/* * QEMU Sparc SLAVIO aux io port emulation * * Copyright (c) 2005 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "hw.h" #include "sun4m.h" #include "sysemu.h" /* debug misc */ //#define DEBUG_MISC /* * This is the auxio port, chip control and system control part of * chip STP2001 (Slave I/O), also produced as NCR89C105. See * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt * * This also includes the PMC CPU idle controller. */ #ifdef DEBUG_MISC #define MISC_DPRINTF(fmt, args...) \ do { printf("MISC: " fmt , ##args); } while (0) #else #define MISC_DPRINTF(fmt, args...) #endif typedef struct MiscState { qemu_irq irq; uint8_t config; uint8_t aux1, aux2; uint8_t diag, mctrl; uint32_t sysctrl; uint16_t leds; CPUState *env; } MiscState; #define MISC_SIZE 1 #define SYSCTRL_MAXADDR 3 #define SYSCTRL_SIZE (SYSCTRL_MAXADDR + 1) #define LED_MAXADDR 1 #define LED_SIZE (LED_MAXADDR + 1) #define MISC_MASK 0x0fff0000 #define MISC_LEDS 0x01600000 #define MISC_CFG 0x01800000 #define MISC_DIAG 0x01a00000 #define MISC_MDM 0x01b00000 #define MISC_SYS 0x01f00000 #define AUX2_PWROFF 0x01 #define AUX2_PWRINTCLR 0x02 #define AUX2_PWRFAIL 0x20 #define CFG_PWRINTEN 0x08 #define SYS_RESET 0x01 #define SYS_RESETSTAT 0x02 static void slavio_misc_update_irq(void *opaque) { MiscState *s = opaque; if ((s->aux2 & AUX2_PWRFAIL) && (s->config & CFG_PWRINTEN)) { MISC_DPRINTF("Raise IRQ\n"); qemu_irq_raise(s->irq); } else { MISC_DPRINTF("Lower IRQ\n"); qemu_irq_lower(s->irq); } } static void slavio_misc_reset(void *opaque) { MiscState *s = opaque; // Diagnostic and system control registers not cleared in reset s->config = s->aux1 = s->aux2 = s->mctrl = 0; } void slavio_set_power_fail(void *opaque, int power_failing) { MiscState *s = opaque; MISC_DPRINTF("Power fail: %d, config: %d\n", power_failing, s->config); if (power_failing && (s->config & CFG_PWRINTEN)) { s->aux2 |= AUX2_PWRFAIL; } else { s->aux2 &= ~AUX2_PWRFAIL; } slavio_misc_update_irq(s); } static void slavio_misc_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) { MiscState *s = opaque; switch (addr & MISC_MASK) { case MISC_CFG: MISC_DPRINTF("Write config %2.2x\n", val & 0xff); s->config = val & 0xff; slavio_misc_update_irq(s); break; case MISC_DIAG: MISC_DPRINTF("Write diag %2.2x\n", val & 0xff); s->diag = val & 0xff; break; case MISC_MDM: MISC_DPRINTF("Write modem control %2.2x\n", val & 0xff); s->mctrl = val & 0xff; break; default: break; } } static uint32_t slavio_misc_mem_readb(void *opaque, target_phys_addr_t addr) { MiscState *s = opaque; uint32_t ret = 0; switch (addr & MISC_MASK) { case MISC_CFG: ret = s->config; MISC_DPRINTF("Read config %2.2x\n", ret); break; case MISC_DIAG: ret = s->diag; MISC_DPRINTF("Read diag %2.2x\n", ret); break; case MISC_MDM: ret = s->mctrl; MISC_DPRINTF("Read modem control %2.2x\n", ret); break; default: break; } return ret; } static CPUReadMemoryFunc *slavio_misc_mem_read[3] = { slavio_misc_mem_readb, NULL, NULL, }; static CPUWriteMemoryFunc *slavio_misc_mem_write[3] = { slavio_misc_mem_writeb, NULL, NULL, }; static void slavio_aux1_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) { MiscState *s = opaque; MISC_DPRINTF("Write aux1 %2.2x\n", val & 0xff); s->aux1 = val & 0xff; } static uint32_t slavio_aux1_mem_readb(void *opaque, target_phys_addr_t addr) { MiscState *s = opaque; uint32_t ret = 0; ret = s->aux1; MISC_DPRINTF("Read aux1 %2.2x\n", ret); return ret; } static CPUReadMemoryFunc *slavio_aux1_mem_read[3] = { slavio_aux1_mem_readb, NULL, NULL, }; static CPUWriteMemoryFunc *slavio_aux1_mem_write[3] = { slavio_aux1_mem_writeb, NULL, NULL, }; static void slavio_aux2_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) { MiscState *s = opaque; val &= AUX2_PWRINTCLR | AUX2_PWROFF; MISC_DPRINTF("Write aux2 %2.2x\n", val); val |= s->aux2 & AUX2_PWRFAIL; if (val & AUX2_PWRINTCLR) // Clear Power Fail int val &= AUX2_PWROFF; s->aux2 = val; if (val & AUX2_PWROFF) qemu_system_shutdown_request(); slavio_misc_update_irq(s); } static uint32_t slavio_aux2_mem_readb(void *opaque, target_phys_addr_t addr) { MiscState *s = opaque; uint32_t ret = 0; ret = s->aux2; MISC_DPRINTF("Read aux2 %2.2x\n", ret); return ret; } static CPUReadMemoryFunc *slavio_aux2_mem_read[3] = { slavio_aux2_mem_readb, NULL, NULL, }; static CPUWriteMemoryFunc *slavio_aux2_mem_write[3] = { slavio_aux2_mem_writeb, NULL, NULL, }; static void apc_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) { MiscState *s = opaque; MISC_DPRINTF("Write power management %2.2x\n", val & 0xff); cpu_interrupt(s->env, CPU_INTERRUPT_HALT); } static uint32_t apc_mem_readb(void *opaque, target_phys_addr_t addr) { uint32_t ret = 0; MISC_DPRINTF("Read power management %2.2x\n", ret); return ret; } static CPUReadMemoryFunc *apc_mem_read[3] = { apc_mem_readb, NULL, NULL, }; static CPUWriteMemoryFunc *apc_mem_write[3] = { apc_mem_writeb, NULL, NULL, }; static uint32_t slavio_sysctrl_mem_readl(void *opaque, target_phys_addr_t addr) { MiscState *s = opaque; uint32_t ret = 0, saddr; saddr = addr & SYSCTRL_MAXADDR; switch (saddr) { case 0: ret = s->sysctrl; break; default: break; } MISC_DPRINTF("Read system control reg 0x" TARGET_FMT_plx " = %x\n", addr, ret); return ret; } static void slavio_sysctrl_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) { MiscState *s = opaque; uint32_t saddr; saddr = addr & SYSCTRL_MAXADDR; MISC_DPRINTF("Write system control reg 0x" TARGET_FMT_plx " = %x\n", addr, val); switch (saddr) { case 0: if (val & SYS_RESET) { s->sysctrl = SYS_RESETSTAT; qemu_system_reset_request(); } break; default: break; } } static CPUReadMemoryFunc *slavio_sysctrl_mem_read[3] = { NULL, NULL, slavio_sysctrl_mem_readl, }; static CPUWriteMemoryFunc *slavio_sysctrl_mem_write[3] = { NULL, NULL, slavio_sysctrl_mem_writel, }; static uint32_t slavio_led_mem_readw(void *opaque, target_phys_addr_t addr) { MiscState *s = opaque; uint32_t ret = 0, saddr; saddr = addr & LED_MAXADDR; switch (saddr) { case 0: ret = s->leds; break; default: break; } MISC_DPRINTF("Read diagnostic LED reg 0x" TARGET_FMT_plx " = %x\n", addr, ret); return ret; } static void slavio_led_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val) { MiscState *s = opaque; uint32_t saddr; saddr = addr & LED_MAXADDR; MISC_DPRINTF("Write diagnostic LED reg 0x" TARGET_FMT_plx " = %x\n", addr, val); switch (saddr) { case 0: s->leds = val; break; default: break; } } static CPUReadMemoryFunc *slavio_led_mem_read[3] = { NULL, slavio_led_mem_readw, NULL, }; static CPUWriteMemoryFunc *slavio_led_mem_write[3] = { NULL, slavio_led_mem_writew, NULL, }; static void slavio_misc_save(QEMUFile *f, void *opaque) { MiscState *s = opaque; int tmp; uint8_t tmp8; tmp = 0; qemu_put_be32s(f, &tmp); /* ignored, was IRQ. */ qemu_put_8s(f, &s->config); qemu_put_8s(f, &s->aux1); qemu_put_8s(f, &s->aux2); qemu_put_8s(f, &s->diag); qemu_put_8s(f, &s->mctrl); tmp8 = s->sysctrl & 0xff; qemu_put_8s(f, &tmp8); } static int slavio_misc_load(QEMUFile *f, void *opaque, int version_id) { MiscState *s = opaque; int tmp; uint8_t tmp8; if (version_id != 1) return -EINVAL; qemu_get_be32s(f, &tmp); qemu_get_8s(f, &s->config); qemu_get_8s(f, &s->aux1); qemu_get_8s(f, &s->aux2); qemu_get_8s(f, &s->diag); qemu_get_8s(f, &s->mctrl); qemu_get_8s(f, &tmp8); s->sysctrl = (uint32_t)tmp8; return 0; } void *slavio_misc_init(target_phys_addr_t base, target_phys_addr_t power_base, target_phys_addr_t aux1_base, target_phys_addr_t aux2_base, qemu_irq irq, CPUState *env) { int io; MiscState *s; s = qemu_mallocz(sizeof(MiscState)); if (!s) return NULL; if (base) { /* 8 bit registers */ io = cpu_register_io_memory(0, slavio_misc_mem_read, slavio_misc_mem_write, s); // Slavio control cpu_register_physical_memory(base + MISC_CFG, MISC_SIZE, io); // Diagnostics cpu_register_physical_memory(base + MISC_DIAG, MISC_SIZE, io); // Modem control cpu_register_physical_memory(base + MISC_MDM, MISC_SIZE, io); /* 16 bit registers */ io = cpu_register_io_memory(0, slavio_led_mem_read, slavio_led_mem_write, s); /* ss600mp diag LEDs */ cpu_register_physical_memory(base + MISC_LEDS, MISC_SIZE, io); /* 32 bit registers */ io = cpu_register_io_memory(0, slavio_sysctrl_mem_read, slavio_sysctrl_mem_write, s); // System control cpu_register_physical_memory(base + MISC_SYS, SYSCTRL_SIZE, io); } // AUX 1 (Misc System Functions) if (aux1_base) { io = cpu_register_io_memory(0, slavio_aux1_mem_read, slavio_aux1_mem_write, s); cpu_register_physical_memory(aux1_base, MISC_SIZE, io); } // AUX 2 (Software Powerdown Control) if (aux2_base) { io = cpu_register_io_memory(0, slavio_aux2_mem_read, slavio_aux2_mem_write, s); cpu_register_physical_memory(aux2_base, MISC_SIZE, io); } // Power management (APC) XXX: not a Slavio device if (power_base) { io = cpu_register_io_memory(0, apc_mem_read, apc_mem_write, s); cpu_register_physical_memory(power_base, MISC_SIZE, io); } s->irq = irq; s->env = env; register_savevm("slavio_misc", base, 1, slavio_misc_save, slavio_misc_load, s); qemu_register_reset(slavio_misc_reset, s); slavio_misc_reset(s); return s; }