD, sizeof(initrd_location), &initrd_location); cur_lowmem = QEMU_ALIGN_UP(cur_lowmem + initrd_size, 4096); } cur_tagptr = put_tag(cur_tagptr, BP_TAG_LAST, 0, NULL); env->regs[2] = tagptr; uint64_t elf_entry; uint64_t elf_lowaddr; int success = load_elf(kernel_filename, translate_phys_addr, cpu, &elf_entry, &elf_lowaddr, NULL, be, EM_XTENSA, 0); if (success > 0) { entry_point = elf_entry; } else { hwaddr ep; int is_linux; success = load_uimage(kernel_filename, &ep, NULL, &is_linux, translate_phys_addr, cpu); if (success > 0 && is_linux) { entry_point = ep; } else { error_report("could not load kernel '%s'", kernel_filename); exit(EXIT_FAILURE); } } if (entry_point != env->pc) { static const uint8_t jx_a0[] = { #ifdef TARGET_WORDS_BIGENDIAN 0x0a, 0, 0, #else 0xa0, 0, 0, #endif }; env->regs[0] = entry_point; cpu_physical_memory_write(env->pc, jx_a0, sizeof(jx_a0)); } } else { if (flash) { MemoryRegion *flash_mr = pflash_cfi01_get_memory(flash); MemoryRegion *flash_io = g_malloc(sizeof(*flash_io)); memory_region_init_alias(flash_io, NULL, "lx60.flash", flash_mr, board->flash_boot_base, board->flash_size - board->flash_boot_base < 0x02000000 ? board->flash_size - board->flash_boot_base : 0x02000000); memory_region_add_subregion(system_memory, 0xfe000000, flash_io); } } } static void xtensa_lx60_init(MachineState *machine) { static const LxBoardDesc lx60_board = { .flash_base = 0x08000000, .flash_size = 0x00400000, .flash_sector_size = 0x10000, .sram_size = 0x20000, }; lx_init(&lx60_board, machine); } static void xtensa_lx200_init(MachineState *machine) { static const LxBoardDesc lx200_board = { .flash_base = 0x08000000, .flash_size = 0x01000000, .flash_sector_size = 0x20000, .sram_size = 0x2000000, }; lx_init(&lx200_board, machine); } static void xtensa_ml605_init(MachineState *machine) { static const LxBoardDesc ml605_board = { .flash_base = 0x08000000, .flash_size = 0x01000000, .flash_sector_size = 0x20000, .sram_size = 0x2000000, }; lx_init(&ml605_board, machine); } static void xtensa_kc705_init(MachineState *machine) { static const LxBoardDesc kc705_board = { .flash_base = 0x00000000, .flash_size = 0x08000000, .flash_boot_base = 0x06000000, .flash_sector_size = 0x20000, .sram_size = 0x2000000, }; lx_init(&kc705_board, machine); } static void xtensa_lx60_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->desc = "lx60 EVB (" XTENSA_DEFAULT_CPU_MODEL ")"; mc->init = xtensa_lx60_init; mc->max_cpus = 4; } static const TypeInfo xtensa_lx60_type = { .name = MACHINE_TYPE_NAME("lx60"), .parent = TYPE_MACHINE, .class_init = xtensa_lx60_class_init, }; static void xtensa_lx200_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->desc = "lx200 EVB (" XTENSA_DEFAULT_CPU_MODEL ")"; mc->init = xtensa_lx200_init; mc->max_cpus = 4; } static const TypeInfo xtensa_lx200_type = { .name = MACHINE_TYPE_NAME("lx200"), .parent = TYPE_MACHINE, .class_init = xtensa_lx200_class_init, }; static void xtensa_ml605_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->desc = "ml605 EVB (" XTENSA_DEFAULT_CPU_MODEL ")"; mc->init = xtensa_ml605_init; mc->max_cpus = 4; } static const TypeInfo xtensa_ml605_type = { .name = MACHINE_TYPE_NAME("ml605"), .parent = TYPE_MACHINE, .class_init = xtensa_ml605_class_init, }; static void xtensa_kc705_class_init(ObjectClass *oc, void *data) { MachineClass *mc = MACHINE_CLASS(oc); mc->desc = "kc705 EVB (" XTENSA_DEFAULT_CPU_MODEL ")"; mc->init = xtensa_kc705_init; mc->max_cpus = 4; } static const TypeInfo xtensa_kc705_type = { .name = MACHINE_TYPE_NAME("kc705"), .parent = TYPE_MACHINE, .class_init = xtensa_kc705_class_init, }; static void xtensa_lx_machines_init(void) { type_register_static(&xtensa_lx60_type); type_register_static(&xtensa_lx200_type); type_register_static(&xtensa_ml605_type); type_register_static(&xtensa_kc705_type); } machine_init(xtensa_lx_machines_init)