/* * Utility compute operations used by translated code. * * Copyright (c) 2007 Thiemo Seufer * Copyright (c) 2007 Jocelyn Mayer * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #ifndef HOST_UTILS_H #define HOST_UTILS_H 1 #include "qemu/compiler.h" /* QEMU_GNUC_PREREQ */ #include "qemu/bswap.h" #include #include #ifdef CONFIG_INT128 static inline void mulu64(uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b) { __uint128_t r = (__uint128_t)a * b; *plow = r; *phigh = r >> 64; } static inline void muls64(uint64_t *plow, uint64_t *phigh, int64_t a, int64_t b) { __int128_t r = (__int128_t)a * b; *plow = r; *phigh = r >> 64; } /* compute with 96 bit intermediate result: (a*b)/c */ static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c) { return (__int128_t)a * b / c; } static inline int divu128(uint64_t *plow, uint64_t *phigh, uint64_t divisor) { if (divisor == 0) { return 1; } else { __uint128_t dividend = ((__uint128_t)*phigh << 64) | *plow; __uint128_t result = dividend / divisor; *plow = result; *phigh = dividend % divisor; return result > UINT64_MAX; } } static inline int divs128(int64_t *plow, int64_t *phigh, int64_t divisor) { if (divisor == 0) { return 1; } else { __int128_t dividend = ((__int128_t)*phigh << 64) | *plow; __int128_t result = dividend / divisor; *plow = result; *phigh = dividend % divisor; return result != *plow; } } #else void muls64(uint64_t *phigh, uint64_t *plow, int64_t a, int64_t b); void mulu64(uint64_t *phigh, uint64_t *plow, uint64_t a, uint64_t b); int divu128(uint64_t *plow, uint64_t *phigh, uint64_t divisor); int divs128(int64_t *plow, int64_t *phigh, int64_t divisor); static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c) { union { uint64_t ll; struct { #ifdef HOST_WORDS_BIGENDIAN uint32_t high, low; #else uint32_t low, high; #endif } l; } u, res; uint64_t rl, rh; u.ll = a; rl = (uint64_t)u.l.low * (uint64_t)b; rh = (uint64_t)u.l.high * (uint64_t)b; rh += (rl >> 32); res.l.high = rh / c; res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c; return res.ll; } #endif /** * clz32 - count leading zeros in a 32-bit value. * @val: The value to search * * Returns 32 if the value is zero. Note that the GCC builtin is * undefined if the value is zero. */ static inline int clz32(uint32_t val) { #if QEMU_GNUC_PREREQ(3, 4) return val ? __builtin_clz(val) : 32; #else /* Binary search for the leading one bit. */ int cnt = 0; if (!(val & 0xFFFF0000U)) { cnt += 16; val <<= 16; } if (!(val & 0xFF000000U)) { cnt += 8; val <<= 8; } if (!(val & 0xF0000000U)) { cnt += 4; val <<= 4; } if (!(val & 0xC0000000U)) { cnt += 2; val <<= 2; } if (!(val & 0x80000000U)) { cnt++; val <<= 1; } if (!(val & 0x80000000U)) { cnt++; } return cnt; #endif } /** * clo32 - count leading ones in a 32-bit value. * @val: The value to search * * Returns 32 if the value is -1. */ static inline int clo32(uint32_t val) { return clz32(~val); } /** * clz64 - count leading zeros in a 64-bit value. * @val: The value to search * * Returns 64 if the value is zero. Note that the GCC builtin is * undefined if the value is zero. */ static inline int clz64(uint64_t val) { #if QEMU_GNUC_PREREQ(3, 4) return val ? __builtin_clzll(val) : 64; #else int cnt = 0; if (!(val >> 32)) { cnt += 32; } else { val >>= 32; } return cnt + clz32(val); #endif } /** * clo64 - count leading ones in a 64-bit value. * @val: The value to search * * Returns 64 if the value is -1. */ static inline int clo64(uint64_t val) { return clz64(~val); } /** * ctz32 - count trailing zeros in a 32-bit value. * @val: The value to search * * Returns 32 if the value is zero. Note that the GCC builtin is * undefined if the value is zero. */ static inline int ctz32(uint32_t val) { #if QEMU_GNUC_PREREQ(3, 4) return val ? __builtin_ctz(val) : 32; #else /* Binary search for the trailing one bit. */ int cnt; cnt = 0; if (!(val & 0x0000FFFFUL)) { cnt += 16; val >>= 16; } if (!(val & 0x000000FFUL)) { cnt += 8; val >>= 8; } if (!(val & 0x0000000FUL)) { cnt += 4; val >>= 4; } if (!(val & 0x00000003UL)) { cnt += 2; val >>= 2; } if (!(val & 0x00000001UL)) { cnt++; val >>= 1; } if (!(val & 0x00000001UL)) { cnt++; } return cnt; #endif } /** * cto32 - count trailing ones in a 32-bit value. * @val: The value to search * * Returns 32 if the value is -1. */ static inline int cto32(uint32_t val) { return ctz32(~val); } /** * ctz64 - count trailing zeros in a 64-bit value. * @val: The value to search * * Returns 64 if the value is zero. Note that the GCC builtin is * undefined if the value is zero. */ static inline int ctz64(uint64_t val) { #if QEMU_GNUC_PREREQ(3, 4) return val ? __builtin_ctzll(val) : 64; #else int cnt; cnt = 0; if (!((uint32_t)val)) { cnt += 32; val >>= 32; } return cnt + ctz32(val); #endif } /** * cto64 - count trailing ones in a 64-bit value. * @val: The value to search * * Returns 64 if the value is -1. */ static inline int cto64(uint64_t val) { return ctz64(~val); } /** * clrsb32 - count leading redundant sign bits in a 32-bit value. * @val: The value to search * * Returns the number of bits following the sign bit that are equal to it. * No special cases; output range is [0-31]. */ static inline int clrsb32(uint32_t val) { #if QEMU_GNUC_PREREQ(4, 7) return __builtin_clrsb(val); #else return clz32(val ^ ((int32_t)val >> 1)) - 1; #endif } /** * clrsb64 - count leading redundant sign bits in a 64-bit value. * @val: The value to search * * Returns the number of bits following the sign bit that are equal to it. * No special cases; output range is [0-63]. */ static inline int clrsb64(uint64_t val) { #if QEMU_GNUC_PREREQ(4, 7) return __builtin_clrsbll(val); #else return clz64(val ^ ((int64_t)val >> 1)) - 1; #endif } /** * ctpop8 - count the population of one bits in an 8-bit value. * @val: The value to search */ static inline int ctpop8(uint8_t val) { #if QEMU_GNUC_PREREQ(3, 4) return __builtin_popcount(val); #else val = (val & 0x55) + ((val >> 1) & 0x55); val = (val & 0x33) + ((val >> 2) & 0x33); val = (val & 0x0f) + ((val >> 4) & 0x0f); return val; #endif } /** * ctpop16 - count the population of one bits in a 16-bit value. * @val: The value to search */ static inline int ctpop16(uint16_t val) { #if QEMU_GNUC_PREREQ(3, 4) return __builtin_popcount(val); #else val = (val & 0x5555) + ((val >> 1) & 0x5555); val = (val & 0x3333) + ((val >> 2) & 0x3333); val = (val & 0x0f0f) + ((val >> 4) & 0x0f0f); val = (val & 0x00ff) + ((val >> 8) & 0x00ff); return val; #endif } /** * ctpop32 - count the population of one bits in a 32-bit value. * @val: The value to search */ static inline int ctpop32(uint32_t val) { #if QEMU_GNUC_PREREQ(3, 4) return __builtin_popcount(val); #else val = (val & 0x55555555) + ((val >> 1) & 0x55555555); val = (val & 0x33333333) + ((val >> 2) & 0x33333333); val = (val & 0x0f0f0f0f) + ((val >> 4) & 0x0f0f0f0f); val = (val & 0x00ff00ff) + ((val >> 8) & 0x00ff00ff); val = (val & 0x0000ffff) + ((val >> 16) & 0x0000ffff); return val; #endif } /** * ctpop64 - count the population of one bits in a 64-bit value. * @val: The value to search */ static inline int ctpop64(uint64_t val) { #if QEMU_GNUC_PREREQ(3, 4) return __builtin_popcountll(val); #else val = (val & 0x5555555555555555ULL) + ((val >> 1) & 0x5555555555555555ULL); val = (val & 0x3333333333333333ULL) + ((val >> 2) & 0x3333333333333333ULL); val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >> 4) & 0x0f0f0f0f0f0f0f0fULL); val = (val & 0x00ff00ff00ff00ffULL) + ((val >> 8) & 0x00ff00ff00ff00ffULL); val = (val & 0x0000ffff0000ffffULL) + ((val >> 16) & 0x0000ffff0000ffffULL); val = (val & 0x00000000ffffffffULL) + ((val >> 32) & 0x00000000ffffffffULL); return val; #endif } /** * revbit8 - reverse the bits in an 8-bit value. * @x: The value to modify. */ static inline uint8_t revbit8(uint8_t x) { /* Assign the correct nibble position. */ x = ((x & 0xf0) >> 4) | ((x & 0x0f) << 4); /* Assign the correct bit position. */ x = ((x & 0x88) >> 3) | ((x & 0x44) >> 1) | ((x & 0x22) << 1) | ((x & 0x11) << 3); return x; } /** * revbit16 - reverse the bits in a 16-bit value. * @x: The value to modify. */ static inline uint16_t revbit16(uint16_t x) { /* Assign the correct byte position. */ x = bswap16(x); /* Assign the correct nibble position. */ x = ((x & 0xf0f0) >> 4) | ((x & 0x0f0f) << 4); /* Assign the correct bit position. */ x = ((x & 0x8888) >> 3) | ((x & 0x4444) >> 1) | ((x & 0x2222) << 1) | ((x & 0x1111) << 3); return x; } /** * revbit32 - reverse the bits in a 32-bit value. * @x: The value to modify. */ static inline uint32_t revbit32(uint32_t x) { /* Assign the correct byte position. */ x = bswap32(x); /* Assign the correct nibble position. */ x = ((x & 0xf0f0f0f0u) >> 4) | ((x & 0x0f0f0f0fu) << 4); /* Assign the correct bit position. */ x = ((x & 0x88888888u) >> 3) | ((x & 0x44444444u) >> 1) | ((x & 0x22222222u) << 1) | ((x & 0x11111111u) << 3); return x; } /** * revbit64 - reverse the bits in a 64-bit value. * @x: The value to modify. */ static inline uint64_t revbit64(uint64_t x) { /* Assign the correct byte position. */ x = bswap64(x); /* Assign the correct nibble position. */ x = ((x & 0xf0f0f0f0f0f0f0f0ull) >> 4) | ((x & 0x0f0f0f0f0f0f0f0full) << 4); /* Assign the correct bit position. */ x = ((x & 0x8888888888888888ull) >> 3) | ((x & 0x4444444444444444ull) >> 1) | ((x & 0x2222222222222222ull) << 1) | ((x & 0x1111111111111111ull) << 3); return x; } /* Host type specific sizes of these routines. */ #if ULONG_MAX == UINT32_MAX # define clzl clz32 # define ctzl ctz32 # define clol clo32 # define ctol cto32 # define ctpopl ctpop32 # define revbitl revbit32 #elif ULONG_MAX == UINT64_MAX # define clzl clz64 # define ctzl ctz64 # define clol clo64 # define ctol cto64 # define ctpopl ctpop64 # define revbitl revbit64 #else # error Unknown sizeof long #endif static inline bool is_power_of_2(uint64_t value) { if (!value) { return 0; } return !(value & (value - 1)); } /* round down to the nearest power of 2*/ static inline int64_t pow2floor(int64_t value) { if (!is_power_of_2(value)) { value = 0x8000000000000000ULL >> clz64(value); } return value; } /* round up to the nearest power of 2 (0 if overflow) */ static inline uint64_t pow2ceil(uint64_t value) { uint8_t nlz = clz64(value); if (is_power_of_2(value)) { return value; } if (!nlz) { return 0; } return 1ULL << (64 - nlz); } #endif