#ifndef QEMU_TIMER_H #define QEMU_TIMER_H #include "qemu/typedefs.h" #include "qemu-common.h" #include "qemu/notify.h" #include "qemu/host-utils.h" #define NANOSECONDS_PER_SECOND 1000000000LL /* timers */ #define SCALE_MS 1000000 #define SCALE_US 1000 #define SCALE_NS 1 /** * QEMUClockType: * * The following clock types are available: * * @QEMU_CLOCK_REALTIME: Real time clock * * The real time clock should be used only for stuff which does not * change the virtual machine state, as it is run even if the virtual * machine is stopped. The real time clock has a frequency of 1000 * Hz. * * @QEMU_CLOCK_VIRTUAL: virtual clock * * The virtual clock is only run during the emulation. It is stopped * when the virtual machine is stopped. Virtual timers use a high * precision clock, usually cpu cycles (use ticks_per_sec). * * @QEMU_CLOCK_HOST: host clock * * The host clock should be use for device models that emulate accurate * real time sources. It will continue to run when the virtual machine * is suspended, and it will reflect system time changes the host may * undergo (e.g. due to NTP). The host clock has the same precision as * the virtual clock. * * @QEMU_CLOCK_VIRTUAL_RT: realtime clock used for icount warp * * Outside icount mode, this clock is the same as @QEMU_CLOCK_VIRTUAL. * In icount mode, this clock counts nanoseconds while the virtual * machine is running. It is used to increase @QEMU_CLOCK_VIRTUAL * while the CPUs are sleeping and thus not executing instructions. */ typedef enum { QEMU_CLOCK_REALTIME = 0, QEMU_CLOCK_VIRTUAL = 1, QEMU_CLOCK_HOST = 2, QEMU_CLOCK_VIRTUAL_RT = 3, QEMU_CLOCK_MAX } QEMUClockType; typedef struct QEMUTimerList QEMUTimerList; struct QEMUTimerListGroup { QEMUTimerList *tl[QEMU_CLOCK_MAX]; }; typedef void QEMUTimerCB(void *opaque); typedef void QEMUTimerListNotifyCB(void *opaque); struct QEMUTimer { int64_t expire_time; /* in nanoseconds */ QEMUTimerList *timer_list; QEMUTimerCB *cb; void *opaque; QEMUTimer *next; int scale; }; extern QEMUTimerListGroup main_loop_tlg; /* * QEMUClockType */ /* * qemu_clock_get_ns; * @type: the clock type * * Get the nanosecond value of a clock with * type @type * * Returns: the clock value in nanoseconds */ int64_t qemu_clock_get_ns(QEMUClockType type); /** * qemu_clock_get_ms; * @type: the clock type * * Get the millisecond value of a clock with * type @type * * Returns: the clock value in milliseconds */ static inline int64_t qemu_clock_get_ms(QEMUClockType type) { return qemu_clock_get_ns(type) / SCALE_MS; } /** * qemu_clock_get_us; * @type: the clock type * * Get the microsecond value of a clock with * type @type * * Returns: the clock value in microseconds */ static inline int64_t qemu_clock_get_us(QEMUClockType type) { return qemu_clock_get_ns(type) / SCALE_US; } /** * qemu_clock_has_timers: * @type: the clock type * * Determines whether a clock's default timer list * has timers attached * * Note that this function should not be used when other threads also access * the timer list. The return value may be outdated by the time it is acted * upon. * * Returns: true if the clock's default timer list * has timers attached */ bool qemu_clock_has_timers(QEMUClockType type); /** * qemu_clock_expired: * @type: the clock type * * Determines whether a clock's default timer list * has an expired clock. * * Returns: true if the clock's default timer list has * an expired timer */ bool qemu_clock_expired(QEMUClockType type); /** * qemu_clock_use_for_deadline: * @type: the clock type * * Determine whether a clock should be used for deadline * calculations. Some clocks, for instance vm_clock with * use_icount set, do not count in nanoseconds. Such clocks * are not used for deadline calculations, and are presumed * to interrupt any poll using qemu_notify/aio_notify * etc. * * Returns: true if the clock runs in nanoseconds and * should be used for a deadline. */ bool qemu_clock_use_for_deadline(QEMUClockType type); /** * qemu_clock_deadline_ns_all: * @type: the clock type * * Calculate the deadline across all timer lists associated * with a clock (as opposed to just the default one) * in nanoseconds, or -1 if no timer is set to expire. * * Returns: time until expiry in nanoseconds or -1 */ int64_t qemu_clock_deadline_ns_all(QEMUClockType type); /** * qemu_clock_get_main_loop_timerlist: * @type: the clock type * * Return the default timer list assocatiated with a clock. * * Returns: the default timer list */ QEMUTimerList *qemu_clock_get_main_loop_timerlist(QEMUClockType type); /** * qemu_clock_nofify: * @type: the clock type * * Call the notifier callback connected with the default timer * list linked to the clock, or qemu_notify() if none. */ void qemu_clock_notify(QEMUClockType type); /** * qemu_clock_enable: * @type: the clock type * @enabled: true to enable, false to disable * * Enable or disable a clock * Disabling the clock will wait for related timerlists to stop * executing qemu_run_timers. Thus, this functions should not * be used from the callback of a timer that is based on @clock. * Doing so would cause a deadlock. * * Caller should hold BQL. */ void qemu_clock_enable(QEMUClockType type, bool enabled); /** * qemu_clock_warp: * @type: the clock type * * Warp a clock to a new value */ void qemu_clock_warp(QEMUClockType type); /** * qemu_clock_register_reset_notifier: * @type: the clock type * @notifier: the notifier function * * Register a notifier function to call when the clock * concerned is reset. */ void qemu_clock_register_reset_notifier(QEMUClockType type, Notifier *notifier); /** * qemu_clock_unregister_reset_notifier: * @type: the clock type * @notifier: the notifier function * * Unregister a notifier function to call when the clock * concerned is reset. */ void qemu_clock_unregister_reset_notifier(QEMUClockType type, Notifier *notifier); /** * qemu_clock_run_timers: * @type: clock on which to operate * * Run all the timers associated with the default timer list * of a clock. * * Returns: true if any timer ran. */ bool qemu_clock_run_timers(QEMUClockType type); /** * qemu_clock_run_all_timers: * * Run all the timers associated with the default timer list * of every clock. * * Returns: true if any timer ran. */ bool qemu_clock_run_all_timers(void); /* * QEMUTimerList */ /** * timerlist_new: * @type: the clock type to associate with the timerlist * @cb: the callback to call on notification * @opaque: the opaque pointer to pass to the callback * * Create a new timerlist associated with the clock of * type @type. * * Returns: a pointer to the QEMUTimerList created */ QEMUTimerList *timerlist_new(QEMUClockType type, QEMUTimerListNotifyCB *cb, void *opaque); /** * timerlist_free: * @timer_list: the timer list to free * * Frees a timer_list. It must have no active timers. */ void timerlist_free(QEMUTimerList *timer_list); /** * timerlist_has_timers: * @timer_list: the timer list to operate on * * Determine whether a timer list has active timers * * Note that this function should not be used when other threads also access * the timer list. The return value may be outdated by the time it is acted * upon. * * Returns: true if the timer list has timers. */ bool timerlist_has_timers(QEMUTimerList *timer_list); /** * timerlist_expired: * @timer_list: the timer list to operate on * * Determine whether a timer list has any timers which * are expired. * * Returns: true if the timer list has timers which * have expired. */ bool timerlist_expired(QEMUTimerList *timer_list); /** * timerlist_deadline_ns: * @timer_list: the timer list to operate on * * Determine the deadline for a timer_list, i.e. * the number of nanoseconds until the first timer * expires. Return -1 if there are no timers. * * Returns: the number of nanoseconds until the earliest * timer expires -1 if none */ int64_t timerlist_deadline_ns(QEMUTimerList *timer_list); /** * timerlist_get_clock: * @timer_list: the timer list to operate on * * Determine the clock type associated with a timer list. * * Returns: the clock type associated with the * timer list. */ QEMUClockType timerlist_get_clock(QEMUTimerList *timer_list); /** * timerlist_run_timers: * @timer_list: the timer list to use * * Call all expired timers associated with the timer list. * * Returns: true if any timer expired */ bool timerlist_run_timers(QEMUTimerList *timer_list); /** * timerlist_notify: * @timer_list: the timer list to use * * call the notifier callback associated with the timer list. */ void timerlist_notify(QEMUTimerList *timer_list); /* * QEMUTimerListGroup */ /** * timerlistgroup_init: * @tlg: the timer list group * @cb: the callback to call when a notify is required * @opaque: the opaque pointer to be passed to the callback. * * Initialise a timer list group. This must already be * allocated in memory and zeroed. The notifier callback is * called whenever a clock in the timer list group is * reenabled or whenever a timer associated with any timer * list is modified. If @cb is specified as null, qemu_notify() * is used instead. */ void timerlistgroup_init(QEMUTimerListGroup *tlg, QEMUTimerListNotifyCB *cb, void *opaque); /** * timerlistgroup_deinit: * @tlg: the timer list group * * Deinitialise a timer list group. This must already be * initialised. Note the memory is not freed. */ void timerlistgroup_deinit(QEMUTimerListGroup *tlg); /** * timerlistgroup_run_timers: * @tlg: the timer list group * * Run the timers associated with a timer list group. * This will run timers on multiple clocks. * * Returns: true if any timer callback ran */ bool timerlistgroup_run_timers(QEMUTimerListGroup *tlg); /** * timerlistgroup_deadline_ns: * @tlg: the timer list group * * Determine the deadline of the soonest timer to * expire associated with any timer list linked to * the timer list group. Only clocks suitable for * deadline calculation are included. * * Returns: the deadline in nanoseconds or -1 if no * timers are to expire. */ int64_t timerlistgroup_deadline_ns(QEMUTimerListGroup *tlg); /* * QEMUTimer */ /** * timer_init_tl: * @ts: the timer to be initialised * @timer_list: the timer list to attach the timer to * @scale: the scale value for the timer * @cb: the callback to be called when the timer expires * @opaque: the opaque pointer to be passed to the callback * * Initialise a new timer and associate it with @timer_list. * The caller is responsible for allocating the memory. * * You need not call an explicit deinit call. Simply make * sure it is not on a list with timer_del. */ void timer_init_tl(QEMUTimer *ts, QEMUTimerList *timer_list, int scale, QEMUTimerCB *cb, void *opaque); /** * timer_init: * @type: the clock to associate with the timer * @scale: the scale value for the timer * @cb: the callback to call when the timer expires * @opaque: the opaque pointer to pass to the callback * * Initialize a timer with the given scale on the default timer list * associated with the clock. * * You need not call an explicit deinit call. Simply make * sure it is not on a list with timer_del. */ static inline void timer_init(QEMUTimer *ts, QEMUClockType type, int scale, QEMUTimerCB *cb, void *opaque) { timer_init_tl(ts, main_loop_tlg.tl[type], scale, cb, opaque); } /** * timer_init_ns: * @type: the clock to associate with the timer * @cb: the callback to call when the timer expires * @opaque: the opaque pointer to pass to the callback * * Initialize a timer with nanosecond scale on the default timer list * associated with the clock. * * You need not call an explicit deinit call. Simply make * sure it is not on a list with timer_del. */ static inline void timer_init_ns(QEMUTimer *ts, QEMUClockType type, QEMUTimerCB *cb, void *opaque) { timer_init(ts, type, SCALE_NS, cb, opaque); } /** * timer_init_us: * @type: the clock to associate with the timer * @cb: the callback to call when the timer expires * @opaque: the opaque pointer to pass to the callback * * Initialize a timer with microsecond scale on the default timer list * associated with the clock. * * You need not call an explicit deinit call. Simply make * sure it is not on a list with timer_del. */ static inline void timer_init_us(QEMUTimer *ts, QEMUClockType type, QEMUTimerCB *cb, void *opaque) { timer_init(ts, type, SCALE_US, cb, opaque); } /** * timer_init_ms: * @type: the clock to associate with the timer * @cb: the callback to call when the timer expires * @opaque: the opaque pointer to pass to the callback * * Initialize a timer with millisecond scale on the default timer list * associated with the clock. * * You need not call an explicit deinit call. Simply make * sure it is not on a list with timer_del. */ static inline void timer_init_ms(QEMUTimer *ts, QEMUClockType type, QEMUTimerCB *cb, void *opaque) { timer_init(ts, type, SCALE_MS, cb, opaque); } /** * timer_new_tl: * @timer_list: the timer list to attach the timer to * @scale: the scale value for the timer * @cb: the callback to be called when the timer expires * @opaque: the opaque pointer to be passed to the callback * * Creeate a new timer and associate it with @timer_list. * The memory is allocated by the function. * * This is not the preferred interface unless you know you * are going to call timer_free. Use timer_init instead. * * Returns: a pointer to the timer */ static inline QEMUTimer *timer_new_tl(QEMUTimerList *timer_list, int scale, QEMUTimerCB *cb, void *opaque) { QEMUTimer *ts = g_malloc0(sizeof(QEMUTimer)); timer_init_tl(ts, timer_list, scale, cb, opaque); return ts; } /** * timer_new: * @type: the clock type to use * @scale: the scale value for the timer * @cb: the callback to be called when the timer expires * @opaque: the opaque pointer to be passed to the callback * * Creeate a new timer and associate it with the default * timer list for the clock type @type. * * Returns: a pointer to the timer */ static inline QEMUTimer *timer_new(QEMUClockType type, int scale, QEMUTimerCB *cb, void *opaque) { return timer_new_tl(main_loop_tlg.tl[type], scale, cb, opaque); } /** * timer_new_ns: * @clock: the clock to associate with the timer * @callback: the callback to call when the timer expires * @opaque: the opaque pointer to pass to the callback * * Create a new timer with nanosecond scale on the default timer list * associated with the clock. * * Returns: a pointer to the newly created timer */ static inline QEMUTimer *timer_new_ns(QEMUClockType type, QEMUTimerCB *cb, void *opaque) { return timer_new(type, SCALE_NS, cb, opaque); } /** * timer_new_us: * @clock: the clock to associate with the timer * @callback: the callback to call when the timer expires * @opaque: the opaque pointer to pass to the callback * * Create a new timer with microsecond scale on the default timer list * associated with the clock. * * Returns: a pointer to the newly created timer */ static inline QEMUTimer *timer_new_us(QEMUClockType type, QEMUTimerCB *cb, void *opaque) { return timer_new(type, SCALE_US, cb, opaque); } /** * timer_new_ms: * @clock: the clock to associate with the timer * @callback: the callback to call when the timer expires * @opaque: the opaque pointer to pass to the callback * * Create a new timer with millisecond scale on the default timer list * associated with the clock. * * Returns: a pointer to the newly created timer */ static inline QEMUTimer *timer_new_ms(QEMUClockType type, QEMUTimerCB *cb, void *opaque) { return timer_new(type, SCALE_MS, cb, opaque); } /** * timer_deinit: * @ts: the timer to be de-initialised * * Deassociate the timer from any timerlist. You should * call timer_del before. After this call, any further * timer_del call cannot cause dangling pointer accesses * even if the previously used timerlist is freed. */ void timer_deinit(QEMUTimer *ts); /** * timer_free: * @ts: the timer * * Free a timer (it must not be on the active list) */ void timer_free(QEMUTimer *ts); /** * timer_del: * @ts: the timer * * Delete a timer from the active list. * * This function is thread-safe but the timer and its timer list must not be * freed while this function is running. */ void timer_del(QEMUTimer *ts); /** * timer_mod_ns: * @ts: the timer * @expire_time: the expiry time in nanoseconds * * Modify a timer to expire at @expire_time * * This function is thread-safe but the timer and its timer list must not be * freed while this function is running. */ void timer_mod_ns(QEMUTimer *ts, int64_t expire_time); /** * timer_mod_anticipate_ns: * @ts: the timer * @expire_time: the expiry time in nanoseconds * * Modify a timer to expire at @expire_time or the current time, * whichever comes earlier. * * This function is thread-safe but the timer and its timer list must not be * freed while this function is running. */ void timer_mod_anticipate_ns(QEMUTimer *ts, int64_t expire_time); /** * timer_mod: * @ts: the timer * @expire_time: the expire time in the units associated with the timer * * Modify a timer to expiry at @expire_time, taking into * account the scale associated with the timer. * * This function is thread-safe but the timer and its timer list must not be * freed while this function is running. */ void timer_mod(QEMUTimer *ts, int64_t expire_timer); /** * timer_mod_anticipate: * @ts: the timer * @expire_time: the expiry time in nanoseconds * * Modify a timer to expire at @expire_time or the current time, whichever * comes earlier, taking into account the scale associated with the timer. * * This function is thread-safe but the timer and its timer list must not be * freed while this function is running. */ void timer_mod_anticipate(QEMUTimer *ts, int64_t expire_time); /** * timer_pending: * @ts: the timer * * Determines whether a timer is pending (i.e. is on the * active list of timers, whether or not it has not yet expired). * * Returns: true if the timer is pending */ bool timer_pending(QEMUTimer *ts); /** * timer_expired: * @ts: the timer * * Determines whether a timer has expired. * * Returns: true if the timer has expired */ bool timer_expired(QEMUTimer *timer_head, int64_t current_time); /** * timer_expire_time_ns: * @ts: the timer * * Determine the expiry time of a timer * * Returns: the expiry time in nanoseconds */ uint64_t timer_expire_time_ns(QEMUTimer *ts); /** * timer_get: * @f: the file * @ts: the timer * * Read a timer @ts from a file @f */ void timer_get(QEMUFile *f, QEMUTimer *ts); /** * timer_put: * @f: the file * @ts: the timer */ void timer_put(QEMUFile *f, QEMUTimer *ts); /* * General utility functions */ /** * qemu_timeout_ns_to_ms: * @ns: nanosecond timeout value * * Convert a nanosecond timeout value (or -1) to * a millisecond value (or -1), always rounding up. * * Returns: millisecond timeout value */ int qemu_timeout_ns_to_ms(int64_t ns); /** * qemu_poll_ns: * @fds: Array of file descriptors * @nfds: number of file descriptors * @timeout: timeout in nanoseconds * * Perform a poll like g_poll but with a timeout in nanoseconds. * See g_poll documentation for further details. * * Returns: number of fds ready */ int qemu_poll_ns(GPollFD *fds, guint nfds, int64_t timeout); /** * qemu_soonest_timeout: * @timeout1: first timeout in nanoseconds (or -1 for infinite) * @timeout2: second timeout in nanoseconds (or -1 for infinite) * * Calculates the soonest of two timeout values. -1 means infinite, which * is later than any other value. * * Returns: soonest timeout value in nanoseconds (or -1 for infinite) */ static inline int64_t qemu_soonest_timeout(int64_t timeout1, int64_t timeout2) { /* we can abuse the fact that -1 (which means infinite) is a maximal * value when cast to unsigned. As this is disgusting, it's kept in * one inline function. */ return ((uint64_t) timeout1 < (uint64_t) timeout2) ? timeout1 : timeout2; } /** * initclocks: * * Initialise the clock & timer infrastructure */ void init_clocks(void); int64_t cpu_get_ticks(void); /* Caller must hold BQL */ void cpu_enable_ticks(void); /* Caller must hold BQL */ void cpu_disable_ticks(void); static inline int64_t get_ticks_per_sec(void) { return 1000000000LL; } static inline int64_t get_max_clock_jump(void) { /* This should be small enough to prevent excessive interrupts from being * generated by the RTC on clock jumps, but large enough to avoid frequent * unnecessary resets in idle VMs. */ return 60 * get_ticks_per_sec(); } /* * Low level clock functions */ /* real time host monotonic timer */ static inline int64_t get_clock_realtime(void) { struct timeval tv; gettimeofday(&tv, NULL); return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000); } /* Warning: don't insert tracepoints into these functions, they are also used by simpletrace backend and tracepoints would cause an infinite recursion! */ #ifdef _WIN32 extern int64_t clock_freq; static inline int64_t get_clock(void) { LARGE_INTEGER ti; QueryPerformanceCounter(&ti); return muldiv64(ti.QuadPart, get_ticks_per_sec(), clock_freq); } #else extern int use_rt_clock; static inline int64_t get_clock(void) { #ifdef CLOCK_MONOTONIC if (use_rt_clock) { struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); return ts.tv_sec * 1000000000LL + ts.tv_nsec; } else #endif { /* XXX: using gettimeofday leads to problems if the date changes, so it should be avoided. */ return get_clock_realtime(); } } #endif /* icount */ int64_t cpu_get_icount_raw(void); int64_t cpu_get_icount(void); int64_t cpu_get_clock(void); int64_t cpu_icount_to_ns(int64_t icount); /*******************************************/ /* host CPU ticks (if available) */ #if defined(_ARCH_PPC) static inline int64_t cpu_get_host_ticks(void) { int64_t retval; #ifdef _ARCH_PPC64 /* This reads timebase in one 64bit go and includes Cell workaround from: http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html */ __asm__ __volatile__ ("mftb %0\n\t" "cmpwi %0,0\n\t" "beq- $-8" : "=r" (retval)); #else /* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */ unsigned long junk; __asm__ __volatile__ ("mfspr %1,269\n\t" /* mftbu */ "mfspr %L0,268\n\t" /* mftb */ "mfspr %0,269\n\t" /* mftbu */ "cmpw %0,%1\n\t" "bne $-16" : "=r" (retval), "=r" (junk)); #endif return retval; } #elif defined(__i386__) static inline int64_t cpu_get_host_ticks(void) { int64_t val; asm volatile ("rdtsc" : "=A" (val)); return val; } #elif defined(__x86_64__) static inline int64_t cpu_get_host_ticks(void) { uint32_t low,high; int64_t val; asm volatile("rdtsc" : "=a" (low), "=d" (high)); val = high; val <<= 32; val |= low; return val; } #elif defined(__hppa__) static inline int64_t cpu_get_host_ticks(void) { int val; asm volatile ("mfctl %%cr16, %0" : "=r"(val)); return val; } #elif defined(__ia64) static inline int64_t cpu_get_host_ticks(void) { int64_t val; asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory"); return val; } #elif defined(__s390__) static inline int64_t cpu_get_host_ticks(void) { int64_t val; asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc"); return val; } #elif defined(__sparc__) static inline int64_t cpu_get_host_ticks (void) { #if defined(_LP64) uint64_t rval; asm volatile("rd %%tick,%0" : "=r"(rval)); return rval; #else /* We need an %o or %g register for this. For recent enough gcc there is an "h" constraint for that. Don't bother with that. */ union { uint64_t i64; struct { uint32_t high; uint32_t low; } i32; } rval; asm volatile("rd %%tick,%%g1; srlx %%g1,32,%0; mov %%g1,%1" : "=r"(rval.i32.high), "=r"(rval.i32.low) : : "g1"); return rval.i64; #endif } #elif defined(__mips__) && \ ((defined(__mips_isa_rev) && __mips_isa_rev >= 2) || defined(__linux__)) /* * binutils wants to use rdhwr only on mips32r2 * but as linux kernel emulate it, it's fine * to use it. * */ #define MIPS_RDHWR(rd, value) { \ __asm__ __volatile__ (".set push\n\t" \ ".set mips32r2\n\t" \ "rdhwr %0, "rd"\n\t" \ ".set pop" \ : "=r" (value)); \ } static inline int64_t cpu_get_host_ticks(void) { /* On kernels >= 2.6.25 rdhwr , $2 and $3 are emulated */ uint32_t count; static uint32_t cyc_per_count = 0; if (!cyc_per_count) { MIPS_RDHWR("$3", cyc_per_count); } MIPS_RDHWR("$2", count); return (int64_t)(count * cyc_per_count); } #elif defined(__alpha__) static inline int64_t cpu_get_host_ticks(void) { uint64_t cc; uint32_t cur, ofs; asm volatile("rpcc %0" : "=r"(cc)); cur = cc; ofs = cc >> 32; return cur - ofs; } #else /* The host CPU doesn't have an easily accessible cycle counter. Just return a monotonically increasing value. This will be totally wrong, but hopefully better than nothing. */ static inline int64_t cpu_get_host_ticks (void) { static int64_t ticks = 0; return ticks++; } #endif #ifdef CONFIG_PROFILER static inline int64_t profile_getclock(void) { return get_clock(); } extern int64_t tcg_time; extern int64_t dev_time; #endif #endif