/* * TI OMAP processors emulation. * * Copyright (C) 2007-2008 Nokia Corporation * Written by Andrzej Zaborowski * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 or * (at your option) version 3 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include "hw.h" #include "arm-misc.h" #include "omap.h" #include "sysemu.h" #include "qemu-timer.h" #include "qemu-char.h" #include "flash.h" #include "soc_dma.h" #include "audio/audio.h" /* GP timers */ struct omap_gp_timer_s { qemu_irq irq; qemu_irq wkup; qemu_irq in; qemu_irq out; omap_clk clk; QEMUTimer *timer; QEMUTimer *match; struct omap_target_agent_s *ta; int in_val; int out_val; int64_t time; int64_t rate; int64_t ticks_per_sec; int16_t config; int status; int it_ena; int wu_ena; int enable; int inout; int capt2; int pt; enum { gpt_trigger_none, gpt_trigger_overflow, gpt_trigger_both } trigger; enum { gpt_capture_none, gpt_capture_rising, gpt_capture_falling, gpt_capture_both } capture; int scpwm; int ce; int pre; int ptv; int ar; int st; int posted; uint32_t val; uint32_t load_val; uint32_t capture_val[2]; uint32_t match_val; int capt_num; uint16_t writeh; /* LSB */ uint16_t readh; /* MSB */ }; #define GPT_TCAR_IT (1 << 2) #define GPT_OVF_IT (1 << 1) #define GPT_MAT_IT (1 << 0) static inline void omap_gp_timer_intr(struct omap_gp_timer_s *timer, int it) { if (timer->it_ena & it) { if (!timer->status) qemu_irq_raise(timer->irq); timer->status |= it; /* Or are the status bits set even when masked? * i.e. is masking applied before or after the status register? */ } if (timer->wu_ena & it) qemu_irq_pulse(timer->wkup); } static inline void omap_gp_timer_out(struct omap_gp_timer_s *timer, int level) { if (!timer->inout && timer->out_val != level) { timer->out_val = level; qemu_set_irq(timer->out, level); } } static inline uint32_t omap_gp_timer_read(struct omap_gp_timer_s *timer) { uint64_t distance; if (timer->st && timer->rate) { distance = qemu_get_clock(vm_clock) - timer->time; distance = muldiv64(distance, timer->rate, timer->ticks_per_sec); if (distance >= 0xffffffff - timer->val) return 0xffffffff; else return timer->val + distance; } else return timer->val; } static inline void omap_gp_timer_sync(struct omap_gp_timer_s *timer) { if (timer->st) { timer->val = omap_gp_timer_read(timer); timer->time = qemu_get_clock(vm_clock); } } static inline void omap_gp_timer_update(struct omap_gp_timer_s *timer) { int64_t expires, matches; if (timer->st && timer->rate) { expires = muldiv64(0x100000000ll - timer->val, timer->ticks_per_sec, timer->rate); qemu_mod_timer(timer->timer, timer->time + expires); if (timer->ce && timer->match_val >= timer->val) { matches = muldiv64(timer->match_val - timer->val, timer->ticks_per_sec, timer->rate); qemu_mod_timer(timer->match, timer->time + matches); } else qemu_del_timer(timer->match); } else { qemu_del_timer(timer->timer); qemu_del_timer(timer->match); omap_gp_timer_out(timer, timer->scpwm); } } static inline void omap_gp_timer_trigger(struct omap_gp_timer_s *timer) { if (timer->pt) /* TODO in overflow-and-match mode if the first event to * occur is the match, don't toggle. */ omap_gp_timer_out(timer, !timer->out_val); else /* TODO inverted pulse on timer->out_val == 1? */ qemu_irq_pulse(timer->out); } static void omap_gp_timer_tick(void *opaque) { struct omap_gp_timer_s *timer = (struct omap_gp_timer_s *) opaque; if (!timer->ar) { timer->st = 0; timer->val = 0; } else { timer->val = timer->load_val; timer->time = qemu_get_clock(vm_clock); } if (timer->trigger == gpt_trigger_overflow || timer->trigger == gpt_trigger_both) omap_gp_timer_trigger(timer); omap_gp_timer_intr(timer, GPT_OVF_IT); omap_gp_timer_update(timer); } static void omap_gp_timer_match(void *opaque) { struct omap_gp_timer_s *timer = (struct omap_gp_timer_s *) opaque; if (timer->trigger == gpt_trigger_both) omap_gp_timer_trigger(timer); omap_gp_timer_intr(timer, GPT_MAT_IT); } static void omap_gp_timer_input(void *opaque, int line, int on) { struct omap_gp_timer_s *s = (struct omap_gp_timer_s *) opaque; int trigger; switch (s->capture) { default: case gpt_capture_none: trigger = 0; break; case gpt_capture_rising: trigger = !s->in_val && on; break; case gpt_capture_falling: trigger = s->in_val && !on; break; case gpt_capture_both: trigger = (s->in_val == !on); break; } s->in_val = on; if (s->inout && trigger && s->capt_num < 2) { s->capture_val[s->capt_num] = omap_gp_timer_read(s); if (s->capt2 == s->capt_num ++) omap_gp_timer_intr(s, GPT_TCAR_IT); } } static void omap_gp_timer_clk_update(void *opaque, int line, int on) { struct omap_gp_timer_s *timer = (struct omap_gp_timer_s *) opaque; omap_gp_timer_sync(timer); timer->rate = on ? omap_clk_getrate(timer->clk) : 0; omap_gp_timer_update(timer); } static void omap_gp_timer_clk_setup(struct omap_gp_timer_s *timer) { omap_clk_adduser(timer->clk, qemu_allocate_irqs(omap_gp_timer_clk_update, timer, 1)[0]); timer->rate = omap_clk_getrate(timer->clk); } static void omap_gp_timer_reset(struct omap_gp_timer_s *s) { s->config = 0x000; s->status = 0; s->it_ena = 0; s->wu_ena = 0; s->inout = 0; s->capt2 = 0; s->capt_num = 0; s->pt = 0; s->trigger = gpt_trigger_none; s->capture = gpt_capture_none; s->scpwm = 0; s->ce = 0; s->pre = 0; s->ptv = 0; s->ar = 0; s->st = 0; s->posted = 1; s->val = 0x00000000; s->load_val = 0x00000000; s->capture_val[0] = 0x00000000; s->capture_val[1] = 0x00000000; s->match_val = 0x00000000; omap_gp_timer_update(s); } static uint32_t omap_gp_timer_readw(void *opaque, target_phys_addr_t addr) { struct omap_gp_timer_s *s = (struct omap_gp_timer_s *) opaque; switch (addr) { case 0x00: /* TIDR */ return 0x21; case 0x10: /* TIOCP_CFG */ return s->config; case 0x14: /* TISTAT */ /* ??? When's this bit reset? */ return 1; /* RESETDONE */ case 0x18: /* TISR */ return s->status; case 0x1c: /* TIER */ return s->it_ena; case 0x20: /* TWER */ return s->wu_ena; case 0x24: /* TCLR */ return (s->inout << 14) | (s->capt2 << 13) | (s->pt << 12) | (s->trigger << 10) | (s->capture << 8) | (s->scpwm << 7) | (s->ce << 6) | (s->pre << 5) | (s->ptv << 2) | (s->ar << 1) | (s->st << 0); case 0x28: /* TCRR */ return omap_gp_timer_read(s); case 0x2c: /* TLDR */ return s->load_val; case 0x30: /* TTGR */ return 0xffffffff; case 0x34: /* TWPS */ return 0x00000000; /* No posted writes pending. */ case 0x38: /* TMAR */ return s->match_val; case 0x3c: /* TCAR1 */ return s->capture_val[0]; case 0x40: /* TSICR */ return s->posted << 2; case 0x44: /* TCAR2 */ return s->capture_val[1]; } OMAP_BAD_REG(addr); return 0; } static uint32_t omap_gp_timer_readh(void *opaque, target_phys_addr_t addr) { struct omap_gp_timer_s *s = (struct omap_gp_timer_s *) opaque; uint32_t ret; if (addr & 2) return s->readh; else { ret = omap_gp_timer_readw(opaque, addr); s->readh = ret >> 16; return ret & 0xffff; } } static CPUReadMemoryFunc *omap_gp_timer_readfn[] = { omap_badwidth_read32, omap_gp_timer_readh, omap_gp_timer_readw, }; static void omap_gp_timer_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_gp_timer_s *s = (struct omap_gp_timer_s *) opaque; switch (addr) { case 0x00: /* TIDR */ case 0x14: /* TISTAT */ case 0x34: /* TWPS */ case 0x3c: /* TCAR1 */ case 0x44: /* TCAR2 */ OMAP_RO_REG(addr); break; case 0x10: /* TIOCP_CFG */ s->config = value & 0x33d; if (((value >> 3) & 3) == 3) /* IDLEMODE */ fprintf(stderr, "%s: illegal IDLEMODE value in TIOCP_CFG\n", __FUNCTION__); if (value & 2) /* SOFTRESET */ omap_gp_timer_reset(s); break; case 0x18: /* TISR */ if (value & GPT_TCAR_IT) s->capt_num = 0; if (s->status && !(s->status &= ~value)) qemu_irq_lower(s->irq); break; case 0x1c: /* TIER */ s->it_ena = value & 7; break; case 0x20: /* TWER */ s->wu_ena = value & 7; break; case 0x24: /* TCLR */ omap_gp_timer_sync(s); s->inout = (value >> 14) & 1; s->capt2 = (value >> 13) & 1; s->pt = (value >> 12) & 1; s->trigger = (value >> 10) & 3; if (s->capture == gpt_capture_none && ((value >> 8) & 3) != gpt_capture_none) s->capt_num = 0; s->capture = (value >> 8) & 3; s->scpwm = (value >> 7) & 1; s->ce = (value >> 6) & 1; s->pre = (value >> 5) & 1; s->ptv = (value >> 2) & 7; s->ar = (value >> 1) & 1; s->st = (value >> 0) & 1; if (s->inout && s->trigger != gpt_trigger_none) fprintf(stderr, "%s: GP timer pin must be an output " "for this trigger mode\n", __FUNCTION__); if (!s->inout && s->capture != gpt_capture_none) fprintf(stderr, "%s: GP timer pin must be an input " "for this capture mode\n", __FUNCTION__); if (s->trigger == gpt_trigger_none) omap_gp_timer_out(s, s->scpwm); /* TODO: make sure this doesn't overflow 32-bits */ s->ticks_per_sec = ticks_per_sec << (s->pre ? s->ptv + 1 : 0); omap_gp_timer_update(s); break; case 0x28: /* TCRR */ s->time = qemu_get_clock(vm_clock); s->val = value; omap_gp_timer_update(s); break; case 0x2c: /* TLDR */ s->load_val = value; break; case 0x30: /* TTGR */ s->time = qemu_get_clock(vm_clock); s->val = s->load_val; omap_gp_timer_update(s); break; case 0x38: /* TMAR */ omap_gp_timer_sync(s); s->match_val = value; omap_gp_timer_update(s); break; case 0x40: /* TSICR */ s->posted = (value >> 2) & 1; if (value & 2) /* How much exactly are we supposed to reset? */ omap_gp_timer_reset(s); break; default: OMAP_BAD_REG(addr); } } static void omap_gp_timer_writeh(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_gp_timer_s *s = (struct omap_gp_timer_s *) opaque; if (addr & 2) return omap_gp_timer_write(opaque, addr, (value << 16) | s->writeh); else s->writeh = (uint16_t) value; } static CPUWriteMemoryFunc *omap_gp_timer_writefn[] = { omap_badwidth_write32, omap_gp_timer_writeh, omap_gp_timer_write, }; struct omap_gp_timer_s *omap_gp_timer_init(struct omap_target_agent_s *ta, qemu_irq irq, omap_clk fclk, omap_clk iclk) { int iomemtype; struct omap_gp_timer_s *s = (struct omap_gp_timer_s *) qemu_mallocz(sizeof(struct omap_gp_timer_s)); s->ta = ta; s->irq = irq; s->clk = fclk; s->timer = qemu_new_timer(vm_clock, omap_gp_timer_tick, s); s->match = qemu_new_timer(vm_clock, omap_gp_timer_match, s); s->in = qemu_allocate_irqs(omap_gp_timer_input, s, 1)[0]; omap_gp_timer_reset(s); omap_gp_timer_clk_setup(s); iomemtype = l4_register_io_memory(0, omap_gp_timer_readfn, omap_gp_timer_writefn, s); omap_l4_attach(ta, 0, iomemtype); return s; } /* 32-kHz Sync Timer of the OMAP2 */ static uint32_t omap_synctimer_read(struct omap_synctimer_s *s) { return muldiv64(qemu_get_clock(vm_clock), 0x8000, ticks_per_sec); } static void omap_synctimer_reset(struct omap_synctimer_s *s) { s->val = omap_synctimer_read(s); } static uint32_t omap_synctimer_readw(void *opaque, target_phys_addr_t addr) { struct omap_synctimer_s *s = (struct omap_synctimer_s *) opaque; switch (addr) { case 0x00: /* 32KSYNCNT_REV */ return 0x21; case 0x10: /* CR */ return omap_synctimer_read(s) - s->val; } OMAP_BAD_REG(addr); return 0; } static uint32_t omap_synctimer_readh(void *opaque, target_phys_addr_t addr) { struct omap_synctimer_s *s = (struct omap_synctimer_s *) opaque; uint32_t ret; if (addr & 2) return s->readh; else { ret = omap_synctimer_readw(opaque, addr); s->readh = ret >> 16; return ret & 0xffff; } } static CPUReadMemoryFunc *omap_synctimer_readfn[] = { omap_badwidth_read32, omap_synctimer_readh, omap_synctimer_readw, }; static void omap_synctimer_write(void *opaque, target_phys_addr_t addr, uint32_t value) { OMAP_BAD_REG(addr); } static CPUWriteMemoryFunc *omap_synctimer_writefn[] = { omap_badwidth_write32, omap_synctimer_write, omap_synctimer_write, }; void omap_synctimer_init(struct omap_target_agent_s *ta, struct omap_mpu_state_s *mpu, omap_clk fclk, omap_clk iclk) { struct omap_synctimer_s *s = &mpu->synctimer; omap_synctimer_reset(s); omap_l4_attach(ta, 0, l4_register_io_memory(0, omap_synctimer_readfn, omap_synctimer_writefn, s)); } /* General-Purpose Interface of OMAP2 */ struct omap2_gpio_s { qemu_irq irq[2]; qemu_irq wkup; qemu_irq *in; qemu_irq handler[32]; uint8_t config[2]; uint32_t inputs; uint32_t outputs; uint32_t dir; uint32_t level[2]; uint32_t edge[2]; uint32_t mask[2]; uint32_t wumask; uint32_t ints[2]; uint32_t debounce; uint8_t delay; }; static inline void omap_gpio_module_int_update(struct omap2_gpio_s *s, int line) { qemu_set_irq(s->irq[line], s->ints[line] & s->mask[line]); } static void omap_gpio_module_wake(struct omap2_gpio_s *s, int line) { if (!(s->config[0] & (1 << 2))) /* ENAWAKEUP */ return; if (!(s->config[0] & (3 << 3))) /* Force Idle */ return; if (!(s->wumask & (1 << line))) return; qemu_irq_raise(s->wkup); } static inline void omap_gpio_module_out_update(struct omap2_gpio_s *s, uint32_t diff) { int ln; s->outputs ^= diff; diff &= ~s->dir; while ((ln = ffs(diff))) { ln --; qemu_set_irq(s->handler[ln], (s->outputs >> ln) & 1); diff &= ~(1 << ln); } } static void omap_gpio_module_level_update(struct omap2_gpio_s *s, int line) { s->ints[line] |= s->dir & ((s->inputs & s->level[1]) | (~s->inputs & s->level[0])); omap_gpio_module_int_update(s, line); } static inline void omap_gpio_module_int(struct omap2_gpio_s *s, int line) { s->ints[0] |= 1 << line; omap_gpio_module_int_update(s, 0); s->ints[1] |= 1 << line; omap_gpio_module_int_update(s, 1); omap_gpio_module_wake(s, line); } static void omap_gpio_module_set(void *opaque, int line, int level) { struct omap2_gpio_s *s = (struct omap2_gpio_s *) opaque; if (level) { if (s->dir & (1 << line) & ((~s->inputs & s->edge[0]) | s->level[1])) omap_gpio_module_int(s, line); s->inputs |= 1 << line; } else { if (s->dir & (1 << line) & ((s->inputs & s->edge[1]) | s->level[0])) omap_gpio_module_int(s, line); s->inputs &= ~(1 << line); } } static void omap_gpio_module_reset(struct omap2_gpio_s *s) { s->config[0] = 0; s->config[1] = 2; s->ints[0] = 0; s->ints[1] = 0; s->mask[0] = 0; s->mask[1] = 0; s->wumask = 0; s->dir = ~0; s->level[0] = 0; s->level[1] = 0; s->edge[0] = 0; s->edge[1] = 0; s->debounce = 0; s->delay = 0; } static uint32_t omap_gpio_module_read(void *opaque, target_phys_addr_t addr) { struct omap2_gpio_s *s = (struct omap2_gpio_s *) opaque; switch (addr) { case 0x00: /* GPIO_REVISION */ return 0x18; case 0x10: /* GPIO_SYSCONFIG */ return s->config[0]; case 0x14: /* GPIO_SYSSTATUS */ return 0x01; case 0x18: /* GPIO_IRQSTATUS1 */ return s->ints[0]; case 0x1c: /* GPIO_IRQENABLE1 */ case 0x60: /* GPIO_CLEARIRQENABLE1 */ case 0x64: /* GPIO_SETIRQENABLE1 */ return s->mask[0]; case 0x20: /* GPIO_WAKEUPENABLE */ case 0x80: /* GPIO_CLEARWKUENA */ case 0x84: /* GPIO_SETWKUENA */ return s->wumask; case 0x28: /* GPIO_IRQSTATUS2 */ return s->ints[1]; case 0x2c: /* GPIO_IRQENABLE2 */ case 0x70: /* GPIO_CLEARIRQENABLE2 */ case 0x74: /* GPIO_SETIREQNEABLE2 */ return s->mask[1]; case 0x30: /* GPIO_CTRL */ return s->config[1]; case 0x34: /* GPIO_OE */ return s->dir; case 0x38: /* GPIO_DATAIN */ return s->inputs; case 0x3c: /* GPIO_DATAOUT */ case 0x90: /* GPIO_CLEARDATAOUT */ case 0x94: /* GPIO_SETDATAOUT */ return s->outputs; case 0x40: /* GPIO_LEVELDETECT0 */ return s->level[0]; case 0x44: /* GPIO_LEVELDETECT1 */ return s->level[1]; case 0x48: /* GPIO_RISINGDETECT */ return s->edge[0]; case 0x4c: /* GPIO_FALLINGDETECT */ return s->edge[1]; case 0x50: /* GPIO_DEBOUNCENABLE */ return s->debounce; case 0x54: /* GPIO_DEBOUNCINGTIME */ return s->delay; } OMAP_BAD_REG(addr); return 0; } static void omap_gpio_module_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap2_gpio_s *s = (struct omap2_gpio_s *) opaque; uint32_t diff; int ln; switch (addr) { case 0x00: /* GPIO_REVISION */ case 0x14: /* GPIO_SYSSTATUS */ case 0x38: /* GPIO_DATAIN */ OMAP_RO_REG(addr); break; case 0x10: /* GPIO_SYSCONFIG */ if (((value >> 3) & 3) == 3) fprintf(stderr, "%s: bad IDLEMODE value\n", __FUNCTION__); if (value & 2) omap_gpio_module_reset(s); s->config[0] = value & 0x1d; break; case 0x18: /* GPIO_IRQSTATUS1 */ if (s->ints[0] & value) { s->ints[0] &= ~value; omap_gpio_module_level_update(s, 0); } break; case 0x1c: /* GPIO_IRQENABLE1 */ s->mask[0] = value; omap_gpio_module_int_update(s, 0); break; case 0x20: /* GPIO_WAKEUPENABLE */ s->wumask = value; break; case 0x28: /* GPIO_IRQSTATUS2 */ if (s->ints[1] & value) { s->ints[1] &= ~value; omap_gpio_module_level_update(s, 1); } break; case 0x2c: /* GPIO_IRQENABLE2 */ s->mask[1] = value; omap_gpio_module_int_update(s, 1); break; case 0x30: /* GPIO_CTRL */ s->config[1] = value & 7; break; case 0x34: /* GPIO_OE */ diff = s->outputs & (s->dir ^ value); s->dir = value; value = s->outputs & ~s->dir; while ((ln = ffs(diff))) { diff &= ~(1 <<-- ln); qemu_set_irq(s->handler[ln], (value >> ln) & 1); } omap_gpio_module_level_update(s, 0); omap_gpio_module_level_update(s, 1); break; case 0x3c: /* GPIO_DATAOUT */ omap_gpio_module_out_update(s, s->outputs ^ value); break; case 0x40: /* GPIO_LEVELDETECT0 */ s->level[0] = value; omap_gpio_module_level_update(s, 0); omap_gpio_module_level_update(s, 1); break; case 0x44: /* GPIO_LEVELDETECT1 */ s->level[1] = value; omap_gpio_module_level_update(s, 0); omap_gpio_module_level_update(s, 1); break; case 0x48: /* GPIO_RISINGDETECT */ s->edge[0] = value; break; case 0x4c: /* GPIO_FALLINGDETECT */ s->edge[1] = value; break; case 0x50: /* GPIO_DEBOUNCENABLE */ s->debounce = value; break; case 0x54: /* GPIO_DEBOUNCINGTIME */ s->delay = value; break; case 0x60: /* GPIO_CLEARIRQENABLE1 */ s->mask[0] &= ~value; omap_gpio_module_int_update(s, 0); break; case 0x64: /* GPIO_SETIRQENABLE1 */ s->mask[0] |= value; omap_gpio_module_int_update(s, 0); break; case 0x70: /* GPIO_CLEARIRQENABLE2 */ s->mask[1] &= ~value; omap_gpio_module_int_update(s, 1); break; case 0x74: /* GPIO_SETIREQNEABLE2 */ s->mask[1] |= value; omap_gpio_module_int_update(s, 1); break; case 0x80: /* GPIO_CLEARWKUENA */ s->wumask &= ~value; break; case 0x84: /* GPIO_SETWKUENA */ s->wumask |= value; break; case 0x90: /* GPIO_CLEARDATAOUT */ omap_gpio_module_out_update(s, s->outputs & value); break; case 0x94: /* GPIO_SETDATAOUT */ omap_gpio_module_out_update(s, ~s->outputs & value); break; default: OMAP_BAD_REG(addr); return; } } static uint32_t omap_gpio_module_readp(void *opaque, target_phys_addr_t addr) { return omap_gpio_module_readp(opaque, addr) >> ((addr & 3) << 3); } static void omap_gpio_module_writep(void *opaque, target_phys_addr_t addr, uint32_t value) { uint32_t cur = 0; uint32_t mask = 0xffff; switch (addr & ~3) { case 0x00: /* GPIO_REVISION */ case 0x14: /* GPIO_SYSSTATUS */ case 0x38: /* GPIO_DATAIN */ OMAP_RO_REG(addr); break; case 0x10: /* GPIO_SYSCONFIG */ case 0x1c: /* GPIO_IRQENABLE1 */ case 0x20: /* GPIO_WAKEUPENABLE */ case 0x2c: /* GPIO_IRQENABLE2 */ case 0x30: /* GPIO_CTRL */ case 0x34: /* GPIO_OE */ case 0x3c: /* GPIO_DATAOUT */ case 0x40: /* GPIO_LEVELDETECT0 */ case 0x44: /* GPIO_LEVELDETECT1 */ case 0x48: /* GPIO_RISINGDETECT */ case 0x4c: /* GPIO_FALLINGDETECT */ case 0x50: /* GPIO_DEBOUNCENABLE */ case 0x54: /* GPIO_DEBOUNCINGTIME */ cur = omap_gpio_module_read(opaque, addr & ~3) & ~(mask << ((addr & 3) << 3)); /* Fall through. */ case 0x18: /* GPIO_IRQSTATUS1 */ case 0x28: /* GPIO_IRQSTATUS2 */ case 0x60: /* GPIO_CLEARIRQENABLE1 */ case 0x64: /* GPIO_SETIRQENABLE1 */ case 0x70: /* GPIO_CLEARIRQENABLE2 */ case 0x74: /* GPIO_SETIREQNEABLE2 */ case 0x80: /* GPIO_CLEARWKUENA */ case 0x84: /* GPIO_SETWKUENA */ case 0x90: /* GPIO_CLEARDATAOUT */ case 0x94: /* GPIO_SETDATAOUT */ value <<= (addr & 3) << 3; omap_gpio_module_write(opaque, addr, cur | value); break; default: OMAP_BAD_REG(addr); return; } } static CPUReadMemoryFunc *omap_gpio_module_readfn[] = { omap_gpio_module_readp, omap_gpio_module_readp, omap_gpio_module_read, }; static CPUWriteMemoryFunc *omap_gpio_module_writefn[] = { omap_gpio_module_writep, omap_gpio_module_writep, omap_gpio_module_write, }; static void omap_gpio_module_init(struct omap2_gpio_s *s, struct omap_target_agent_s *ta, int region, qemu_irq mpu, qemu_irq dsp, qemu_irq wkup, omap_clk fclk, omap_clk iclk) { int iomemtype; s->irq[0] = mpu; s->irq[1] = dsp; s->wkup = wkup; s->in = qemu_allocate_irqs(omap_gpio_module_set, s, 32); iomemtype = l4_register_io_memory(0, omap_gpio_module_readfn, omap_gpio_module_writefn, s); omap_l4_attach(ta, region, iomemtype); } struct omap_gpif_s { struct omap2_gpio_s module[5]; int modules; int autoidle; int gpo; }; static void omap_gpif_reset(struct omap_gpif_s *s) { int i; for (i = 0; i < s->modules; i ++) omap_gpio_module_reset(s->module + i); s->autoidle = 0; s->gpo = 0; } static uint32_t omap_gpif_top_read(void *opaque, target_phys_addr_t addr) { struct omap_gpif_s *s = (struct omap_gpif_s *) opaque; switch (addr) { case 0x00: /* IPGENERICOCPSPL_REVISION */ return 0x18; case 0x10: /* IPGENERICOCPSPL_SYSCONFIG */ return s->autoidle; case 0x14: /* IPGENERICOCPSPL_SYSSTATUS */ return 0x01; case 0x18: /* IPGENERICOCPSPL_IRQSTATUS */ return 0x00; case 0x40: /* IPGENERICOCPSPL_GPO */ return s->gpo; case 0x50: /* IPGENERICOCPSPL_GPI */ return 0x00; } OMAP_BAD_REG(addr); return 0; } static void omap_gpif_top_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_gpif_s *s = (struct omap_gpif_s *) opaque; switch (addr) { case 0x00: /* IPGENERICOCPSPL_REVISION */ case 0x14: /* IPGENERICOCPSPL_SYSSTATUS */ case 0x18: /* IPGENERICOCPSPL_IRQSTATUS */ case 0x50: /* IPGENERICOCPSPL_GPI */ OMAP_RO_REG(addr); break; case 0x10: /* IPGENERICOCPSPL_SYSCONFIG */ if (value & (1 << 1)) /* SOFTRESET */ omap_gpif_reset(s); s->autoidle = value & 1; break; case 0x40: /* IPGENERICOCPSPL_GPO */ s->gpo = value & 1; break; default: OMAP_BAD_REG(addr); return; } } static CPUReadMemoryFunc *omap_gpif_top_readfn[] = { omap_gpif_top_read, omap_gpif_top_read, omap_gpif_top_read, }; static CPUWriteMemoryFunc *omap_gpif_top_writefn[] = { omap_gpif_top_write, omap_gpif_top_write, omap_gpif_top_write, }; struct omap_gpif_s *omap2_gpio_init(struct omap_target_agent_s *ta, qemu_irq *irq, omap_clk *fclk, omap_clk iclk, int modules) { int iomemtype, i; struct omap_gpif_s *s = (struct omap_gpif_s *) qemu_mallocz(sizeof(struct omap_gpif_s)); int region[4] = { 0, 2, 4, 5 }; s->modules = modules; for (i = 0; i < modules; i ++) omap_gpio_module_init(s->module + i, ta, region[i], irq[i], 0, 0, fclk[i], iclk); omap_gpif_reset(s); iomemtype = l4_register_io_memory(0, omap_gpif_top_readfn, omap_gpif_top_writefn, s); omap_l4_attach(ta, 1, iomemtype); return s; } qemu_irq *omap2_gpio_in_get(struct omap_gpif_s *s, int start) { if (start >= s->modules * 32 || start < 0) hw_error("%s: No GPIO line %i\n", __FUNCTION__, start); return s->module[start >> 5].in + (start & 31); } void omap2_gpio_out_set(struct omap_gpif_s *s, int line, qemu_irq handler) { if (line >= s->modules * 32 || line < 0) hw_error("%s: No GPIO line %i\n", __FUNCTION__, line); s->module[line >> 5].handler[line & 31] = handler; } /* Multichannel SPI */ struct omap_mcspi_s { qemu_irq irq; int chnum; uint32_t sysconfig; uint32_t systest; uint32_t irqst; uint32_t irqen; uint32_t wken; uint32_t control; struct omap_mcspi_ch_s { qemu_irq txdrq; qemu_irq rxdrq; uint32_t (*txrx)(void *opaque, uint32_t, int); void *opaque; uint32_t tx; uint32_t rx; uint32_t config; uint32_t status; uint32_t control; } ch[4]; }; static inline void omap_mcspi_interrupt_update(struct omap_mcspi_s *s) { qemu_set_irq(s->irq, s->irqst & s->irqen); } static inline void omap_mcspi_dmarequest_update(struct omap_mcspi_ch_s *ch) { qemu_set_irq(ch->txdrq, (ch->control & 1) && /* EN */ (ch->config & (1 << 14)) && /* DMAW */ (ch->status & (1 << 1)) && /* TXS */ ((ch->config >> 12) & 3) != 1); /* TRM */ qemu_set_irq(ch->rxdrq, (ch->control & 1) && /* EN */ (ch->config & (1 << 15)) && /* DMAW */ (ch->status & (1 << 0)) && /* RXS */ ((ch->config >> 12) & 3) != 2); /* TRM */ } static void omap_mcspi_transfer_run(struct omap_mcspi_s *s, int chnum) { struct omap_mcspi_ch_s *ch = s->ch + chnum; if (!(ch->control & 1)) /* EN */ return; if ((ch->status & (1 << 0)) && /* RXS */ ((ch->config >> 12) & 3) != 2 && /* TRM */ !(ch->config & (1 << 19))) /* TURBO */ goto intr_update; if ((ch->status & (1 << 1)) && /* TXS */ ((ch->config >> 12) & 3) != 1) /* TRM */ goto intr_update; if (!(s->control & 1) || /* SINGLE */ (ch->config & (1 << 20))) { /* FORCE */ if (ch->txrx) ch->rx = ch->txrx(ch->opaque, ch->tx, /* WL */ 1 + (0x1f & (ch->config >> 7))); } ch->tx = 0; ch->status |= 1 << 2; /* EOT */ ch->status |= 1 << 1; /* TXS */ if (((ch->config >> 12) & 3) != 2) /* TRM */ ch->status |= 1 << 0; /* RXS */ intr_update: if ((ch->status & (1 << 0)) && /* RXS */ ((ch->config >> 12) & 3) != 2 && /* TRM */ !(ch->config & (1 << 19))) /* TURBO */ s->irqst |= 1 << (2 + 4 * chnum); /* RX_FULL */ if ((ch->status & (1 << 1)) && /* TXS */ ((ch->config >> 12) & 3) != 1) /* TRM */ s->irqst |= 1 << (0 + 4 * chnum); /* TX_EMPTY */ omap_mcspi_interrupt_update(s); omap_mcspi_dmarequest_update(ch); } static void omap_mcspi_reset(struct omap_mcspi_s *s) { int ch; s->sysconfig = 0; s->systest = 0; s->irqst = 0; s->irqen = 0; s->wken = 0; s->control = 4; for (ch = 0; ch < 4; ch ++) { s->ch[ch].config = 0x060000; s->ch[ch].status = 2; /* TXS */ s->ch[ch].control = 0; omap_mcspi_dmarequest_update(s->ch + ch); } omap_mcspi_interrupt_update(s); } static uint32_t omap_mcspi_read(void *opaque, target_phys_addr_t addr) { struct omap_mcspi_s *s = (struct omap_mcspi_s *) opaque; int ch = 0; uint32_t ret; switch (addr) { case 0x00: /* MCSPI_REVISION */ return 0x91; case 0x10: /* MCSPI_SYSCONFIG */ return s->sysconfig; case 0x14: /* MCSPI_SYSSTATUS */ return 1; /* RESETDONE */ case 0x18: /* MCSPI_IRQSTATUS */ return s->irqst; case 0x1c: /* MCSPI_IRQENABLE */ return s->irqen; case 0x20: /* MCSPI_WAKEUPENABLE */ return s->wken; case 0x24: /* MCSPI_SYST */ return s->systest; case 0x28: /* MCSPI_MODULCTRL */ return s->control; case 0x68: ch ++; case 0x54: ch ++; case 0x40: ch ++; case 0x2c: /* MCSPI_CHCONF */ return s->ch[ch].config; case 0x6c: ch ++; case 0x58: ch ++; case 0x44: ch ++; case 0x30: /* MCSPI_CHSTAT */ return s->ch[ch].status; case 0x70: ch ++; case 0x5c: ch ++; case 0x48: ch ++; case 0x34: /* MCSPI_CHCTRL */ return s->ch[ch].control; case 0x74: ch ++; case 0x60: ch ++; case 0x4c: ch ++; case 0x38: /* MCSPI_TX */ return s->ch[ch].tx; case 0x78: ch ++; case 0x64: ch ++; case 0x50: ch ++; case 0x3c: /* MCSPI_RX */ s->ch[ch].status &= ~(1 << 0); /* RXS */ ret = s->ch[ch].rx; omap_mcspi_transfer_run(s, ch); return ret; } OMAP_BAD_REG(addr); return 0; } static void omap_mcspi_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_mcspi_s *s = (struct omap_mcspi_s *) opaque; int ch = 0; switch (addr) { case 0x00: /* MCSPI_REVISION */ case 0x14: /* MCSPI_SYSSTATUS */ case 0x30: /* MCSPI_CHSTAT0 */ case 0x3c: /* MCSPI_RX0 */ case 0x44: /* MCSPI_CHSTAT1 */ case 0x50: /* MCSPI_RX1 */ case 0x58: /* MCSPI_CHSTAT2 */ case 0x64: /* MCSPI_RX2 */ case 0x6c: /* MCSPI_CHSTAT3 */ case 0x78: /* MCSPI_RX3 */ OMAP_RO_REG(addr); return; case 0x10: /* MCSPI_SYSCONFIG */ if (value & (1 << 1)) /* SOFTRESET */ omap_mcspi_reset(s); s->sysconfig = value & 0x31d; break; case 0x18: /* MCSPI_IRQSTATUS */ if (!((s->control & (1 << 3)) && (s->systest & (1 << 11)))) { s->irqst &= ~value; omap_mcspi_interrupt_update(s); } break; case 0x1c: /* MCSPI_IRQENABLE */ s->irqen = value & 0x1777f; omap_mcspi_interrupt_update(s); break; case 0x20: /* MCSPI_WAKEUPENABLE */ s->wken = value & 1; break; case 0x24: /* MCSPI_SYST */ if (s->control & (1 << 3)) /* SYSTEM_TEST */ if (value & (1 << 11)) { /* SSB */ s->irqst |= 0x1777f; omap_mcspi_interrupt_update(s); } s->systest = value & 0xfff; break; case 0x28: /* MCSPI_MODULCTRL */ if (value & (1 << 3)) /* SYSTEM_TEST */ if (s->systest & (1 << 11)) { /* SSB */ s->irqst |= 0x1777f; omap_mcspi_interrupt_update(s); } s->control = value & 0xf; break; case 0x68: ch ++; case 0x54: ch ++; case 0x40: ch ++; case 0x2c: /* MCSPI_CHCONF */ if ((value ^ s->ch[ch].config) & (3 << 14)) /* DMAR | DMAW */ omap_mcspi_dmarequest_update(s->ch + ch); if (((value >> 12) & 3) == 3) /* TRM */ fprintf(stderr, "%s: invalid TRM value (3)\n", __FUNCTION__); if (((value >> 7) & 0x1f) < 3) /* WL */ fprintf(stderr, "%s: invalid WL value (%i)\n", __FUNCTION__, (value >> 7) & 0x1f); s->ch[ch].config = value & 0x7fffff; break; case 0x70: ch ++; case 0x5c: ch ++; case 0x48: ch ++; case 0x34: /* MCSPI_CHCTRL */ if (value & ~s->ch[ch].control & 1) { /* EN */ s->ch[ch].control |= 1; omap_mcspi_transfer_run(s, ch); } else s->ch[ch].control = value & 1; break; case 0x74: ch ++; case 0x60: ch ++; case 0x4c: ch ++; case 0x38: /* MCSPI_TX */ s->ch[ch].tx = value; s->ch[ch].status &= ~(1 << 1); /* TXS */ omap_mcspi_transfer_run(s, ch); break; default: OMAP_BAD_REG(addr); return; } } static CPUReadMemoryFunc *omap_mcspi_readfn[] = { omap_badwidth_read32, omap_badwidth_read32, omap_mcspi_read, }; static CPUWriteMemoryFunc *omap_mcspi_writefn[] = { omap_badwidth_write32, omap_badwidth_write32, omap_mcspi_write, }; struct omap_mcspi_s *omap_mcspi_init(struct omap_target_agent_s *ta, int chnum, qemu_irq irq, qemu_irq *drq, omap_clk fclk, omap_clk iclk) { int iomemtype; struct omap_mcspi_s *s = (struct omap_mcspi_s *) qemu_mallocz(sizeof(struct omap_mcspi_s)); struct omap_mcspi_ch_s *ch = s->ch; s->irq = irq; s->chnum = chnum; while (chnum --) { ch->txdrq = *drq ++; ch->rxdrq = *drq ++; ch ++; } omap_mcspi_reset(s); iomemtype = l4_register_io_memory(0, omap_mcspi_readfn, omap_mcspi_writefn, s); omap_l4_attach(ta, 0, iomemtype); return s; } void omap_mcspi_attach(struct omap_mcspi_s *s, uint32_t (*txrx)(void *opaque, uint32_t, int), void *opaque, int chipselect) { if (chipselect < 0 || chipselect >= s->chnum) hw_error("%s: Bad chipselect %i\n", __FUNCTION__, chipselect); s->ch[chipselect].txrx = txrx; s->ch[chipselect].opaque = opaque; } /* Enhanced Audio Controller (CODEC only) */ struct omap_eac_s { qemu_irq irq; uint16_t sysconfig; uint8_t config[4]; uint8_t control; uint8_t address; uint16_t data; uint8_t vtol; uint8_t vtsl; uint16_t mixer; uint16_t gain[4]; uint8_t att; uint16_t max[7]; struct { qemu_irq txdrq; qemu_irq rxdrq; uint32_t (*txrx)(void *opaque, uint32_t, int); void *opaque; #define EAC_BUF_LEN 1024 uint32_t rxbuf[EAC_BUF_LEN]; int rxoff; int rxlen; int rxavail; uint32_t txbuf[EAC_BUF_LEN]; int txlen; int txavail; int enable; int rate; uint16_t config[4]; /* These need to be moved to the actual codec */ QEMUSoundCard card; SWVoiceIn *in_voice; SWVoiceOut *out_voice; int hw_enable; } codec; struct { uint8_t control; uint16_t config; } modem, bt; }; static inline void omap_eac_interrupt_update(struct omap_eac_s *s) { qemu_set_irq(s->irq, (s->codec.config[1] >> 14) & 1); /* AURDI */ } static inline void omap_eac_in_dmarequest_update(struct omap_eac_s *s) { qemu_set_irq(s->codec.rxdrq, (s->codec.rxavail || s->codec.rxlen) && ((s->codec.config[1] >> 12) & 1)); /* DMAREN */ } static inline void omap_eac_out_dmarequest_update(struct omap_eac_s *s) { qemu_set_irq(s->codec.txdrq, s->codec.txlen < s->codec.txavail && ((s->codec.config[1] >> 11) & 1)); /* DMAWEN */ } static inline void omap_eac_in_refill(struct omap_eac_s *s) { int left = MIN(EAC_BUF_LEN - s->codec.rxlen, s->codec.rxavail) << 2; int start = ((s->codec.rxoff + s->codec.rxlen) & (EAC_BUF_LEN - 1)) << 2; int leftwrap = MIN(left, (EAC_BUF_LEN << 2) - start); int recv = 1; uint8_t *buf = (uint8_t *) s->codec.rxbuf + start; left -= leftwrap; start = 0; while (leftwrap && (recv = AUD_read(s->codec.in_voice, buf + start, leftwrap)) > 0) { /* Be defensive */ start += recv; leftwrap -= recv; } if (recv <= 0) s->codec.rxavail = 0; else s->codec.rxavail -= start >> 2; s->codec.rxlen += start >> 2; if (recv > 0 && left > 0) { start = 0; while (left && (recv = AUD_read(s->codec.in_voice, (uint8_t *) s->codec.rxbuf + start, left)) > 0) { /* Be defensive */ start += recv; left -= recv; } if (recv <= 0) s->codec.rxavail = 0; else s->codec.rxavail -= start >> 2; s->codec.rxlen += start >> 2; } } static inline void omap_eac_out_empty(struct omap_eac_s *s) { int left = s->codec.txlen << 2; int start = 0; int sent = 1; while (left && (sent = AUD_write(s->codec.out_voice, (uint8_t *) s->codec.txbuf + start, left)) > 0) { /* Be defensive */ start += sent; left -= sent; } if (!sent) { s->codec.txavail = 0; omap_eac_out_dmarequest_update(s); } if (start) s->codec.txlen = 0; } static void omap_eac_in_cb(void *opaque, int avail_b) { struct omap_eac_s *s = (struct omap_eac_s *) opaque; s->codec.rxavail = avail_b >> 2; omap_eac_in_refill(s); /* TODO: possibly discard current buffer if overrun */ omap_eac_in_dmarequest_update(s); } static void omap_eac_out_cb(void *opaque, int free_b) { struct omap_eac_s *s = (struct omap_eac_s *) opaque; s->codec.txavail = free_b >> 2; if (s->codec.txlen) omap_eac_out_empty(s); else omap_eac_out_dmarequest_update(s); } static void omap_eac_enable_update(struct omap_eac_s *s) { s->codec.enable = !(s->codec.config[1] & 1) && /* EACPWD */ (s->codec.config[1] & 2) && /* AUDEN */ s->codec.hw_enable; } static const int omap_eac_fsint[4] = { 8000, 11025, 22050, 44100, }; static const int omap_eac_fsint2[8] = { 8000, 11025, 22050, 44100, 48000, 0, 0, 0, }; static const int omap_eac_fsint3[16] = { 8000, 11025, 16000, 22050, 24000, 32000, 44100, 48000, 0, 0, 0, 0, 0, 0, 0, 0, }; static void omap_eac_rate_update(struct omap_eac_s *s) { int fsint[3]; fsint[2] = (s->codec.config[3] >> 9) & 0xf; fsint[1] = (s->codec.config[2] >> 0) & 0x7; fsint[0] = (s->codec.config[0] >> 6) & 0x3; if (fsint[2] < 0xf) s->codec.rate = omap_eac_fsint3[fsint[2]]; else if (fsint[1] < 0x7) s->codec.rate = omap_eac_fsint2[fsint[1]]; else s->codec.rate = omap_eac_fsint[fsint[0]]; } static void omap_eac_volume_update(struct omap_eac_s *s) { /* TODO */ } static void omap_eac_format_update(struct omap_eac_s *s) { struct audsettings fmt; /* The hardware buffers at most one sample */ if (s->codec.rxlen) s->codec.rxlen = 1; if (s->codec.in_voice) { AUD_set_active_in(s->codec.in_voice, 0); AUD_close_in(&s->codec.card, s->codec.in_voice); s->codec.in_voice = 0; } if (s->codec.out_voice) { omap_eac_out_empty(s); AUD_set_active_out(s->codec.out_voice, 0); AUD_close_out(&s->codec.card, s->codec.out_voice); s->codec.out_voice = 0; s->codec.txavail = 0; } /* Discard what couldn't be written */ s->codec.txlen = 0; omap_eac_enable_update(s); if (!s->codec.enable) return; omap_eac_rate_update(s); fmt.endianness = ((s->codec.config[0] >> 8) & 1); /* LI_BI */ fmt.nchannels = ((s->codec.config[0] >> 10) & 1) ? 2 : 1; /* MN_ST */ fmt.freq = s->codec.rate; /* TODO: signedness possibly depends on the CODEC hardware - or * does I2S specify it? */ /* All register writes are 16 bits so we we store 16-bit samples * in the buffers regardless of AGCFR[B8_16] value. */ fmt.fmt = AUD_FMT_U16; s->codec.in_voice = AUD_open_in(&s->codec.card, s->codec.in_voice, "eac.codec.in", s, omap_eac_in_cb, &fmt); s->codec.out_voice = AUD_open_out(&s->codec.card, s->codec.out_voice, "eac.codec.out", s, omap_eac_out_cb, &fmt); omap_eac_volume_update(s); AUD_set_active_in(s->codec.in_voice, 1); AUD_set_active_out(s->codec.out_voice, 1); } static void omap_eac_reset(struct omap_eac_s *s) { s->sysconfig = 0; s->config[0] = 0x0c; s->config[1] = 0x09; s->config[2] = 0xab; s->config[3] = 0x03; s->control = 0x00; s->address = 0x00; s->data = 0x0000; s->vtol = 0x00; s->vtsl = 0x00; s->mixer = 0x0000; s->gain[0] = 0xe7e7; s->gain[1] = 0x6767; s->gain[2] = 0x6767; s->gain[3] = 0x6767; s->att = 0xce; s->max[0] = 0; s->max[1] = 0; s->max[2] = 0; s->max[3] = 0; s->max[4] = 0; s->max[5] = 0; s->max[6] = 0; s->modem.control = 0x00; s->modem.config = 0x0000; s->bt.control = 0x00; s->bt.config = 0x0000; s->codec.config[0] = 0x0649; s->codec.config[1] = 0x0000; s->codec.config[2] = 0x0007; s->codec.config[3] = 0x1ffc; s->codec.rxoff = 0; s->codec.rxlen = 0; s->codec.txlen = 0; s->codec.rxavail = 0; s->codec.txavail = 0; omap_eac_format_update(s); omap_eac_interrupt_update(s); } static uint32_t omap_eac_read(void *opaque, target_phys_addr_t addr) { struct omap_eac_s *s = (struct omap_eac_s *) opaque; uint32_t ret; switch (addr) { case 0x000: /* CPCFR1 */ return s->config[0]; case 0x004: /* CPCFR2 */ return s->config[1]; case 0x008: /* CPCFR3 */ return s->config[2]; case 0x00c: /* CPCFR4 */ return s->config[3]; case 0x010: /* CPTCTL */ return s->control | ((s->codec.rxavail + s->codec.rxlen > 0) << 7) | ((s->codec.txlen < s->codec.txavail) << 5); case 0x014: /* CPTTADR */ return s->address; case 0x018: /* CPTDATL */ return s->data & 0xff; case 0x01c: /* CPTDATH */ return s->data >> 8; case 0x020: /* CPTVSLL */ return s->vtol; case 0x024: /* CPTVSLH */ return s->vtsl | (3 << 5); /* CRDY1 | CRDY2 */ case 0x040: /* MPCTR */ return s->modem.control; case 0x044: /* MPMCCFR */ return s->modem.config; case 0x060: /* BPCTR */ return s->bt.control; case 0x064: /* BPMCCFR */ return s->bt.config; case 0x080: /* AMSCFR */ return s->mixer; case 0x084: /* AMVCTR */ return s->gain[0]; case 0x088: /* AM1VCTR */ return s->gain[1]; case 0x08c: /* AM2VCTR */ return s->gain[2]; case 0x090: /* AM3VCTR */ return s->gain[3]; case 0x094: /* ASTCTR */ return s->att; case 0x098: /* APD1LCR */ return s->max[0]; case 0x09c: /* APD1RCR */ return s->max[1]; case 0x0a0: /* APD2LCR */ return s->max[2]; case 0x0a4: /* APD2RCR */ return s->max[3]; case 0x0a8: /* APD3LCR */ return s->max[4]; case 0x0ac: /* APD3RCR */ return s->max[5]; case 0x0b0: /* APD4R */ return s->max[6]; case 0x0b4: /* ADWR */ /* This should be write-only? Docs list it as read-only. */ return 0x0000; case 0x0b8: /* ADRDR */ if (likely(s->codec.rxlen > 1)) { ret = s->codec.rxbuf[s->codec.rxoff ++]; s->codec.rxlen --; s->codec.rxoff &= EAC_BUF_LEN - 1; return ret; } else if (s->codec.rxlen) { ret = s->codec.rxbuf[s->codec.rxoff ++]; s->codec.rxlen --; s->codec.rxoff &= EAC_BUF_LEN - 1; if (s->codec.rxavail) omap_eac_in_refill(s); omap_eac_in_dmarequest_update(s); return ret; } return 0x0000; case 0x0bc: /* AGCFR */ return s->codec.config[0]; case 0x0c0: /* AGCTR */ return s->codec.config[1] | ((s->codec.config[1] & 2) << 14); case 0x0c4: /* AGCFR2 */ return s->codec.config[2]; case 0x0c8: /* AGCFR3 */ return s->codec.config[3]; case 0x0cc: /* MBPDMACTR */ case 0x0d0: /* MPDDMARR */ case 0x0d8: /* MPUDMARR */ case 0x0e4: /* BPDDMARR */ case 0x0ec: /* BPUDMARR */ return 0x0000; case 0x100: /* VERSION_NUMBER */ return 0x0010; case 0x104: /* SYSCONFIG */ return s->sysconfig; case 0x108: /* SYSSTATUS */ return 1 | 0xe; /* RESETDONE | stuff */ } OMAP_BAD_REG(addr); return 0; } static void omap_eac_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_eac_s *s = (struct omap_eac_s *) opaque; switch (addr) { case 0x098: /* APD1LCR */ case 0x09c: /* APD1RCR */ case 0x0a0: /* APD2LCR */ case 0x0a4: /* APD2RCR */ case 0x0a8: /* APD3LCR */ case 0x0ac: /* APD3RCR */ case 0x0b0: /* APD4R */ case 0x0b8: /* ADRDR */ case 0x0d0: /* MPDDMARR */ case 0x0d8: /* MPUDMARR */ case 0x0e4: /* BPDDMARR */ case 0x0ec: /* BPUDMARR */ case 0x100: /* VERSION_NUMBER */ case 0x108: /* SYSSTATUS */ OMAP_RO_REG(addr); return; case 0x000: /* CPCFR1 */ s->config[0] = value & 0xff; omap_eac_format_update(s); break; case 0x004: /* CPCFR2 */ s->config[1] = value & 0xff; omap_eac_format_update(s); break; case 0x008: /* CPCFR3 */ s->config[2] = value & 0xff; omap_eac_format_update(s); break; case 0x00c: /* CPCFR4 */ s->config[3] = value & 0xff; omap_eac_format_update(s); break; case 0x010: /* CPTCTL */ /* Assuming TXF and TXE bits are read-only... */ s->control = value & 0x5f; omap_eac_interrupt_update(s); break; case 0x014: /* CPTTADR */ s->address = value & 0xff; break; case 0x018: /* CPTDATL */ s->data &= 0xff00; s->data |= value & 0xff; break; case 0x01c: /* CPTDATH */ s->data &= 0x00ff; s->data |= value << 8; break; case 0x020: /* CPTVSLL */ s->vtol = value & 0xf8; break; case 0x024: /* CPTVSLH */ s->vtsl = value & 0x9f; break; case 0x040: /* MPCTR */ s->modem.control = value & 0x8f; break; case 0x044: /* MPMCCFR */ s->modem.config = value & 0x7fff; break; case 0x060: /* BPCTR */ s->bt.control = value & 0x8f; break; case 0x064: /* BPMCCFR */ s->bt.config = value & 0x7fff; break; case 0x080: /* AMSCFR */ s->mixer = value & 0x0fff; break; case 0x084: /* AMVCTR */ s->gain[0] = value & 0xffff; break; case 0x088: /* AM1VCTR */ s->gain[1] = value & 0xff7f; break; case 0x08c: /* AM2VCTR */ s->gain[2] = value & 0xff7f; break; case 0x090: /* AM3VCTR */ s->gain[3] = value & 0xff7f; break; case 0x094: /* ASTCTR */ s->att = value & 0xff; break; case 0x0b4: /* ADWR */ s->codec.txbuf[s->codec.txlen ++] = value; if (unlikely(s->codec.txlen == EAC_BUF_LEN || s->codec.txlen == s->codec.txavail)) { if (s->codec.txavail) omap_eac_out_empty(s); /* Discard what couldn't be written */ s->codec.txlen = 0; } break; case 0x0bc: /* AGCFR */ s->codec.config[0] = value & 0x07ff; omap_eac_format_update(s); break; case 0x0c0: /* AGCTR */ s->codec.config[1] = value & 0x780f; omap_eac_format_update(s); break; case 0x0c4: /* AGCFR2 */ s->codec.config[2] = value & 0x003f; omap_eac_format_update(s); break; case 0x0c8: /* AGCFR3 */ s->codec.config[3] = value & 0xffff; omap_eac_format_update(s); break; case 0x0cc: /* MBPDMACTR */ case 0x0d4: /* MPDDMAWR */ case 0x0e0: /* MPUDMAWR */ case 0x0e8: /* BPDDMAWR */ case 0x0f0: /* BPUDMAWR */ break; case 0x104: /* SYSCONFIG */ if (value & (1 << 1)) /* SOFTRESET */ omap_eac_reset(s); s->sysconfig = value & 0x31d; break; default: OMAP_BAD_REG(addr); return; } } static CPUReadMemoryFunc *omap_eac_readfn[] = { omap_badwidth_read16, omap_eac_read, omap_badwidth_read16, }; static CPUWriteMemoryFunc *omap_eac_writefn[] = { omap_badwidth_write16, omap_eac_write, omap_badwidth_write16, }; struct omap_eac_s *omap_eac_init(struct omap_target_agent_s *ta, qemu_irq irq, qemu_irq *drq, omap_clk fclk, omap_clk iclk) { int iomemtype; struct omap_eac_s *s = (struct omap_eac_s *) qemu_mallocz(sizeof(struct omap_eac_s)); s->irq = irq; s->codec.rxdrq = *drq ++; s->codec.txdrq = *drq ++; omap_eac_reset(s); #ifdef HAS_AUDIO AUD_register_card("OMAP EAC", &s->codec.card); iomemtype = cpu_register_io_memory(0, omap_eac_readfn, omap_eac_writefn, s); omap_l4_attach(ta, 0, iomemtype); #endif return s; } /* STI/XTI (emulation interface) console - reverse engineered only */ struct omap_sti_s { qemu_irq irq; CharDriverState *chr; uint32_t sysconfig; uint32_t systest; uint32_t irqst; uint32_t irqen; uint32_t clkcontrol; uint32_t serial_config; }; #define STI_TRACE_CONSOLE_CHANNEL 239 #define STI_TRACE_CONTROL_CHANNEL 253 static inline void omap_sti_interrupt_update(struct omap_sti_s *s) { qemu_set_irq(s->irq, s->irqst & s->irqen); } static void omap_sti_reset(struct omap_sti_s *s) { s->sysconfig = 0; s->irqst = 0; s->irqen = 0; s->clkcontrol = 0; s->serial_config = 0; omap_sti_interrupt_update(s); } static uint32_t omap_sti_read(void *opaque, target_phys_addr_t addr) { struct omap_sti_s *s = (struct omap_sti_s *) opaque; switch (addr) { case 0x00: /* STI_REVISION */ return 0x10; case 0x10: /* STI_SYSCONFIG */ return s->sysconfig; case 0x14: /* STI_SYSSTATUS / STI_RX_STATUS / XTI_SYSSTATUS */ return 0x00; case 0x18: /* STI_IRQSTATUS */ return s->irqst; case 0x1c: /* STI_IRQSETEN / STI_IRQCLREN */ return s->irqen; case 0x24: /* STI_ER / STI_DR / XTI_TRACESELECT */ case 0x28: /* STI_RX_DR / XTI_RXDATA */ /* TODO */ return 0; case 0x2c: /* STI_CLK_CTRL / XTI_SCLKCRTL */ return s->clkcontrol; case 0x30: /* STI_SERIAL_CFG / XTI_SCONFIG */ return s->serial_config; } OMAP_BAD_REG(addr); return 0; } static void omap_sti_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_sti_s *s = (struct omap_sti_s *) opaque; switch (addr) { case 0x00: /* STI_REVISION */ case 0x14: /* STI_SYSSTATUS / STI_RX_STATUS / XTI_SYSSTATUS */ OMAP_RO_REG(addr); return; case 0x10: /* STI_SYSCONFIG */ if (value & (1 << 1)) /* SOFTRESET */ omap_sti_reset(s); s->sysconfig = value & 0xfe; break; case 0x18: /* STI_IRQSTATUS */ s->irqst &= ~value; omap_sti_interrupt_update(s); break; case 0x1c: /* STI_IRQSETEN / STI_IRQCLREN */ s->irqen = value & 0xffff; omap_sti_interrupt_update(s); break; case 0x2c: /* STI_CLK_CTRL / XTI_SCLKCRTL */ s->clkcontrol = value & 0xff; break; case 0x30: /* STI_SERIAL_CFG / XTI_SCONFIG */ s->serial_config = value & 0xff; break; case 0x24: /* STI_ER / STI_DR / XTI_TRACESELECT */ case 0x28: /* STI_RX_DR / XTI_RXDATA */ /* TODO */ return; default: OMAP_BAD_REG(addr); return; } } static CPUReadMemoryFunc *omap_sti_readfn[] = { omap_badwidth_read32, omap_badwidth_read32, omap_sti_read, }; static CPUWriteMemoryFunc *omap_sti_writefn[] = { omap_badwidth_write32, omap_badwidth_write32, omap_sti_write, }; static uint32_t omap_sti_fifo_read(void *opaque, target_phys_addr_t addr) { OMAP_BAD_REG(addr); return 0; } static void omap_sti_fifo_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_sti_s *s = (struct omap_sti_s *) opaque; int ch = addr >> 6; uint8_t byte = value; if (ch == STI_TRACE_CONTROL_CHANNEL) { /* Flush channel value. */ qemu_chr_write(s->chr, (const uint8_t *) "\r", 1); } else if (ch == STI_TRACE_CONSOLE_CHANNEL || 1) { if (value == 0xc0 || value == 0xc3) { /* Open channel ch. */ } else if (value == 0x00) qemu_chr_write(s->chr, (const uint8_t *) "\n", 1); else qemu_chr_write(s->chr, &byte, 1); } } static CPUReadMemoryFunc *omap_sti_fifo_readfn[] = { omap_sti_fifo_read, omap_badwidth_read8, omap_badwidth_read8, }; static CPUWriteMemoryFunc *omap_sti_fifo_writefn[] = { omap_sti_fifo_write, omap_badwidth_write8, omap_badwidth_write8, }; static struct omap_sti_s *omap_sti_init(struct omap_target_agent_s *ta, target_phys_addr_t channel_base, qemu_irq irq, omap_clk clk, CharDriverState *chr) { int iomemtype; struct omap_sti_s *s = (struct omap_sti_s *) qemu_mallocz(sizeof(struct omap_sti_s)); s->irq = irq; omap_sti_reset(s); s->chr = chr ?: qemu_chr_open("null", "null", NULL); iomemtype = l4_register_io_memory(0, omap_sti_readfn, omap_sti_writefn, s); omap_l4_attach(ta, 0, iomemtype); iomemtype = cpu_register_io_memory(0, omap_sti_fifo_readfn, omap_sti_fifo_writefn, s); cpu_register_physical_memory(channel_base, 0x10000, iomemtype); return s; } /* L4 Interconnect */ struct omap_target_agent_s { struct omap_l4_s *bus; int regions; struct omap_l4_region_s *start; target_phys_addr_t base; uint32_t component; uint32_t control; uint32_t status; }; struct omap_l4_s { target_phys_addr_t base; int ta_num; struct omap_target_agent_s ta[0]; }; #ifdef L4_MUX_HACK static int omap_l4_io_entries; static int omap_cpu_io_entry; static struct omap_l4_entry { CPUReadMemoryFunc **mem_read; CPUWriteMemoryFunc **mem_write; void *opaque; } *omap_l4_io_entry; static CPUReadMemoryFunc **omap_l4_io_readb_fn; static CPUReadMemoryFunc **omap_l4_io_readh_fn; static CPUReadMemoryFunc **omap_l4_io_readw_fn; static CPUWriteMemoryFunc **omap_l4_io_writeb_fn; static CPUWriteMemoryFunc **omap_l4_io_writeh_fn; static CPUWriteMemoryFunc **omap_l4_io_writew_fn; static void **omap_l4_io_opaque; int l4_register_io_memory(int io_index, CPUReadMemoryFunc **mem_read, CPUWriteMemoryFunc **mem_write, void *opaque) { omap_l4_io_entry[omap_l4_io_entries].mem_read = mem_read; omap_l4_io_entry[omap_l4_io_entries].mem_write = mem_write; omap_l4_io_entry[omap_l4_io_entries].opaque = opaque; return omap_l4_io_entries ++; } static uint32_t omap_l4_io_readb(void *opaque, target_phys_addr_t addr) { unsigned int i = (addr - OMAP2_L4_BASE) >> TARGET_PAGE_BITS; return omap_l4_io_readb_fn[i](omap_l4_io_opaque[i], addr); } static uint32_t omap_l4_io_readh(void *opaque, target_phys_addr_t addr) { unsigned int i = (addr - OMAP2_L4_BASE) >> TARGET_PAGE_BITS; return omap_l4_io_readh_fn[i](omap_l4_io_opaque[i], addr); } static uint32_t omap_l4_io_readw(void *opaque, target_phys_addr_t addr) { unsigned int i = (addr - OMAP2_L4_BASE) >> TARGET_PAGE_BITS; return omap_l4_io_readw_fn[i](omap_l4_io_opaque[i], addr); } static void omap_l4_io_writeb(void *opaque, target_phys_addr_t addr, uint32_t value) { unsigned int i = (addr - OMAP2_L4_BASE) >> TARGET_PAGE_BITS; return omap_l4_io_writeb_fn[i](omap_l4_io_opaque[i], addr, value); } static void omap_l4_io_writeh(void *opaque, target_phys_addr_t addr, uint32_t value) { unsigned int i = (addr - OMAP2_L4_BASE) >> TARGET_PAGE_BITS; return omap_l4_io_writeh_fn[i](omap_l4_io_opaque[i], addr, value); } static void omap_l4_io_writew(void *opaque, target_phys_addr_t addr, uint32_t value) { unsigned int i = (addr - OMAP2_L4_BASE) >> TARGET_PAGE_BITS; return omap_l4_io_writew_fn[i](omap_l4_io_opaque[i], addr, value); } static CPUReadMemoryFunc *omap_l4_io_readfn[] = { omap_l4_io_readb, omap_l4_io_readh, omap_l4_io_readw, }; static CPUWriteMemoryFunc *omap_l4_io_writefn[] = { omap_l4_io_writeb, omap_l4_io_writeh, omap_l4_io_writew, }; #endif struct omap_l4_s *omap_l4_init(target_phys_addr_t base, int ta_num) { struct omap_l4_s *bus = qemu_mallocz( sizeof(*bus) + ta_num * sizeof(*bus->ta)); bus->ta_num = ta_num; bus->base = base; #ifdef L4_MUX_HACK omap_l4_io_entries = 1; omap_l4_io_entry = qemu_mallocz(125 * sizeof(*omap_l4_io_entry)); omap_cpu_io_entry = cpu_register_io_memory(0, omap_l4_io_readfn, omap_l4_io_writefn, bus); # define L4_PAGES (0xb4000 / TARGET_PAGE_SIZE) omap_l4_io_readb_fn = qemu_mallocz(sizeof(void *) * L4_PAGES); omap_l4_io_readh_fn = qemu_mallocz(sizeof(void *) * L4_PAGES); omap_l4_io_readw_fn = qemu_mallocz(sizeof(void *) * L4_PAGES); omap_l4_io_writeb_fn = qemu_mallocz(sizeof(void *) * L4_PAGES); omap_l4_io_writeh_fn = qemu_mallocz(sizeof(void *) * L4_PAGES); omap_l4_io_writew_fn = qemu_mallocz(sizeof(void *) * L4_PAGES); omap_l4_io_opaque = qemu_mallocz(sizeof(void *) * L4_PAGES); #endif return bus; } static uint32_t omap_l4ta_read(void *opaque, target_phys_addr_t addr) { struct omap_target_agent_s *s = (struct omap_target_agent_s *) opaque; switch (addr) { case 0x00: /* COMPONENT */ return s->component; case 0x20: /* AGENT_CONTROL */ return s->control; case 0x28: /* AGENT_STATUS */ return s->status; } OMAP_BAD_REG(addr); return 0; } static void omap_l4ta_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_target_agent_s *s = (struct omap_target_agent_s *) opaque; switch (addr) { case 0x00: /* COMPONENT */ case 0x28: /* AGENT_STATUS */ OMAP_RO_REG(addr); break; case 0x20: /* AGENT_CONTROL */ s->control = value & 0x01000700; if (value & 1) /* OCP_RESET */ s->status &= ~1; /* REQ_TIMEOUT */ break; default: OMAP_BAD_REG(addr); } } static CPUReadMemoryFunc *omap_l4ta_readfn[] = { omap_badwidth_read16, omap_l4ta_read, omap_badwidth_read16, }; static CPUWriteMemoryFunc *omap_l4ta_writefn[] = { omap_badwidth_write32, omap_badwidth_write32, omap_l4ta_write, }; #define L4TA(n) (n) #define L4TAO(n) ((n) + 39) static struct omap_l4_region_s { target_phys_addr_t offset; size_t size; int access; } omap_l4_region[125] = { [ 1] = { 0x40800, 0x800, 32 }, /* Initiator agent */ [ 2] = { 0x41000, 0x1000, 32 }, /* Link agent */ [ 0] = { 0x40000, 0x800, 32 }, /* Address and protection */ [ 3] = { 0x00000, 0x1000, 32 | 16 | 8 }, /* System Control and Pinout */ [ 4] = { 0x01000, 0x1000, 32 | 16 | 8 }, /* L4TAO1 */ [ 5] = { 0x04000, 0x1000, 32 | 16 }, /* 32K Timer */ [ 6] = { 0x05000, 0x1000, 32 | 16 | 8 }, /* L4TAO2 */ [ 7] = { 0x08000, 0x800, 32 }, /* PRCM Region A */ [ 8] = { 0x08800, 0x800, 32 }, /* PRCM Region B */ [ 9] = { 0x09000, 0x1000, 32 | 16 | 8 }, /* L4TAO */ [ 10] = { 0x12000, 0x1000, 32 | 16 | 8 }, /* Test (BCM) */ [ 11] = { 0x13000, 0x1000, 32 | 16 | 8 }, /* L4TA1 */ [ 12] = { 0x14000, 0x1000, 32 }, /* Test/emulation (TAP) */ [ 13] = { 0x15000, 0x1000, 32 | 16 | 8 }, /* L4TA2 */ [ 14] = { 0x18000, 0x1000, 32 | 16 | 8 }, /* GPIO1 */ [ 16] = { 0x1a000, 0x1000, 32 | 16 | 8 }, /* GPIO2 */ [ 18] = { 0x1c000, 0x1000, 32 | 16 | 8 }, /* GPIO3 */ [ 19] = { 0x1e000, 0x1000, 32 | 16 | 8 }, /* GPIO4 */ [ 15] = { 0x19000, 0x1000, 32 | 16 | 8 }, /* Quad GPIO TOP */ [ 17] = { 0x1b000, 0x1000, 32 | 16 | 8 }, /* L4TA3 */ [ 20] = { 0x20000, 0x1000, 32 | 16 | 8 }, /* WD Timer 1 (Secure) */ [ 22] = { 0x22000, 0x1000, 32 | 16 | 8 }, /* WD Timer 2 (OMAP) */ [ 21] = { 0x21000, 0x1000, 32 | 16 | 8 }, /* Dual WD timer TOP */ [ 23] = { 0x23000, 0x1000, 32 | 16 | 8 }, /* L4TA4 */ [ 24] = { 0x28000, 0x1000, 32 | 16 | 8 }, /* GP Timer 1 */ [ 25] = { 0x29000, 0x1000, 32 | 16 | 8 }, /* L4TA7 */ [ 26] = { 0x48000, 0x2000, 32 | 16 | 8 }, /* Emulation (ARM11ETB) */ [ 27] = { 0x4a000, 0x1000, 32 | 16 | 8 }, /* L4TA9 */ [ 28] = { 0x50000, 0x400, 32 | 16 | 8 }, /* Display top */ [ 29] = { 0x50400, 0x400, 32 | 16 | 8 }, /* Display control */ [ 30] = { 0x50800, 0x400, 32 | 16 | 8 }, /* Display RFBI */ [ 31] = { 0x50c00, 0x400, 32 | 16 | 8 }, /* Display encoder */ [ 32] = { 0x51000, 0x1000, 32 | 16 | 8 }, /* L4TA10 */ [ 33] = { 0x52000, 0x400, 32 | 16 | 8 }, /* Camera top */ [ 34] = { 0x52400, 0x400, 32 | 16 | 8 }, /* Camera core */ [ 35] = { 0x52800, 0x400, 32 | 16 | 8 }, /* Camera DMA */ [ 36] = { 0x52c00, 0x400, 32 | 16 | 8 }, /* Camera MMU */ [ 37] = { 0x53000, 0x1000, 32 | 16 | 8 }, /* L4TA11 */ [ 38] = { 0x56000, 0x1000, 32 | 16 | 8 }, /* sDMA */ [ 39] = { 0x57000, 0x1000, 32 | 16 | 8 }, /* L4TA12 */ [ 40] = { 0x58000, 0x1000, 32 | 16 | 8 }, /* SSI top */ [ 41] = { 0x59000, 0x1000, 32 | 16 | 8 }, /* SSI GDD */ [ 42] = { 0x5a000, 0x1000, 32 | 16 | 8 }, /* SSI Port1 */ [ 43] = { 0x5b000, 0x1000, 32 | 16 | 8 }, /* SSI Port2 */ [ 44] = { 0x5c000, 0x1000, 32 | 16 | 8 }, /* L4TA13 */ [ 45] = { 0x5e000, 0x1000, 32 | 16 | 8 }, /* USB OTG */ [ 46] = { 0x5f000, 0x1000, 32 | 16 | 8 }, /* L4TAO4 */ [ 47] = { 0x60000, 0x1000, 32 | 16 | 8 }, /* Emulation (WIN_TRACER1SDRC) */ [ 48] = { 0x61000, 0x1000, 32 | 16 | 8 }, /* L4TA14 */ [ 49] = { 0x62000, 0x1000, 32 | 16 | 8 }, /* Emulation (WIN_TRACER2GPMC) */ [ 50] = { 0x63000, 0x1000, 32 | 16 | 8 }, /* L4TA15 */ [ 51] = { 0x64000, 0x1000, 32 | 16 | 8 }, /* Emulation (WIN_TRACER3OCM) */ [ 52] = { 0x65000, 0x1000, 32 | 16 | 8 }, /* L4TA16 */ [ 53] = { 0x66000, 0x300, 32 | 16 | 8 }, /* Emulation (WIN_TRACER4L4) */ [ 54] = { 0x67000, 0x1000, 32 | 16 | 8 }, /* L4TA17 */ [ 55] = { 0x68000, 0x1000, 32 | 16 | 8 }, /* Emulation (XTI) */ [ 56] = { 0x69000, 0x1000, 32 | 16 | 8 }, /* L4TA18 */ [ 57] = { 0x6a000, 0x1000, 16 | 8 }, /* UART1 */ [ 58] = { 0x6b000, 0x1000, 32 | 16 | 8 }, /* L4TA19 */ [ 59] = { 0x6c000, 0x1000, 16 | 8 }, /* UART2 */ [ 60] = { 0x6d000, 0x1000, 32 | 16 | 8 }, /* L4TA20 */ [ 61] = { 0x6e000, 0x1000, 16 | 8 }, /* UART3 */ [ 62] = { 0x6f000, 0x1000, 32 | 16 | 8 }, /* L4TA21 */ [ 63] = { 0x70000, 0x1000, 16 }, /* I2C1 */ [ 64] = { 0x71000, 0x1000, 32 | 16 | 8 }, /* L4TAO5 */ [ 65] = { 0x72000, 0x1000, 16 }, /* I2C2 */ [ 66] = { 0x73000, 0x1000, 32 | 16 | 8 }, /* L4TAO6 */ [ 67] = { 0x74000, 0x1000, 16 }, /* McBSP1 */ [ 68] = { 0x75000, 0x1000, 32 | 16 | 8 }, /* L4TAO7 */ [ 69] = { 0x76000, 0x1000, 16 }, /* McBSP2 */ [ 70] = { 0x77000, 0x1000, 32 | 16 | 8 }, /* L4TAO8 */ [ 71] = { 0x24000, 0x1000, 32 | 16 | 8 }, /* WD Timer 3 (DSP) */ [ 72] = { 0x25000, 0x1000, 32 | 16 | 8 }, /* L4TA5 */ [ 73] = { 0x26000, 0x1000, 32 | 16 | 8 }, /* WD Timer 4 (IVA) */ [ 74] = { 0x27000, 0x1000, 32 | 16 | 8 }, /* L4TA6 */ [ 75] = { 0x2a000, 0x1000, 32 | 16 | 8 }, /* GP Timer 2 */ [ 76] = { 0x2b000, 0x1000, 32 | 16 | 8 }, /* L4TA8 */ [ 77] = { 0x78000, 0x1000, 32 | 16 | 8 }, /* GP Timer 3 */ [ 78] = { 0x79000, 0x1000, 32 | 16 | 8 }, /* L4TA22 */ [ 79] = { 0x7a000, 0x1000, 32 | 16 | 8 }, /* GP Timer 4 */ [ 80] = { 0x7b000, 0x1000, 32 | 16 | 8 }, /* L4TA23 */ [ 81] = { 0x7c000, 0x1000, 32 | 16 | 8 }, /* GP Timer 5 */ [ 82] = { 0x7d000, 0x1000, 32 | 16 | 8 }, /* L4TA24 */ [ 83] = { 0x7e000, 0x1000, 32 | 16 | 8 }, /* GP Timer 6 */ [ 84] = { 0x7f000, 0x1000, 32 | 16 | 8 }, /* L4TA25 */ [ 85] = { 0x80000, 0x1000, 32 | 16 | 8 }, /* GP Timer 7 */ [ 86] = { 0x81000, 0x1000, 32 | 16 | 8 }, /* L4TA26 */ [ 87] = { 0x82000, 0x1000, 32 | 16 | 8 }, /* GP Timer 8 */ [ 88] = { 0x83000, 0x1000, 32 | 16 | 8 }, /* L4TA27 */ [ 89] = { 0x84000, 0x1000, 32 | 16 | 8 }, /* GP Timer 9 */ [ 90] = { 0x85000, 0x1000, 32 | 16 | 8 }, /* L4TA28 */ [ 91] = { 0x86000, 0x1000, 32 | 16 | 8 }, /* GP Timer 10 */ [ 92] = { 0x87000, 0x1000, 32 | 16 | 8 }, /* L4TA29 */ [ 93] = { 0x88000, 0x1000, 32 | 16 | 8 }, /* GP Timer 11 */ [ 94] = { 0x89000, 0x1000, 32 | 16 | 8 }, /* L4TA30 */ [ 95] = { 0x8a000, 0x1000, 32 | 16 | 8 }, /* GP Timer 12 */ [ 96] = { 0x8b000, 0x1000, 32 | 16 | 8 }, /* L4TA31 */ [ 97] = { 0x90000, 0x1000, 16 }, /* EAC */ [ 98] = { 0x91000, 0x1000, 32 | 16 | 8 }, /* L4TA32 */ [ 99] = { 0x92000, 0x1000, 16 }, /* FAC */ [100] = { 0x93000, 0x1000, 32 | 16 | 8 }, /* L4TA33 */ [101] = { 0x94000, 0x1000, 32 | 16 | 8 }, /* IPC (MAILBOX) */ [102] = { 0x95000, 0x1000, 32 | 16 | 8 }, /* L4TA34 */ [103] = { 0x98000, 0x1000, 32 | 16 | 8 }, /* SPI1 */ [104] = { 0x99000, 0x1000, 32 | 16 | 8 }, /* L4TA35 */ [105] = { 0x9a000, 0x1000, 32 | 16 | 8 }, /* SPI2 */ [106] = { 0x9b000, 0x1000, 32 | 16 | 8 }, /* L4TA36 */ [107] = { 0x9c000, 0x1000, 16 | 8 }, /* MMC SDIO */ [108] = { 0x9d000, 0x1000, 32 | 16 | 8 }, /* L4TAO9 */ [109] = { 0x9e000, 0x1000, 32 | 16 | 8 }, /* MS_PRO */ [110] = { 0x9f000, 0x1000, 32 | 16 | 8 }, /* L4TAO10 */ [111] = { 0xa0000, 0x1000, 32 }, /* RNG */ [112] = { 0xa1000, 0x1000, 32 | 16 | 8 }, /* L4TAO11 */ [113] = { 0xa2000, 0x1000, 32 }, /* DES3DES */ [114] = { 0xa3000, 0x1000, 32 | 16 | 8 }, /* L4TAO12 */ [115] = { 0xa4000, 0x1000, 32 }, /* SHA1MD5 */ [116] = { 0xa5000, 0x1000, 32 | 16 | 8 }, /* L4TAO13 */ [117] = { 0xa6000, 0x1000, 32 }, /* AES */ [118] = { 0xa7000, 0x1000, 32 | 16 | 8 }, /* L4TA37 */ [119] = { 0xa8000, 0x2000, 32 }, /* PKA */ [120] = { 0xaa000, 0x1000, 32 | 16 | 8 }, /* L4TA38 */ [121] = { 0xb0000, 0x1000, 32 }, /* MG */ [122] = { 0xb1000, 0x1000, 32 | 16 | 8 }, [123] = { 0xb2000, 0x1000, 32 }, /* HDQ/1-Wire */ [124] = { 0xb3000, 0x1000, 32 | 16 | 8 }, /* L4TA39 */ }; static struct omap_l4_agent_info_s { int ta; int region; int regions; int ta_region; } omap_l4_agent_info[54] = { { 0, 0, 3, 2 }, /* L4IA initiatior agent */ { L4TAO(1), 3, 2, 1 }, /* Control and pinout module */ { L4TAO(2), 5, 2, 1 }, /* 32K timer */ { L4TAO(3), 7, 3, 2 }, /* PRCM */ { L4TA(1), 10, 2, 1 }, /* BCM */ { L4TA(2), 12, 2, 1 }, /* Test JTAG */ { L4TA(3), 14, 6, 3 }, /* Quad GPIO */ { L4TA(4), 20, 4, 3 }, /* WD timer 1/2 */ { L4TA(7), 24, 2, 1 }, /* GP timer 1 */ { L4TA(9), 26, 2, 1 }, /* ATM11 ETB */ { L4TA(10), 28, 5, 4 }, /* Display subsystem */ { L4TA(11), 33, 5, 4 }, /* Camera subsystem */ { L4TA(12), 38, 2, 1 }, /* sDMA */ { L4TA(13), 40, 5, 4 }, /* SSI */ { L4TAO(4), 45, 2, 1 }, /* USB */ { L4TA(14), 47, 2, 1 }, /* Win Tracer1 */ { L4TA(15), 49, 2, 1 }, /* Win Tracer2 */ { L4TA(16), 51, 2, 1 }, /* Win Tracer3 */ { L4TA(17), 53, 2, 1 }, /* Win Tracer4 */ { L4TA(18), 55, 2, 1 }, /* XTI */ { L4TA(19), 57, 2, 1 }, /* UART1 */ { L4TA(20), 59, 2, 1 }, /* UART2 */ { L4TA(21), 61, 2, 1 }, /* UART3 */ { L4TAO(5), 63, 2, 1 }, /* I2C1 */ { L4TAO(6), 65, 2, 1 }, /* I2C2 */ { L4TAO(7), 67, 2, 1 }, /* McBSP1 */ { L4TAO(8), 69, 2, 1 }, /* McBSP2 */ { L4TA(5), 71, 2, 1 }, /* WD Timer 3 (DSP) */ { L4TA(6), 73, 2, 1 }, /* WD Timer 4 (IVA) */ { L4TA(8), 75, 2, 1 }, /* GP Timer 2 */ { L4TA(22), 77, 2, 1 }, /* GP Timer 3 */ { L4TA(23), 79, 2, 1 }, /* GP Timer 4 */ { L4TA(24), 81, 2, 1 }, /* GP Timer 5 */ { L4TA(25), 83, 2, 1 }, /* GP Timer 6 */ { L4TA(26), 85, 2, 1 }, /* GP Timer 7 */ { L4TA(27), 87, 2, 1 }, /* GP Timer 8 */ { L4TA(28), 89, 2, 1 }, /* GP Timer 9 */ { L4TA(29), 91, 2, 1 }, /* GP Timer 10 */ { L4TA(30), 93, 2, 1 }, /* GP Timer 11 */ { L4TA(31), 95, 2, 1 }, /* GP Timer 12 */ { L4TA(32), 97, 2, 1 }, /* EAC */ { L4TA(33), 99, 2, 1 }, /* FAC */ { L4TA(34), 101, 2, 1 }, /* IPC */ { L4TA(35), 103, 2, 1 }, /* SPI1 */ { L4TA(36), 105, 2, 1 }, /* SPI2 */ { L4TAO(9), 107, 2, 1 }, /* MMC SDIO */ { L4TAO(10), 109, 2, 1 }, { L4TAO(11), 111, 2, 1 }, /* RNG */ { L4TAO(12), 113, 2, 1 }, /* DES3DES */ { L4TAO(13), 115, 2, 1 }, /* SHA1MD5 */ { L4TA(37), 117, 2, 1 }, /* AES */ { L4TA(38), 119, 2, 1 }, /* PKA */ { -1, 121, 2, 1 }, { L4TA(39), 123, 2, 1 }, /* HDQ/1-Wire */ }; #define omap_l4ta(bus, cs) omap_l4ta_get(bus, L4TA(cs)) #define omap_l4tao(bus, cs) omap_l4ta_get(bus, L4TAO(cs)) struct omap_target_agent_s *omap_l4ta_get(struct omap_l4_s *bus, int cs) { int i, iomemtype; struct omap_target_agent_s *ta = 0; struct omap_l4_agent_info_s *info = 0; for (i = 0; i < bus->ta_num; i ++) if (omap_l4_agent_info[i].ta == cs) { ta = &bus->ta[i]; info = &omap_l4_agent_info[i]; break; } if (!ta) { fprintf(stderr, "%s: bad target agent (%i)\n", __FUNCTION__, cs); exit(-1); } ta->bus = bus; ta->start = &omap_l4_region[info->region]; ta->regions = info->regions; ta->component = ('Q' << 24) | ('E' << 16) | ('M' << 8) | ('U' << 0); ta->status = 0x00000000; ta->control = 0x00000200; /* XXX 01000200 for L4TAO */ iomemtype = l4_register_io_memory(0, omap_l4ta_readfn, omap_l4ta_writefn, ta); ta->base = omap_l4_attach(ta, info->ta_region, iomemtype); return ta; } target_phys_addr_t omap_l4_attach(struct omap_target_agent_s *ta, int region, int iotype) { target_phys_addr_t base; ssize_t size; #ifdef L4_MUX_HACK int i; #endif if (region < 0 || region >= ta->regions) { fprintf(stderr, "%s: bad io region (%i)\n", __FUNCTION__, region); exit(-1); } base = ta->bus->base + ta->start[region].offset; size = ta->start[region].size; if (iotype) { #ifndef L4_MUX_HACK cpu_register_physical_memory(base, size, iotype); #else cpu_register_physical_memory(base, size, omap_cpu_io_entry); i = (base - ta->bus->base) / TARGET_PAGE_SIZE; for (; size > 0; size -= TARGET_PAGE_SIZE, i ++) { omap_l4_io_readb_fn[i] = omap_l4_io_entry[iotype].mem_read[0]; omap_l4_io_readh_fn[i] = omap_l4_io_entry[iotype].mem_read[1]; omap_l4_io_readw_fn[i] = omap_l4_io_entry[iotype].mem_read[2]; omap_l4_io_writeb_fn[i] = omap_l4_io_entry[iotype].mem_write[0]; omap_l4_io_writeh_fn[i] = omap_l4_io_entry[iotype].mem_write[1]; omap_l4_io_writew_fn[i] = omap_l4_io_entry[iotype].mem_write[2]; omap_l4_io_opaque[i] = omap_l4_io_entry[iotype].opaque; } #endif } return base; } /* TEST-Chip-level TAP */ static uint32_t omap_tap_read(void *opaque, target_phys_addr_t addr) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; switch (addr) { case 0x204: /* IDCODE_reg */ switch (s->mpu_model) { case omap2420: case omap2422: case omap2423: return 0x5b5d902f; /* ES 2.2 */ case omap2430: return 0x5b68a02f; /* ES 2.2 */ case omap3430: return 0x1b7ae02f; /* ES 2 */ default: hw_error("%s: Bad mpu model\n", __FUNCTION__); } case 0x208: /* PRODUCTION_ID_reg for OMAP2 */ case 0x210: /* PRODUCTION_ID_reg for OMAP3 */ switch (s->mpu_model) { case omap2420: return 0x000254f0; /* POP ESHS2.1.1 in N91/93/95, ES2 in N800 */ case omap2422: return 0x000400f0; case omap2423: return 0x000800f0; case omap2430: return 0x000000f0; case omap3430: return 0x000000f0; default: hw_error("%s: Bad mpu model\n", __FUNCTION__); } case 0x20c: switch (s->mpu_model) { case omap2420: case omap2422: case omap2423: return 0xcafeb5d9; /* ES 2.2 */ case omap2430: return 0xcafeb68a; /* ES 2.2 */ case omap3430: return 0xcafeb7ae; /* ES 2 */ default: hw_error("%s: Bad mpu model\n", __FUNCTION__); } case 0x218: /* DIE_ID_reg */ return ('Q' << 24) | ('E' << 16) | ('M' << 8) | ('U' << 0); case 0x21c: /* DIE_ID_reg */ return 0x54 << 24; case 0x220: /* DIE_ID_reg */ return ('Q' << 24) | ('E' << 16) | ('M' << 8) | ('U' << 0); case 0x224: /* DIE_ID_reg */ return ('Q' << 24) | ('E' << 16) | ('M' << 8) | ('U' << 0); } OMAP_BAD_REG(addr); return 0; } static void omap_tap_write(void *opaque, target_phys_addr_t addr, uint32_t value) { OMAP_BAD_REG(addr); } static CPUReadMemoryFunc *omap_tap_readfn[] = { omap_badwidth_read32, omap_badwidth_read32, omap_tap_read, }; static CPUWriteMemoryFunc *omap_tap_writefn[] = { omap_badwidth_write32, omap_badwidth_write32, omap_tap_write, }; void omap_tap_init(struct omap_target_agent_s *ta, struct omap_mpu_state_s *mpu) { omap_l4_attach(ta, 0, l4_register_io_memory(0, omap_tap_readfn, omap_tap_writefn, mpu)); } /* Power, Reset, and Clock Management */ struct omap_prcm_s { qemu_irq irq[3]; struct omap_mpu_state_s *mpu; uint32_t irqst[3]; uint32_t irqen[3]; uint32_t sysconfig; uint32_t voltctrl; uint32_t scratch[20]; uint32_t clksrc[1]; uint32_t clkout[1]; uint32_t clkemul[1]; uint32_t clkpol[1]; uint32_t clksel[8]; uint32_t clken[12]; uint32_t clkctrl[4]; uint32_t clkidle[7]; uint32_t setuptime[2]; uint32_t wkup[3]; uint32_t wken[3]; uint32_t wkst[3]; uint32_t rst[4]; uint32_t rstctrl[1]; uint32_t power[4]; uint32_t rsttime_wkup; uint32_t ev; uint32_t evtime[2]; int dpll_lock, apll_lock[2]; }; static void omap_prcm_int_update(struct omap_prcm_s *s, int dom) { qemu_set_irq(s->irq[dom], s->irqst[dom] & s->irqen[dom]); /* XXX or is the mask applied before PRCM_IRQSTATUS_* ? */ } static uint32_t omap_prcm_read(void *opaque, target_phys_addr_t addr) { struct omap_prcm_s *s = (struct omap_prcm_s *) opaque; uint32_t ret; switch (addr) { case 0x000: /* PRCM_REVISION */ return 0x10; case 0x010: /* PRCM_SYSCONFIG */ return s->sysconfig; case 0x018: /* PRCM_IRQSTATUS_MPU */ return s->irqst[0]; case 0x01c: /* PRCM_IRQENABLE_MPU */ return s->irqen[0]; case 0x050: /* PRCM_VOLTCTRL */ return s->voltctrl; case 0x054: /* PRCM_VOLTST */ return s->voltctrl & 3; case 0x060: /* PRCM_CLKSRC_CTRL */ return s->clksrc[0]; case 0x070: /* PRCM_CLKOUT_CTRL */ return s->clkout[0]; case 0x078: /* PRCM_CLKEMUL_CTRL */ return s->clkemul[0]; case 0x080: /* PRCM_CLKCFG_CTRL */ case 0x084: /* PRCM_CLKCFG_STATUS */ return 0; case 0x090: /* PRCM_VOLTSETUP */ return s->setuptime[0]; case 0x094: /* PRCM_CLKSSETUP */ return s->setuptime[1]; case 0x098: /* PRCM_POLCTRL */ return s->clkpol[0]; case 0x0b0: /* GENERAL_PURPOSE1 */ case 0x0b4: /* GENERAL_PURPOSE2 */ case 0x0b8: /* GENERAL_PURPOSE3 */ case 0x0bc: /* GENERAL_PURPOSE4 */ case 0x0c0: /* GENERAL_PURPOSE5 */ case 0x0c4: /* GENERAL_PURPOSE6 */ case 0x0c8: /* GENERAL_PURPOSE7 */ case 0x0cc: /* GENERAL_PURPOSE8 */ case 0x0d0: /* GENERAL_PURPOSE9 */ case 0x0d4: /* GENERAL_PURPOSE10 */ case 0x0d8: /* GENERAL_PURPOSE11 */ case 0x0dc: /* GENERAL_PURPOSE12 */ case 0x0e0: /* GENERAL_PURPOSE13 */ case 0x0e4: /* GENERAL_PURPOSE14 */ case 0x0e8: /* GENERAL_PURPOSE15 */ case 0x0ec: /* GENERAL_PURPOSE16 */ case 0x0f0: /* GENERAL_PURPOSE17 */ case 0x0f4: /* GENERAL_PURPOSE18 */ case 0x0f8: /* GENERAL_PURPOSE19 */ case 0x0fc: /* GENERAL_PURPOSE20 */ return s->scratch[(addr - 0xb0) >> 2]; case 0x140: /* CM_CLKSEL_MPU */ return s->clksel[0]; case 0x148: /* CM_CLKSTCTRL_MPU */ return s->clkctrl[0]; case 0x158: /* RM_RSTST_MPU */ return s->rst[0]; case 0x1c8: /* PM_WKDEP_MPU */ return s->wkup[0]; case 0x1d4: /* PM_EVGENCTRL_MPU */ return s->ev; case 0x1d8: /* PM_EVEGENONTIM_MPU */ return s->evtime[0]; case 0x1dc: /* PM_EVEGENOFFTIM_MPU */ return s->evtime[1]; case 0x1e0: /* PM_PWSTCTRL_MPU */ return s->power[0]; case 0x1e4: /* PM_PWSTST_MPU */ return 0; case 0x200: /* CM_FCLKEN1_CORE */ return s->clken[0]; case 0x204: /* CM_FCLKEN2_CORE */ return s->clken[1]; case 0x210: /* CM_ICLKEN1_CORE */ return s->clken[2]; case 0x214: /* CM_ICLKEN2_CORE */ return s->clken[3]; case 0x21c: /* CM_ICLKEN4_CORE */ return s->clken[4]; case 0x220: /* CM_IDLEST1_CORE */ /* TODO: check the actual iclk status */ return 0x7ffffff9; case 0x224: /* CM_IDLEST2_CORE */ /* TODO: check the actual iclk status */ return 0x00000007; case 0x22c: /* CM_IDLEST4_CORE */ /* TODO: check the actual iclk status */ return 0x0000001f; case 0x230: /* CM_AUTOIDLE1_CORE */ return s->clkidle[0]; case 0x234: /* CM_AUTOIDLE2_CORE */ return s->clkidle[1]; case 0x238: /* CM_AUTOIDLE3_CORE */ return s->clkidle[2]; case 0x23c: /* CM_AUTOIDLE4_CORE */ return s->clkidle[3]; case 0x240: /* CM_CLKSEL1_CORE */ return s->clksel[1]; case 0x244: /* CM_CLKSEL2_CORE */ return s->clksel[2]; case 0x248: /* CM_CLKSTCTRL_CORE */ return s->clkctrl[1]; case 0x2a0: /* PM_WKEN1_CORE */ return s->wken[0]; case 0x2a4: /* PM_WKEN2_CORE */ return s->wken[1]; case 0x2b0: /* PM_WKST1_CORE */ return s->wkst[0]; case 0x2b4: /* PM_WKST2_CORE */ return s->wkst[1]; case 0x2c8: /* PM_WKDEP_CORE */ return 0x1e; case 0x2e0: /* PM_PWSTCTRL_CORE */ return s->power[1]; case 0x2e4: /* PM_PWSTST_CORE */ return 0x000030 | (s->power[1] & 0xfc00); case 0x300: /* CM_FCLKEN_GFX */ return s->clken[5]; case 0x310: /* CM_ICLKEN_GFX */ return s->clken[6]; case 0x320: /* CM_IDLEST_GFX */ /* TODO: check the actual iclk status */ return 0x00000001; case 0x340: /* CM_CLKSEL_GFX */ return s->clksel[3]; case 0x348: /* CM_CLKSTCTRL_GFX */ return s->clkctrl[2]; case 0x350: /* RM_RSTCTRL_GFX */ return s->rstctrl[0]; case 0x358: /* RM_RSTST_GFX */ return s->rst[1]; case 0x3c8: /* PM_WKDEP_GFX */ return s->wkup[1]; case 0x3e0: /* PM_PWSTCTRL_GFX */ return s->power[2]; case 0x3e4: /* PM_PWSTST_GFX */ return s->power[2] & 3; case 0x400: /* CM_FCLKEN_WKUP */ return s->clken[7]; case 0x410: /* CM_ICLKEN_WKUP */ return s->clken[8]; case 0x420: /* CM_IDLEST_WKUP */ /* TODO: check the actual iclk status */ return 0x0000003f; case 0x430: /* CM_AUTOIDLE_WKUP */ return s->clkidle[4]; case 0x440: /* CM_CLKSEL_WKUP */ return s->clksel[4]; case 0x450: /* RM_RSTCTRL_WKUP */ return 0; case 0x454: /* RM_RSTTIME_WKUP */ return s->rsttime_wkup; case 0x458: /* RM_RSTST_WKUP */ return s->rst[2]; case 0x4a0: /* PM_WKEN_WKUP */ return s->wken[2]; case 0x4b0: /* PM_WKST_WKUP */ return s->wkst[2]; case 0x500: /* CM_CLKEN_PLL */ return s->clken[9]; case 0x520: /* CM_IDLEST_CKGEN */ ret = 0x0000070 | (s->apll_lock[0] << 9) | (s->apll_lock[1] << 8); if (!(s->clksel[6] & 3)) /* Core uses 32-kHz clock */ ret |= 3 << 0; else if (!s->dpll_lock) /* DPLL not locked, core uses ref_clk */ ret |= 1 << 0; else /* Core uses DPLL */ ret |= 2 << 0; return ret; case 0x530: /* CM_AUTOIDLE_PLL */ return s->clkidle[5]; case 0x540: /* CM_CLKSEL1_PLL */ return s->clksel[5]; case 0x544: /* CM_CLKSEL2_PLL */ return s->clksel[6]; case 0x800: /* CM_FCLKEN_DSP */ return s->clken[10]; case 0x810: /* CM_ICLKEN_DSP */ return s->clken[11]; case 0x820: /* CM_IDLEST_DSP */ /* TODO: check the actual iclk status */ return 0x00000103; case 0x830: /* CM_AUTOIDLE_DSP */ return s->clkidle[6]; case 0x840: /* CM_CLKSEL_DSP */ return s->clksel[7]; case 0x848: /* CM_CLKSTCTRL_DSP */ return s->clkctrl[3]; case 0x850: /* RM_RSTCTRL_DSP */ return 0; case 0x858: /* RM_RSTST_DSP */ return s->rst[3]; case 0x8c8: /* PM_WKDEP_DSP */ return s->wkup[2]; case 0x8e0: /* PM_PWSTCTRL_DSP */ return s->power[3]; case 0x8e4: /* PM_PWSTST_DSP */ return 0x008030 | (s->power[3] & 0x3003); case 0x8f0: /* PRCM_IRQSTATUS_DSP */ return s->irqst[1]; case 0x8f4: /* PRCM_IRQENABLE_DSP */ return s->irqen[1]; case 0x8f8: /* PRCM_IRQSTATUS_IVA */ return s->irqst[2]; case 0x8fc: /* PRCM_IRQENABLE_IVA */ return s->irqen[2]; } OMAP_BAD_REG(addr); return 0; } static void omap_prcm_apll_update(struct omap_prcm_s *s) { int mode[2]; mode[0] = (s->clken[9] >> 6) & 3; s->apll_lock[0] = (mode[0] == 3); mode[1] = (s->clken[9] >> 2) & 3; s->apll_lock[1] = (mode[1] == 3); /* TODO: update clocks */ if (mode[0] == 1 || mode[0] == 2 || mode[1] == 1 || mode[2] == 2) fprintf(stderr, "%s: bad EN_54M_PLL or bad EN_96M_PLL\n", __FUNCTION__); } static void omap_prcm_dpll_update(struct omap_prcm_s *s) { omap_clk dpll = omap_findclk(s->mpu, "dpll"); omap_clk dpll_x2 = omap_findclk(s->mpu, "dpll"); omap_clk core = omap_findclk(s->mpu, "core_clk"); int mode = (s->clken[9] >> 0) & 3; int mult, div; mult = (s->clksel[5] >> 12) & 0x3ff; div = (s->clksel[5] >> 8) & 0xf; if (mult == 0 || mult == 1) mode = 1; /* Bypass */ s->dpll_lock = 0; switch (mode) { case 0: fprintf(stderr, "%s: bad EN_DPLL\n", __FUNCTION__); break; case 1: /* Low-power bypass mode (Default) */ case 2: /* Fast-relock bypass mode */ omap_clk_setrate(dpll, 1, 1); omap_clk_setrate(dpll_x2, 1, 1); break; case 3: /* Lock mode */ s->dpll_lock = 1; /* After 20 FINT cycles (ref_clk / (div + 1)). */ omap_clk_setrate(dpll, div + 1, mult); omap_clk_setrate(dpll_x2, div + 1, mult * 2); break; } switch ((s->clksel[6] >> 0) & 3) { case 0: omap_clk_reparent(core, omap_findclk(s->mpu, "clk32-kHz")); break; case 1: omap_clk_reparent(core, dpll); break; case 2: /* Default */ omap_clk_reparent(core, dpll_x2); break; case 3: fprintf(stderr, "%s: bad CORE_CLK_SRC\n", __FUNCTION__); break; } } static void omap_prcm_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_prcm_s *s = (struct omap_prcm_s *) opaque; switch (addr) { case 0x000: /* PRCM_REVISION */ case 0x054: /* PRCM_VOLTST */ case 0x084: /* PRCM_CLKCFG_STATUS */ case 0x1e4: /* PM_PWSTST_MPU */ case 0x220: /* CM_IDLEST1_CORE */ case 0x224: /* CM_IDLEST2_CORE */ case 0x22c: /* CM_IDLEST4_CORE */ case 0x2c8: /* PM_WKDEP_CORE */ case 0x2e4: /* PM_PWSTST_CORE */ case 0x320: /* CM_IDLEST_GFX */ case 0x3e4: /* PM_PWSTST_GFX */ case 0x420: /* CM_IDLEST_WKUP */ case 0x520: /* CM_IDLEST_CKGEN */ case 0x820: /* CM_IDLEST_DSP */ case 0x8e4: /* PM_PWSTST_DSP */ OMAP_RO_REG(addr); return; case 0x010: /* PRCM_SYSCONFIG */ s->sysconfig = value & 1; break; case 0x018: /* PRCM_IRQSTATUS_MPU */ s->irqst[0] &= ~value; omap_prcm_int_update(s, 0); break; case 0x01c: /* PRCM_IRQENABLE_MPU */ s->irqen[0] = value & 0x3f; omap_prcm_int_update(s, 0); break; case 0x050: /* PRCM_VOLTCTRL */ s->voltctrl = value & 0xf1c3; break; case 0x060: /* PRCM_CLKSRC_CTRL */ s->clksrc[0] = value & 0xdb; /* TODO update clocks */ break; case 0x070: /* PRCM_CLKOUT_CTRL */ s->clkout[0] = value & 0xbbbb; /* TODO update clocks */ break; case 0x078: /* PRCM_CLKEMUL_CTRL */ s->clkemul[0] = value & 1; /* TODO update clocks */ break; case 0x080: /* PRCM_CLKCFG_CTRL */ break; case 0x090: /* PRCM_VOLTSETUP */ s->setuptime[0] = value & 0xffff; break; case 0x094: /* PRCM_CLKSSETUP */ s->setuptime[1] = value & 0xffff; break; case 0x098: /* PRCM_POLCTRL */ s->clkpol[0] = value & 0x701; break; case 0x0b0: /* GENERAL_PURPOSE1 */ case 0x0b4: /* GENERAL_PURPOSE2 */ case 0x0b8: /* GENERAL_PURPOSE3 */ case 0x0bc: /* GENERAL_PURPOSE4 */ case 0x0c0: /* GENERAL_PURPOSE5 */ case 0x0c4: /* GENERAL_PURPOSE6 */ case 0x0c8: /* GENERAL_PURPOSE7 */ case 0x0cc: /* GENERAL_PURPOSE8 */ case 0x0d0: /* GENERAL_PURPOSE9 */ case 0x0d4: /* GENERAL_PURPOSE10 */ case 0x0d8: /* GENERAL_PURPOSE11 */ case 0x0dc: /* GENERAL_PURPOSE12 */ case 0x0e0: /* GENERAL_PURPOSE13 */ case 0x0e4: /* GENERAL_PURPOSE14 */ case 0x0e8: /* GENERAL_PURPOSE15 */ case 0x0ec: /* GENERAL_PURPOSE16 */ case 0x0f0: /* GENERAL_PURPOSE17 */ case 0x0f4: /* GENERAL_PURPOSE18 */ case 0x0f8: /* GENERAL_PURPOSE19 */ case 0x0fc: /* GENERAL_PURPOSE20 */ s->scratch[(addr - 0xb0) >> 2] = value; break; case 0x140: /* CM_CLKSEL_MPU */ s->clksel[0] = value & 0x1f; /* TODO update clocks */ break; case 0x148: /* CM_CLKSTCTRL_MPU */ s->clkctrl[0] = value & 0x1f; break; case 0x158: /* RM_RSTST_MPU */ s->rst[0] &= ~value; break; case 0x1c8: /* PM_WKDEP_MPU */ s->wkup[0] = value & 0x15; break; case 0x1d4: /* PM_EVGENCTRL_MPU */ s->ev = value & 0x1f; break; case 0x1d8: /* PM_EVEGENONTIM_MPU */ s->evtime[0] = value; break; case 0x1dc: /* PM_EVEGENOFFTIM_MPU */ s->evtime[1] = value; break; case 0x1e0: /* PM_PWSTCTRL_MPU */ s->power[0] = value & 0xc0f; break; case 0x200: /* CM_FCLKEN1_CORE */ s->clken[0] = value & 0xbfffffff; /* TODO update clocks */ /* The EN_EAC bit only gets/puts func_96m_clk. */ break; case 0x204: /* CM_FCLKEN2_CORE */ s->clken[1] = value & 0x00000007; /* TODO update clocks */ break; case 0x210: /* CM_ICLKEN1_CORE */ s->clken[2] = value & 0xfffffff9; /* TODO update clocks */ /* The EN_EAC bit only gets/puts core_l4_iclk. */ break; case 0x214: /* CM_ICLKEN2_CORE */ s->clken[3] = value & 0x00000007; /* TODO update clocks */ break; case 0x21c: /* CM_ICLKEN4_CORE */ s->clken[4] = value & 0x0000001f; /* TODO update clocks */ break; case 0x230: /* CM_AUTOIDLE1_CORE */ s->clkidle[0] = value & 0xfffffff9; /* TODO update clocks */ break; case 0x234: /* CM_AUTOIDLE2_CORE */ s->clkidle[1] = value & 0x00000007; /* TODO update clocks */ break; case 0x238: /* CM_AUTOIDLE3_CORE */ s->clkidle[2] = value & 0x00000007; /* TODO update clocks */ break; case 0x23c: /* CM_AUTOIDLE4_CORE */ s->clkidle[3] = value & 0x0000001f; /* TODO update clocks */ break; case 0x240: /* CM_CLKSEL1_CORE */ s->clksel[1] = value & 0x0fffbf7f; /* TODO update clocks */ break; case 0x244: /* CM_CLKSEL2_CORE */ s->clksel[2] = value & 0x00fffffc; /* TODO update clocks */ break; case 0x248: /* CM_CLKSTCTRL_CORE */ s->clkctrl[1] = value & 0x7; break; case 0x2a0: /* PM_WKEN1_CORE */ s->wken[0] = value & 0x04667ff8; break; case 0x2a4: /* PM_WKEN2_CORE */ s->wken[1] = value & 0x00000005; break; case 0x2b0: /* PM_WKST1_CORE */ s->wkst[0] &= ~value; break; case 0x2b4: /* PM_WKST2_CORE */ s->wkst[1] &= ~value; break; case 0x2e0: /* PM_PWSTCTRL_CORE */ s->power[1] = (value & 0x00fc3f) | (1 << 2); break; case 0x300: /* CM_FCLKEN_GFX */ s->clken[5] = value & 6; /* TODO update clocks */ break; case 0x310: /* CM_ICLKEN_GFX */ s->clken[6] = value & 1; /* TODO update clocks */ break; case 0x340: /* CM_CLKSEL_GFX */ s->clksel[3] = value & 7; /* TODO update clocks */ break; case 0x348: /* CM_CLKSTCTRL_GFX */ s->clkctrl[2] = value & 1; break; case 0x350: /* RM_RSTCTRL_GFX */ s->rstctrl[0] = value & 1; /* TODO: reset */ break; case 0x358: /* RM_RSTST_GFX */ s->rst[1] &= ~value; break; case 0x3c8: /* PM_WKDEP_GFX */ s->wkup[1] = value & 0x13; break; case 0x3e0: /* PM_PWSTCTRL_GFX */ s->power[2] = (value & 0x00c0f) | (3 << 2); break; case 0x400: /* CM_FCLKEN_WKUP */ s->clken[7] = value & 0xd; /* TODO update clocks */ break; case 0x410: /* CM_ICLKEN_WKUP */ s->clken[8] = value & 0x3f; /* TODO update clocks */ break; case 0x430: /* CM_AUTOIDLE_WKUP */ s->clkidle[4] = value & 0x0000003f; /* TODO update clocks */ break; case 0x440: /* CM_CLKSEL_WKUP */ s->clksel[4] = value & 3; /* TODO update clocks */ break; case 0x450: /* RM_RSTCTRL_WKUP */ /* TODO: reset */ if (value & 2) qemu_system_reset_request(); break; case 0x454: /* RM_RSTTIME_WKUP */ s->rsttime_wkup = value & 0x1fff; break; case 0x458: /* RM_RSTST_WKUP */ s->rst[2] &= ~value; break; case 0x4a0: /* PM_WKEN_WKUP */ s->wken[2] = value & 0x00000005; break; case 0x4b0: /* PM_WKST_WKUP */ s->wkst[2] &= ~value; break; case 0x500: /* CM_CLKEN_PLL */ if (value & 0xffffff30) fprintf(stderr, "%s: write 0s in CM_CLKEN_PLL for " "future compatiblity\n", __FUNCTION__); if ((s->clken[9] ^ value) & 0xcc) { s->clken[9] &= ~0xcc; s->clken[9] |= value & 0xcc; omap_prcm_apll_update(s); } if ((s->clken[9] ^ value) & 3) { s->clken[9] &= ~3; s->clken[9] |= value & 3; omap_prcm_dpll_update(s); } break; case 0x530: /* CM_AUTOIDLE_PLL */ s->clkidle[5] = value & 0x000000cf; /* TODO update clocks */ break; case 0x540: /* CM_CLKSEL1_PLL */ if (value & 0xfc4000d7) fprintf(stderr, "%s: write 0s in CM_CLKSEL1_PLL for " "future compatiblity\n", __FUNCTION__); if ((s->clksel[5] ^ value) & 0x003fff00) { s->clksel[5] = value & 0x03bfff28; omap_prcm_dpll_update(s); } /* TODO update the other clocks */ s->clksel[5] = value & 0x03bfff28; break; case 0x544: /* CM_CLKSEL2_PLL */ if (value & ~3) fprintf(stderr, "%s: write 0s in CM_CLKSEL2_PLL[31:2] for " "future compatiblity\n", __FUNCTION__); if (s->clksel[6] != (value & 3)) { s->clksel[6] = value & 3; omap_prcm_dpll_update(s); } break; case 0x800: /* CM_FCLKEN_DSP */ s->clken[10] = value & 0x501; /* TODO update clocks */ break; case 0x810: /* CM_ICLKEN_DSP */ s->clken[11] = value & 0x2; /* TODO update clocks */ break; case 0x830: /* CM_AUTOIDLE_DSP */ s->clkidle[6] = value & 0x2; /* TODO update clocks */ break; case 0x840: /* CM_CLKSEL_DSP */ s->clksel[7] = value & 0x3fff; /* TODO update clocks */ break; case 0x848: /* CM_CLKSTCTRL_DSP */ s->clkctrl[3] = value & 0x101; break; case 0x850: /* RM_RSTCTRL_DSP */ /* TODO: reset */ break; case 0x858: /* RM_RSTST_DSP */ s->rst[3] &= ~value; break; case 0x8c8: /* PM_WKDEP_DSP */ s->wkup[2] = value & 0x13; break; case 0x8e0: /* PM_PWSTCTRL_DSP */ s->power[3] = (value & 0x03017) | (3 << 2); break; case 0x8f0: /* PRCM_IRQSTATUS_DSP */ s->irqst[1] &= ~value; omap_prcm_int_update(s, 1); break; case 0x8f4: /* PRCM_IRQENABLE_DSP */ s->irqen[1] = value & 0x7; omap_prcm_int_update(s, 1); break; case 0x8f8: /* PRCM_IRQSTATUS_IVA */ s->irqst[2] &= ~value; omap_prcm_int_update(s, 2); break; case 0x8fc: /* PRCM_IRQENABLE_IVA */ s->irqen[2] = value & 0x7; omap_prcm_int_update(s, 2); break; default: OMAP_BAD_REG(addr); return; } } static CPUReadMemoryFunc *omap_prcm_readfn[] = { omap_badwidth_read32, omap_badwidth_read32, omap_prcm_read, }; static CPUWriteMemoryFunc *omap_prcm_writefn[] = { omap_badwidth_write32, omap_badwidth_write32, omap_prcm_write, }; static void omap_prcm_reset(struct omap_prcm_s *s) { s->sysconfig = 0; s->irqst[0] = 0; s->irqst[1] = 0; s->irqst[2] = 0; s->irqen[0] = 0; s->irqen[1] = 0; s->irqen[2] = 0; s->voltctrl = 0x1040; s->ev = 0x14; s->evtime[0] = 0; s->evtime[1] = 0; s->clkctrl[0] = 0; s->clkctrl[1] = 0; s->clkctrl[2] = 0; s->clkctrl[3] = 0; s->clken[1] = 7; s->clken[3] = 7; s->clken[4] = 0; s->clken[5] = 0; s->clken[6] = 0; s->clken[7] = 0xc; s->clken[8] = 0x3e; s->clken[9] = 0x0d; s->clken[10] = 0; s->clken[11] = 0; s->clkidle[0] = 0; s->clkidle[2] = 7; s->clkidle[3] = 0; s->clkidle[4] = 0; s->clkidle[5] = 0x0c; s->clkidle[6] = 0; s->clksel[0] = 0x01; s->clksel[1] = 0x02100121; s->clksel[2] = 0x00000000; s->clksel[3] = 0x01; s->clksel[4] = 0; s->clksel[7] = 0x0121; s->wkup[0] = 0x15; s->wkup[1] = 0x13; s->wkup[2] = 0x13; s->wken[0] = 0x04667ff8; s->wken[1] = 0x00000005; s->wken[2] = 5; s->wkst[0] = 0; s->wkst[1] = 0; s->wkst[2] = 0; s->power[0] = 0x00c; s->power[1] = 4; s->power[2] = 0x0000c; s->power[3] = 0x14; s->rstctrl[0] = 1; s->rst[3] = 1; omap_prcm_apll_update(s); omap_prcm_dpll_update(s); } static void omap_prcm_coldreset(struct omap_prcm_s *s) { s->setuptime[0] = 0; s->setuptime[1] = 0; memset(&s->scratch, 0, sizeof(s->scratch)); s->rst[0] = 0x01; s->rst[1] = 0x00; s->rst[2] = 0x01; s->clken[0] = 0; s->clken[2] = 0; s->clkidle[1] = 0; s->clksel[5] = 0; s->clksel[6] = 2; s->clksrc[0] = 0x43; s->clkout[0] = 0x0303; s->clkemul[0] = 0; s->clkpol[0] = 0x100; s->rsttime_wkup = 0x1002; omap_prcm_reset(s); } struct omap_prcm_s *omap_prcm_init(struct omap_target_agent_s *ta, qemu_irq mpu_int, qemu_irq dsp_int, qemu_irq iva_int, struct omap_mpu_state_s *mpu) { int iomemtype; struct omap_prcm_s *s = (struct omap_prcm_s *) qemu_mallocz(sizeof(struct omap_prcm_s)); s->irq[0] = mpu_int; s->irq[1] = dsp_int; s->irq[2] = iva_int; s->mpu = mpu; omap_prcm_coldreset(s); iomemtype = l4_register_io_memory(0, omap_prcm_readfn, omap_prcm_writefn, s); omap_l4_attach(ta, 0, iomemtype); omap_l4_attach(ta, 1, iomemtype); return s; } /* System and Pinout control */ struct omap_sysctl_s { struct omap_mpu_state_s *mpu; uint32_t sysconfig; uint32_t devconfig; uint32_t psaconfig; uint32_t padconf[0x45]; uint8_t obs; uint32_t msuspendmux[5]; }; static uint32_t omap_sysctl_read8(void *opaque, target_phys_addr_t addr) { struct omap_sysctl_s *s = (struct omap_sysctl_s *) opaque; int pad_offset, byte_offset; int value; switch (addr) { case 0x030 ... 0x140: /* CONTROL_PADCONF - only used in the POP */ pad_offset = (addr - 0x30) >> 2; byte_offset = (addr - 0x30) & (4 - 1); value = s->padconf[pad_offset]; value = (value >> (byte_offset * 8)) & 0xff; return value; default: break; } OMAP_BAD_REG(addr); return 0; } static uint32_t omap_sysctl_read(void *opaque, target_phys_addr_t addr) { struct omap_sysctl_s *s = (struct omap_sysctl_s *) opaque; switch (addr) { case 0x000: /* CONTROL_REVISION */ return 0x20; case 0x010: /* CONTROL_SYSCONFIG */ return s->sysconfig; case 0x030 ... 0x140: /* CONTROL_PADCONF - only used in the POP */ return s->padconf[(addr - 0x30) >> 2]; case 0x270: /* CONTROL_DEBOBS */ return s->obs; case 0x274: /* CONTROL_DEVCONF */ return s->devconfig; case 0x28c: /* CONTROL_EMU_SUPPORT */ return 0; case 0x290: /* CONTROL_MSUSPENDMUX_0 */ return s->msuspendmux[0]; case 0x294: /* CONTROL_MSUSPENDMUX_1 */ return s->msuspendmux[1]; case 0x298: /* CONTROL_MSUSPENDMUX_2 */ return s->msuspendmux[2]; case 0x29c: /* CONTROL_MSUSPENDMUX_3 */ return s->msuspendmux[3]; case 0x2a0: /* CONTROL_MSUSPENDMUX_4 */ return s->msuspendmux[4]; case 0x2a4: /* CONTROL_MSUSPENDMUX_5 */ return 0; case 0x2b8: /* CONTROL_PSA_CTRL */ return s->psaconfig; case 0x2bc: /* CONTROL_PSA_CMD */ case 0x2c0: /* CONTROL_PSA_VALUE */ return 0; case 0x2b0: /* CONTROL_SEC_CTRL */ return 0x800000f1; case 0x2d0: /* CONTROL_SEC_EMU */ return 0x80000015; case 0x2d4: /* CONTROL_SEC_TAP */ return 0x8000007f; case 0x2b4: /* CONTROL_SEC_TEST */ case 0x2f0: /* CONTROL_SEC_STATUS */ case 0x2f4: /* CONTROL_SEC_ERR_STATUS */ /* Secure mode is not present on general-pusrpose device. Outside * secure mode these values cannot be read or written. */ return 0; case 0x2d8: /* CONTROL_OCM_RAM_PERM */ return 0xff; case 0x2dc: /* CONTROL_OCM_PUB_RAM_ADD */ case 0x2e0: /* CONTROL_EXT_SEC_RAM_START_ADD */ case 0x2e4: /* CONTROL_EXT_SEC_RAM_STOP_ADD */ /* No secure mode so no Extended Secure RAM present. */ return 0; case 0x2f8: /* CONTROL_STATUS */ /* Device Type => General-purpose */ return 0x0300; case 0x2fc: /* CONTROL_GENERAL_PURPOSE_STATUS */ case 0x300: /* CONTROL_RPUB_KEY_H_0 */ case 0x304: /* CONTROL_RPUB_KEY_H_1 */ case 0x308: /* CONTROL_RPUB_KEY_H_2 */ case 0x30c: /* CONTROL_RPUB_KEY_H_3 */ return 0xdecafbad; case 0x310: /* CONTROL_RAND_KEY_0 */ case 0x314: /* CONTROL_RAND_KEY_1 */ case 0x318: /* CONTROL_RAND_KEY_2 */ case 0x31c: /* CONTROL_RAND_KEY_3 */ case 0x320: /* CONTROL_CUST_KEY_0 */ case 0x324: /* CONTROL_CUST_KEY_1 */ case 0x330: /* CONTROL_TEST_KEY_0 */ case 0x334: /* CONTROL_TEST_KEY_1 */ case 0x338: /* CONTROL_TEST_KEY_2 */ case 0x33c: /* CONTROL_TEST_KEY_3 */ case 0x340: /* CONTROL_TEST_KEY_4 */ case 0x344: /* CONTROL_TEST_KEY_5 */ case 0x348: /* CONTROL_TEST_KEY_6 */ case 0x34c: /* CONTROL_TEST_KEY_7 */ case 0x350: /* CONTROL_TEST_KEY_8 */ case 0x354: /* CONTROL_TEST_KEY_9 */ /* Can only be accessed in secure mode and when C_FieldAccEnable * bit is set in CONTROL_SEC_CTRL. * TODO: otherwise an interconnect access error is generated. */ return 0; } OMAP_BAD_REG(addr); return 0; } static void omap_sysctl_write8(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_sysctl_s *s = (struct omap_sysctl_s *) opaque; int pad_offset, byte_offset; int prev_value; switch (addr) { case 0x030 ... 0x140: /* CONTROL_PADCONF - only used in the POP */ pad_offset = (addr - 0x30) >> 2; byte_offset = (addr - 0x30) & (4 - 1); prev_value = s->padconf[pad_offset]; prev_value &= ~(0xff << (byte_offset * 8)); prev_value |= ((value & 0x1f1f1f1f) << (byte_offset * 8)) & 0x1f1f1f1f; s->padconf[pad_offset] = prev_value; break; default: OMAP_BAD_REG(addr); break; } } static void omap_sysctl_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_sysctl_s *s = (struct omap_sysctl_s *) opaque; switch (addr) { case 0x000: /* CONTROL_REVISION */ case 0x2a4: /* CONTROL_MSUSPENDMUX_5 */ case 0x2c0: /* CONTROL_PSA_VALUE */ case 0x2f8: /* CONTROL_STATUS */ case 0x2fc: /* CONTROL_GENERAL_PURPOSE_STATUS */ case 0x300: /* CONTROL_RPUB_KEY_H_0 */ case 0x304: /* CONTROL_RPUB_KEY_H_1 */ case 0x308: /* CONTROL_RPUB_KEY_H_2 */ case 0x30c: /* CONTROL_RPUB_KEY_H_3 */ case 0x310: /* CONTROL_RAND_KEY_0 */ case 0x314: /* CONTROL_RAND_KEY_1 */ case 0x318: /* CONTROL_RAND_KEY_2 */ case 0x31c: /* CONTROL_RAND_KEY_3 */ case 0x320: /* CONTROL_CUST_KEY_0 */ case 0x324: /* CONTROL_CUST_KEY_1 */ case 0x330: /* CONTROL_TEST_KEY_0 */ case 0x334: /* CONTROL_TEST_KEY_1 */ case 0x338: /* CONTROL_TEST_KEY_2 */ case 0x33c: /* CONTROL_TEST_KEY_3 */ case 0x340: /* CONTROL_TEST_KEY_4 */ case 0x344: /* CONTROL_TEST_KEY_5 */ case 0x348: /* CONTROL_TEST_KEY_6 */ case 0x34c: /* CONTROL_TEST_KEY_7 */ case 0x350: /* CONTROL_TEST_KEY_8 */ case 0x354: /* CONTROL_TEST_KEY_9 */ OMAP_RO_REG(addr); return; case 0x010: /* CONTROL_SYSCONFIG */ s->sysconfig = value & 0x1e; break; case 0x030 ... 0x140: /* CONTROL_PADCONF - only used in the POP */ /* XXX: should check constant bits */ s->padconf[(addr - 0x30) >> 2] = value & 0x1f1f1f1f; break; case 0x270: /* CONTROL_DEBOBS */ s->obs = value & 0xff; break; case 0x274: /* CONTROL_DEVCONF */ s->devconfig = value & 0xffffc7ff; break; case 0x28c: /* CONTROL_EMU_SUPPORT */ break; case 0x290: /* CONTROL_MSUSPENDMUX_0 */ s->msuspendmux[0] = value & 0x3fffffff; break; case 0x294: /* CONTROL_MSUSPENDMUX_1 */ s->msuspendmux[1] = value & 0x3fffffff; break; case 0x298: /* CONTROL_MSUSPENDMUX_2 */ s->msuspendmux[2] = value & 0x3fffffff; break; case 0x29c: /* CONTROL_MSUSPENDMUX_3 */ s->msuspendmux[3] = value & 0x3fffffff; break; case 0x2a0: /* CONTROL_MSUSPENDMUX_4 */ s->msuspendmux[4] = value & 0x3fffffff; break; case 0x2b8: /* CONTROL_PSA_CTRL */ s->psaconfig = value & 0x1c; s->psaconfig |= (value & 0x20) ? 2 : 1; break; case 0x2bc: /* CONTROL_PSA_CMD */ break; case 0x2b0: /* CONTROL_SEC_CTRL */ case 0x2b4: /* CONTROL_SEC_TEST */ case 0x2d0: /* CONTROL_SEC_EMU */ case 0x2d4: /* CONTROL_SEC_TAP */ case 0x2d8: /* CONTROL_OCM_RAM_PERM */ case 0x2dc: /* CONTROL_OCM_PUB_RAM_ADD */ case 0x2e0: /* CONTROL_EXT_SEC_RAM_START_ADD */ case 0x2e4: /* CONTROL_EXT_SEC_RAM_STOP_ADD */ case 0x2f0: /* CONTROL_SEC_STATUS */ case 0x2f4: /* CONTROL_SEC_ERR_STATUS */ break; default: OMAP_BAD_REG(addr); return; } } static CPUReadMemoryFunc *omap_sysctl_readfn[] = { omap_sysctl_read8, omap_badwidth_read32, /* TODO */ omap_sysctl_read, }; static CPUWriteMemoryFunc *omap_sysctl_writefn[] = { omap_sysctl_write8, omap_badwidth_write32, /* TODO */ omap_sysctl_write, }; static void omap_sysctl_reset(struct omap_sysctl_s *s) { /* (power-on reset) */ s->sysconfig = 0; s->obs = 0; s->devconfig = 0x0c000000; s->msuspendmux[0] = 0x00000000; s->msuspendmux[1] = 0x00000000; s->msuspendmux[2] = 0x00000000; s->msuspendmux[3] = 0x00000000; s->msuspendmux[4] = 0x00000000; s->psaconfig = 1; s->padconf[0x00] = 0x000f0f0f; s->padconf[0x01] = 0x00000000; s->padconf[0x02] = 0x00000000; s->padconf[0x03] = 0x00000000; s->padconf[0x04] = 0x00000000; s->padconf[0x05] = 0x00000000; s->padconf[0x06] = 0x00000000; s->padconf[0x07] = 0x00000000; s->padconf[0x08] = 0x08080800; s->padconf[0x09] = 0x08080808; s->padconf[0x0a] = 0x08080808; s->padconf[0x0b] = 0x08080808; s->padconf[0x0c] = 0x08080808; s->padconf[0x0d] = 0x08080800; s->padconf[0x0e] = 0x08080808; s->padconf[0x0f] = 0x08080808; s->padconf[0x10] = 0x18181808; /* | 0x07070700 if SBoot3 */ s->padconf[0x11] = 0x18181818; /* | 0x07070707 if SBoot3 */ s->padconf[0x12] = 0x18181818; /* | 0x07070707 if SBoot3 */ s->padconf[0x13] = 0x18181818; /* | 0x07070707 if SBoot3 */ s->padconf[0x14] = 0x18181818; /* | 0x00070707 if SBoot3 */ s->padconf[0x15] = 0x18181818; s->padconf[0x16] = 0x18181818; /* | 0x07000000 if SBoot3 */ s->padconf[0x17] = 0x1f001f00; s->padconf[0x18] = 0x1f1f1f1f; s->padconf[0x19] = 0x00000000; s->padconf[0x1a] = 0x1f180000; s->padconf[0x1b] = 0x00001f1f; s->padconf[0x1c] = 0x1f001f00; s->padconf[0x1d] = 0x00000000; s->padconf[0x1e] = 0x00000000; s->padconf[0x1f] = 0x08000000; s->padconf[0x20] = 0x08080808; s->padconf[0x21] = 0x08080808; s->padconf[0x22] = 0x0f080808; s->padconf[0x23] = 0x0f0f0f0f; s->padconf[0x24] = 0x000f0f0f; s->padconf[0x25] = 0x1f1f1f0f; s->padconf[0x26] = 0x080f0f1f; s->padconf[0x27] = 0x070f1808; s->padconf[0x28] = 0x0f070707; s->padconf[0x29] = 0x000f0f1f; s->padconf[0x2a] = 0x0f0f0f1f; s->padconf[0x2b] = 0x08000000; s->padconf[0x2c] = 0x0000001f; s->padconf[0x2d] = 0x0f0f1f00; s->padconf[0x2e] = 0x1f1f0f0f; s->padconf[0x2f] = 0x0f1f1f1f; s->padconf[0x30] = 0x0f0f0f0f; s->padconf[0x31] = 0x0f1f0f1f; s->padconf[0x32] = 0x0f0f0f0f; s->padconf[0x33] = 0x0f1f0f1f; s->padconf[0x34] = 0x1f1f0f0f; s->padconf[0x35] = 0x0f0f1f1f; s->padconf[0x36] = 0x0f0f1f0f; s->padconf[0x37] = 0x0f0f0f0f; s->padconf[0x38] = 0x1f18180f; s->padconf[0x39] = 0x1f1f1f1f; s->padconf[0x3a] = 0x00001f1f; s->padconf[0x3b] = 0x00000000; s->padconf[0x3c] = 0x00000000; s->padconf[0x3d] = 0x0f0f0f0f; s->padconf[0x3e] = 0x18000f0f; s->padconf[0x3f] = 0x00070000; s->padconf[0x40] = 0x00000707; s->padconf[0x41] = 0x0f1f0700; s->padconf[0x42] = 0x1f1f070f; s->padconf[0x43] = 0x0008081f; s->padconf[0x44] = 0x00000800; } struct omap_sysctl_s *omap_sysctl_init(struct omap_target_agent_s *ta, omap_clk iclk, struct omap_mpu_state_s *mpu) { int iomemtype; struct omap_sysctl_s *s = (struct omap_sysctl_s *) qemu_mallocz(sizeof(struct omap_sysctl_s)); s->mpu = mpu; omap_sysctl_reset(s); iomemtype = l4_register_io_memory(0, omap_sysctl_readfn, omap_sysctl_writefn, s); omap_l4_attach(ta, 0, iomemtype); return s; } /* SDRAM Controller Subsystem */ struct omap_sdrc_s { uint8_t config; }; static void omap_sdrc_reset(struct omap_sdrc_s *s) { s->config = 0x10; } static uint32_t omap_sdrc_read(void *opaque, target_phys_addr_t addr) { struct omap_sdrc_s *s = (struct omap_sdrc_s *) opaque; switch (addr) { case 0x00: /* SDRC_REVISION */ return 0x20; case 0x10: /* SDRC_SYSCONFIG */ return s->config; case 0x14: /* SDRC_SYSSTATUS */ return 1; /* RESETDONE */ case 0x40: /* SDRC_CS_CFG */ case 0x44: /* SDRC_SHARING */ case 0x48: /* SDRC_ERR_ADDR */ case 0x4c: /* SDRC_ERR_TYPE */ case 0x60: /* SDRC_DLLA_SCTRL */ case 0x64: /* SDRC_DLLA_STATUS */ case 0x68: /* SDRC_DLLB_CTRL */ case 0x6c: /* SDRC_DLLB_STATUS */ case 0x70: /* SDRC_POWER */ case 0x80: /* SDRC_MCFG_0 */ case 0x84: /* SDRC_MR_0 */ case 0x88: /* SDRC_EMR1_0 */ case 0x8c: /* SDRC_EMR2_0 */ case 0x90: /* SDRC_EMR3_0 */ case 0x94: /* SDRC_DCDL1_CTRL */ case 0x98: /* SDRC_DCDL2_CTRL */ case 0x9c: /* SDRC_ACTIM_CTRLA_0 */ case 0xa0: /* SDRC_ACTIM_CTRLB_0 */ case 0xa4: /* SDRC_RFR_CTRL_0 */ case 0xa8: /* SDRC_MANUAL_0 */ case 0xb0: /* SDRC_MCFG_1 */ case 0xb4: /* SDRC_MR_1 */ case 0xb8: /* SDRC_EMR1_1 */ case 0xbc: /* SDRC_EMR2_1 */ case 0xc0: /* SDRC_EMR3_1 */ case 0xc4: /* SDRC_ACTIM_CTRLA_1 */ case 0xc8: /* SDRC_ACTIM_CTRLB_1 */ case 0xd4: /* SDRC_RFR_CTRL_1 */ case 0xd8: /* SDRC_MANUAL_1 */ return 0x00; } OMAP_BAD_REG(addr); return 0; } static void omap_sdrc_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_sdrc_s *s = (struct omap_sdrc_s *) opaque; switch (addr) { case 0x00: /* SDRC_REVISION */ case 0x14: /* SDRC_SYSSTATUS */ case 0x48: /* SDRC_ERR_ADDR */ case 0x64: /* SDRC_DLLA_STATUS */ case 0x6c: /* SDRC_DLLB_STATUS */ OMAP_RO_REG(addr); return; case 0x10: /* SDRC_SYSCONFIG */ if ((value >> 3) != 0x2) fprintf(stderr, "%s: bad SDRAM idle mode %i\n", __FUNCTION__, value >> 3); if (value & 2) omap_sdrc_reset(s); s->config = value & 0x18; break; case 0x40: /* SDRC_CS_CFG */ case 0x44: /* SDRC_SHARING */ case 0x4c: /* SDRC_ERR_TYPE */ case 0x60: /* SDRC_DLLA_SCTRL */ case 0x68: /* SDRC_DLLB_CTRL */ case 0x70: /* SDRC_POWER */ case 0x80: /* SDRC_MCFG_0 */ case 0x84: /* SDRC_MR_0 */ case 0x88: /* SDRC_EMR1_0 */ case 0x8c: /* SDRC_EMR2_0 */ case 0x90: /* SDRC_EMR3_0 */ case 0x94: /* SDRC_DCDL1_CTRL */ case 0x98: /* SDRC_DCDL2_CTRL */ case 0x9c: /* SDRC_ACTIM_CTRLA_0 */ case 0xa0: /* SDRC_ACTIM_CTRLB_0 */ case 0xa4: /* SDRC_RFR_CTRL_0 */ case 0xa8: /* SDRC_MANUAL_0 */ case 0xb0: /* SDRC_MCFG_1 */ case 0xb4: /* SDRC_MR_1 */ case 0xb8: /* SDRC_EMR1_1 */ case 0xbc: /* SDRC_EMR2_1 */ case 0xc0: /* SDRC_EMR3_1 */ case 0xc4: /* SDRC_ACTIM_CTRLA_1 */ case 0xc8: /* SDRC_ACTIM_CTRLB_1 */ case 0xd4: /* SDRC_RFR_CTRL_1 */ case 0xd8: /* SDRC_MANUAL_1 */ break; default: OMAP_BAD_REG(addr); return; } } static CPUReadMemoryFunc *omap_sdrc_readfn[] = { omap_badwidth_read32, omap_badwidth_read32, omap_sdrc_read, }; static CPUWriteMemoryFunc *omap_sdrc_writefn[] = { omap_badwidth_write32, omap_badwidth_write32, omap_sdrc_write, }; struct omap_sdrc_s *omap_sdrc_init(target_phys_addr_t base) { int iomemtype; struct omap_sdrc_s *s = (struct omap_sdrc_s *) qemu_mallocz(sizeof(struct omap_sdrc_s)); omap_sdrc_reset(s); iomemtype = cpu_register_io_memory(0, omap_sdrc_readfn, omap_sdrc_writefn, s); cpu_register_physical_memory(base, 0x1000, iomemtype); return s; } /* General-Purpose Memory Controller */ struct omap_gpmc_s { qemu_irq irq; uint8_t sysconfig; uint16_t irqst; uint16_t irqen; uint16_t timeout; uint16_t config; uint32_t prefconfig[2]; int prefcontrol; int preffifo; int prefcount; struct omap_gpmc_cs_file_s { uint32_t config[7]; target_phys_addr_t base; size_t size; int iomemtype; void (*base_update)(void *opaque, target_phys_addr_t new); void (*unmap)(void *opaque); void *opaque; } cs_file[8]; int ecc_cs; int ecc_ptr; uint32_t ecc_cfg; ECCState ecc[9]; }; static void omap_gpmc_int_update(struct omap_gpmc_s *s) { qemu_set_irq(s->irq, s->irqen & s->irqst); } static void omap_gpmc_cs_map(struct omap_gpmc_cs_file_s *f, int base, int mask) { /* TODO: check for overlapping regions and report access errors */ if ((mask != 0x8 && mask != 0xc && mask != 0xe && mask != 0xf) || (base < 0 || base >= 0x40) || (base & 0x0f & ~mask)) { fprintf(stderr, "%s: wrong cs address mapping/decoding!\n", __FUNCTION__); return; } if (!f->opaque) return; f->base = base << 24; f->size = (0x0fffffff & ~(mask << 24)) + 1; /* TODO: rather than setting the size of the mapping (which should be * constant), the mask should cause wrapping of the address space, so * that the same memory becomes accessible at every size bytes * starting from base. */ if (f->iomemtype) cpu_register_physical_memory(f->base, f->size, f->iomemtype); if (f->base_update) f->base_update(f->opaque, f->base); } static void omap_gpmc_cs_unmap(struct omap_gpmc_cs_file_s *f) { if (f->size) { if (f->unmap) f->unmap(f->opaque); if (f->iomemtype) cpu_register_physical_memory(f->base, f->size, IO_MEM_UNASSIGNED); f->base = 0; f->size = 0; } } static void omap_gpmc_reset(struct omap_gpmc_s *s) { int i; s->sysconfig = 0; s->irqst = 0; s->irqen = 0; omap_gpmc_int_update(s); s->timeout = 0; s->config = 0xa00; s->prefconfig[0] = 0x00004000; s->prefconfig[1] = 0x00000000; s->prefcontrol = 0; s->preffifo = 0; s->prefcount = 0; for (i = 0; i < 8; i ++) { if (s->cs_file[i].config[6] & (1 << 6)) /* CSVALID */ omap_gpmc_cs_unmap(s->cs_file + i); s->cs_file[i].config[0] = i ? 1 << 12 : 0; s->cs_file[i].config[1] = 0x101001; s->cs_file[i].config[2] = 0x020201; s->cs_file[i].config[3] = 0x10031003; s->cs_file[i].config[4] = 0x10f1111; s->cs_file[i].config[5] = 0; s->cs_file[i].config[6] = 0xf00 | (i ? 0 : 1 << 6); if (s->cs_file[i].config[6] & (1 << 6)) /* CSVALID */ omap_gpmc_cs_map(&s->cs_file[i], s->cs_file[i].config[6] & 0x1f, /* MASKADDR */ (s->cs_file[i].config[6] >> 8 & 0xf)); /* BASEADDR */ } omap_gpmc_cs_map(s->cs_file, 0, 0xf); s->ecc_cs = 0; s->ecc_ptr = 0; s->ecc_cfg = 0x3fcff000; for (i = 0; i < 9; i ++) ecc_reset(&s->ecc[i]); } static uint32_t omap_gpmc_read(void *opaque, target_phys_addr_t addr) { struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque; int cs; struct omap_gpmc_cs_file_s *f; switch (addr) { case 0x000: /* GPMC_REVISION */ return 0x20; case 0x010: /* GPMC_SYSCONFIG */ return s->sysconfig; case 0x014: /* GPMC_SYSSTATUS */ return 1; /* RESETDONE */ case 0x018: /* GPMC_IRQSTATUS */ return s->irqst; case 0x01c: /* GPMC_IRQENABLE */ return s->irqen; case 0x040: /* GPMC_TIMEOUT_CONTROL */ return s->timeout; case 0x044: /* GPMC_ERR_ADDRESS */ case 0x048: /* GPMC_ERR_TYPE */ return 0; case 0x050: /* GPMC_CONFIG */ return s->config; case 0x054: /* GPMC_STATUS */ return 0x001; case 0x060 ... 0x1d4: cs = (addr - 0x060) / 0x30; addr -= cs * 0x30; f = s->cs_file + cs; switch (addr) { case 0x60: /* GPMC_CONFIG1 */ return f->config[0]; case 0x64: /* GPMC_CONFIG2 */ return f->config[1]; case 0x68: /* GPMC_CONFIG3 */ return f->config[2]; case 0x6c: /* GPMC_CONFIG4 */ return f->config[3]; case 0x70: /* GPMC_CONFIG5 */ return f->config[4]; case 0x74: /* GPMC_CONFIG6 */ return f->config[5]; case 0x78: /* GPMC_CONFIG7 */ return f->config[6]; case 0x84: /* GPMC_NAND_DATA */ return 0; } break; case 0x1e0: /* GPMC_PREFETCH_CONFIG1 */ return s->prefconfig[0]; case 0x1e4: /* GPMC_PREFETCH_CONFIG2 */ return s->prefconfig[1]; case 0x1ec: /* GPMC_PREFETCH_CONTROL */ return s->prefcontrol; case 0x1f0: /* GPMC_PREFETCH_STATUS */ return (s->preffifo << 24) | ((s->preffifo > ((s->prefconfig[0] >> 8) & 0x7f) ? 1 : 0) << 16) | s->prefcount; case 0x1f4: /* GPMC_ECC_CONFIG */ return s->ecc_cs; case 0x1f8: /* GPMC_ECC_CONTROL */ return s->ecc_ptr; case 0x1fc: /* GPMC_ECC_SIZE_CONFIG */ return s->ecc_cfg; case 0x200 ... 0x220: /* GPMC_ECC_RESULT */ cs = (addr & 0x1f) >> 2; /* TODO: check correctness */ return ((s->ecc[cs].cp & 0x07) << 0) | ((s->ecc[cs].cp & 0x38) << 13) | ((s->ecc[cs].lp[0] & 0x1ff) << 3) | ((s->ecc[cs].lp[1] & 0x1ff) << 19); case 0x230: /* GPMC_TESTMODE_CTRL */ return 0; case 0x234: /* GPMC_PSA_LSB */ case 0x238: /* GPMC_PSA_MSB */ return 0x00000000; } OMAP_BAD_REG(addr); return 0; } static void omap_gpmc_write(void *opaque, target_phys_addr_t addr, uint32_t value) { struct omap_gpmc_s *s = (struct omap_gpmc_s *) opaque; int cs; struct omap_gpmc_cs_file_s *f; switch (addr) { case 0x000: /* GPMC_REVISION */ case 0x014: /* GPMC_SYSSTATUS */ case 0x054: /* GPMC_STATUS */ case 0x1f0: /* GPMC_PREFETCH_STATUS */ case 0x200 ... 0x220: /* GPMC_ECC_RESULT */ case 0x234: /* GPMC_PSA_LSB */ case 0x238: /* GPMC_PSA_MSB */ OMAP_RO_REG(addr); break; case 0x010: /* GPMC_SYSCONFIG */ if ((value >> 3) == 0x3) fprintf(stderr, "%s: bad SDRAM idle mode %i\n", __FUNCTION__, value >> 3); if (value & 2) omap_gpmc_reset(s); s->sysconfig = value & 0x19; break; case 0x018: /* GPMC_IRQSTATUS */ s->irqen = ~value; omap_gpmc_int_update(s); break; case 0x01c: /* GPMC_IRQENABLE */ s->irqen = value & 0xf03; omap_gpmc_int_update(s); break; case 0x040: /* GPMC_TIMEOUT_CONTROL */ s->timeout = value & 0x1ff1; break; case 0x044: /* GPMC_ERR_ADDRESS */ case 0x048: /* GPMC_ERR_TYPE */ break; case 0x050: /* GPMC_CONFIG */ s->config = value & 0xf13; break; case 0x060 ... 0x1d4: cs = (addr - 0x060) / 0x30; addr -= cs * 0x30; f = s->cs_file + cs; switch (addr) { case 0x60: /* GPMC_CONFIG1 */ f->config[0] = value & 0xffef3e13; break; case 0x64: /* GPMC_CONFIG2 */ f->config[1] = value & 0x001f1f8f; break; case 0x68: /* GPMC_CONFIG3 */ f->config[2] = value & 0x001f1f8f; break; case 0x6c: /* GPMC_CONFIG4 */ f->config[3] = value & 0x1f8f1f8f; break; case 0x70: /* GPMC_CONFIG5 */ f->config[4] = value & 0x0f1f1f1f; break; case 0x74: /* GPMC_CONFIG6 */ f->config[5] = value & 0x00000fcf; break; case 0x78: /* GPMC_CONFIG7 */ if ((f->config[6] ^ value) & 0xf7f) { if (f->config[6] & (1 << 6)) /* CSVALID */ omap_gpmc_cs_unmap(f); if (value & (1 << 6)) /* CSVALID */ omap_gpmc_cs_map(f, value & 0x1f, /* MASKADDR */ (value >> 8 & 0xf)); /* BASEADDR */ } f->config[6] = value & 0x00000f7f; break; case 0x7c: /* GPMC_NAND_COMMAND */ case 0x80: /* GPMC_NAND_ADDRESS */ case 0x84: /* GPMC_NAND_DATA */ break; default: goto bad_reg; } break; case 0x1e0: /* GPMC_PREFETCH_CONFIG1 */ s->prefconfig[0] = value & 0x7f8f7fbf; /* TODO: update interrupts, fifos, dmas */ break; case 0x1e4: /* GPMC_PREFETCH_CONFIG2 */ s->prefconfig[1] = value & 0x3fff; break; case 0x1ec: /* GPMC_PREFETCH_CONTROL */ s->prefcontrol = value & 1; if (s->prefcontrol) { if (s->prefconfig[0] & 1) s->preffifo = 0x40; else s->preffifo = 0x00; } /* TODO: start */ break; case 0x1f4: /* GPMC_ECC_CONFIG */ s->ecc_cs = 0x8f; break; case 0x1f8: /* GPMC_ECC_CONTROL */ if (value & (1 << 8)) for (cs = 0; cs < 9; cs ++) ecc_reset(&s->ecc[cs]); s->ecc_ptr = value & 0xf; if (s->ecc_ptr == 0 || s->ecc_ptr > 9) { s->ecc_ptr = 0; s->ecc_cs &= ~1; } break; case 0x1fc: /* GPMC_ECC_SIZE_CONFIG */ s->ecc_cfg = value & 0x3fcff1ff; break; case 0x230: /* GPMC_TESTMODE_CTRL */ if (value & 7) fprintf(stderr, "%s: test mode enable attempt\n", __FUNCTION__); break; default: bad_reg: OMAP_BAD_REG(addr); return; } } static CPUReadMemoryFunc *omap_gpmc_readfn[] = { omap_badwidth_read32, /* TODO */ omap_badwidth_read32, /* TODO */ omap_gpmc_read, }; static CPUWriteMemoryFunc *omap_gpmc_writefn[] = { omap_badwidth_write32, /* TODO */ omap_badwidth_write32, /* TODO */ omap_gpmc_write, }; struct omap_gpmc_s *omap_gpmc_init(target_phys_addr_t base, qemu_irq irq) { int iomemtype; struct omap_gpmc_s *s = (struct omap_gpmc_s *) qemu_mallocz(sizeof(struct omap_gpmc_s)); omap_gpmc_reset(s); iomemtype = cpu_register_io_memory(0, omap_gpmc_readfn, omap_gpmc_writefn, s); cpu_register_physical_memory(base, 0x1000, iomemtype); return s; } void omap_gpmc_attach(struct omap_gpmc_s *s, int cs, int iomemtype, void (*base_upd)(void *opaque, target_phys_addr_t new), void (*unmap)(void *opaque), void *opaque) { struct omap_gpmc_cs_file_s *f; if (cs < 0 || cs >= 8) { fprintf(stderr, "%s: bad chip-select %i\n", __FUNCTION__, cs); exit(-1); } f = &s->cs_file[cs]; f->iomemtype = iomemtype; f->base_update = base_upd; f->unmap = unmap; f->opaque = opaque; if (f->config[6] & (1 << 6)) /* CSVALID */ omap_gpmc_cs_map(f, f->config[6] & 0x1f, /* MASKADDR */ (f->config[6] >> 8 & 0xf)); /* BASEADDR */ } /* General chip reset */ static void omap2_mpu_reset(void *opaque) { struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque; omap_inth_reset(mpu->ih[0]); omap_dma_reset(mpu->dma); omap_prcm_reset(mpu->prcm); omap_sysctl_reset(mpu->sysc); omap_gp_timer_reset(mpu->gptimer[0]); omap_gp_timer_reset(mpu->gptimer[1]); omap_gp_timer_reset(mpu->gptimer[2]); omap_gp_timer_reset(mpu->gptimer[3]); omap_gp_timer_reset(mpu->gptimer[4]); omap_gp_timer_reset(mpu->gptimer[5]); omap_gp_timer_reset(mpu->gptimer[6]); omap_gp_timer_reset(mpu->gptimer[7]); omap_gp_timer_reset(mpu->gptimer[8]); omap_gp_timer_reset(mpu->gptimer[9]); omap_gp_timer_reset(mpu->gptimer[10]); omap_gp_timer_reset(mpu->gptimer[11]); omap_synctimer_reset(&mpu->synctimer); omap_sdrc_reset(mpu->sdrc); omap_gpmc_reset(mpu->gpmc); omap_dss_reset(mpu->dss); omap_uart_reset(mpu->uart[0]); omap_uart_reset(mpu->uart[1]); omap_uart_reset(mpu->uart[2]); omap_mmc_reset(mpu->mmc); omap_gpif_reset(mpu->gpif); omap_mcspi_reset(mpu->mcspi[0]); omap_mcspi_reset(mpu->mcspi[1]); omap_i2c_reset(mpu->i2c[0]); omap_i2c_reset(mpu->i2c[1]); cpu_reset(mpu->env); } static int omap2_validate_addr(struct omap_mpu_state_s *s, target_phys_addr_t addr) { return 1; } static const struct dma_irq_map omap2_dma_irq_map[] = { { 0, OMAP_INT_24XX_SDMA_IRQ0 }, { 0, OMAP_INT_24XX_SDMA_IRQ1 }, { 0, OMAP_INT_24XX_SDMA_IRQ2 }, { 0, OMAP_INT_24XX_SDMA_IRQ3 }, }; struct omap_mpu_state_s *omap2420_mpu_init(unsigned long sdram_size, const char *core) { struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) qemu_mallocz(sizeof(struct omap_mpu_state_s)); ram_addr_t sram_base, q2_base; qemu_irq *cpu_irq; qemu_irq dma_irqs[4]; omap_clk gpio_clks[4]; int sdindex; int i; /* Core */ s->mpu_model = omap2420; s->env = cpu_init(core ?: "arm1136-r2"); if (!s->env) { fprintf(stderr, "Unable to find CPU definition\n"); exit(1); } s->sdram_size = sdram_size; s->sram_size = OMAP242X_SRAM_SIZE; s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0]; /* Clocks */ omap_clk_init(s); /* Memory-mapped stuff */ cpu_register_physical_memory(OMAP2_Q2_BASE, s->sdram_size, (q2_base = qemu_ram_alloc(s->sdram_size)) | IO_MEM_RAM); cpu_register_physical_memory(OMAP2_SRAM_BASE, s->sram_size, (sram_base = qemu_ram_alloc(s->sram_size)) | IO_MEM_RAM); s->l4 = omap_l4_init(OMAP2_L4_BASE, 54); /* Actually mapped at any 2K boundary in the ARM11 private-peripheral if */ cpu_irq = arm_pic_init_cpu(s->env); s->ih[0] = omap2_inth_init(0x480fe000, 0x1000, 3, &s->irq[0], cpu_irq[ARM_PIC_CPU_IRQ], cpu_irq[ARM_PIC_CPU_FIQ], omap_findclk(s, "mpu_intc_fclk"), omap_findclk(s, "mpu_intc_iclk")); s->prcm = omap_prcm_init(omap_l4tao(s->l4, 3), s->irq[0][OMAP_INT_24XX_PRCM_MPU_IRQ], NULL, NULL, s); s->sysc = omap_sysctl_init(omap_l4tao(s->l4, 1), omap_findclk(s, "omapctrl_iclk"), s); for (i = 0; i < 4; i ++) dma_irqs[i] = s->irq[omap2_dma_irq_map[i].ih][omap2_dma_irq_map[i].intr]; s->dma = omap_dma4_init(0x48056000, dma_irqs, s, 256, 32, omap_findclk(s, "sdma_iclk"), omap_findclk(s, "sdma_fclk")); s->port->addr_valid = omap2_validate_addr; /* Register SDRAM and SRAM ports for fast DMA transfers. */ soc_dma_port_add_mem_ram(s->dma, q2_base, OMAP2_Q2_BASE, s->sdram_size); soc_dma_port_add_mem_ram(s->dma, sram_base, OMAP2_SRAM_BASE, s->sram_size); s->uart[0] = omap2_uart_init(omap_l4ta(s->l4, 19), s->irq[0][OMAP_INT_24XX_UART1_IRQ], omap_findclk(s, "uart1_fclk"), omap_findclk(s, "uart1_iclk"), s->drq[OMAP24XX_DMA_UART1_TX], s->drq[OMAP24XX_DMA_UART1_RX], serial_hds[0]); s->uart[1] = omap2_uart_init(omap_l4ta(s->l4, 20), s->irq[0][OMAP_INT_24XX_UART2_IRQ], omap_findclk(s, "uart2_fclk"), omap_findclk(s, "uart2_iclk"), s->drq[OMAP24XX_DMA_UART2_TX], s->drq[OMAP24XX_DMA_UART2_RX], serial_hds[0] ? serial_hds[1] : 0); s->uart[2] = omap2_uart_init(omap_l4ta(s->l4, 21), s->irq[0][OMAP_INT_24XX_UART3_IRQ], omap_findclk(s, "uart3_fclk"), omap_findclk(s, "uart3_iclk"), s->drq[OMAP24XX_DMA_UART3_TX], s->drq[OMAP24XX_DMA_UART3_RX], serial_hds[0] && serial_hds[1] ? serial_hds[2] : 0); s->gptimer[0] = omap_gp_timer_init(omap_l4ta(s->l4, 7), s->irq[0][OMAP_INT_24XX_GPTIMER1], omap_findclk(s, "wu_gpt1_clk"), omap_findclk(s, "wu_l4_iclk")); s->gptimer[1] = omap_gp_timer_init(omap_l4ta(s->l4, 8), s->irq[0][OMAP_INT_24XX_GPTIMER2], omap_findclk(s, "core_gpt2_clk"), omap_findclk(s, "core_l4_iclk")); s->gptimer[2] = omap_gp_timer_init(omap_l4ta(s->l4, 22), s->irq[0][OMAP_INT_24XX_GPTIMER3], omap_findclk(s, "core_gpt3_clk"), omap_findclk(s, "core_l4_iclk")); s->gptimer[3] = omap_gp_timer_init(omap_l4ta(s->l4, 23), s->irq[0][OMAP_INT_24XX_GPTIMER4], omap_findclk(s, "core_gpt4_clk"), omap_findclk(s, "core_l4_iclk")); s->gptimer[4] = omap_gp_timer_init(omap_l4ta(s->l4, 24), s->irq[0][OMAP_INT_24XX_GPTIMER5], omap_findclk(s, "core_gpt5_clk"), omap_findclk(s, "core_l4_iclk")); s->gptimer[5] = omap_gp_timer_init(omap_l4ta(s->l4, 25), s->irq[0][OMAP_INT_24XX_GPTIMER6], omap_findclk(s, "core_gpt6_clk"), omap_findclk(s, "core_l4_iclk")); s->gptimer[6] = omap_gp_timer_init(omap_l4ta(s->l4, 26), s->irq[0][OMAP_INT_24XX_GPTIMER7], omap_findclk(s, "core_gpt7_clk"), omap_findclk(s, "core_l4_iclk")); s->gptimer[7] = omap_gp_timer_init(omap_l4ta(s->l4, 27), s->irq[0][OMAP_INT_24XX_GPTIMER8], omap_findclk(s, "core_gpt8_clk"), omap_findclk(s, "core_l4_iclk")); s->gptimer[8] = omap_gp_timer_init(omap_l4ta(s->l4, 28), s->irq[0][OMAP_INT_24XX_GPTIMER9], omap_findclk(s, "core_gpt9_clk"), omap_findclk(s, "core_l4_iclk")); s->gptimer[9] = omap_gp_timer_init(omap_l4ta(s->l4, 29), s->irq[0][OMAP_INT_24XX_GPTIMER10], omap_findclk(s, "core_gpt10_clk"), omap_findclk(s, "core_l4_iclk")); s->gptimer[10] = omap_gp_timer_init(omap_l4ta(s->l4, 30), s->irq[0][OMAP_INT_24XX_GPTIMER11], omap_findclk(s, "core_gpt11_clk"), omap_findclk(s, "core_l4_iclk")); s->gptimer[11] = omap_gp_timer_init(omap_l4ta(s->l4, 31), s->irq[0][OMAP_INT_24XX_GPTIMER12], omap_findclk(s, "core_gpt12_clk"), omap_findclk(s, "core_l4_iclk")); omap_tap_init(omap_l4ta(s->l4, 2), s); omap_synctimer_init(omap_l4tao(s->l4, 2), s, omap_findclk(s, "clk32-kHz"), omap_findclk(s, "core_l4_iclk")); s->i2c[0] = omap2_i2c_init(omap_l4tao(s->l4, 5), s->irq[0][OMAP_INT_24XX_I2C1_IRQ], &s->drq[OMAP24XX_DMA_I2C1_TX], omap_findclk(s, "i2c1.fclk"), omap_findclk(s, "i2c1.iclk")); s->i2c[1] = omap2_i2c_init(omap_l4tao(s->l4, 6), s->irq[0][OMAP_INT_24XX_I2C2_IRQ], &s->drq[OMAP24XX_DMA_I2C2_TX], omap_findclk(s, "i2c2.fclk"), omap_findclk(s, "i2c2.iclk")); gpio_clks[0] = omap_findclk(s, "gpio1_dbclk"); gpio_clks[1] = omap_findclk(s, "gpio2_dbclk"); gpio_clks[2] = omap_findclk(s, "gpio3_dbclk"); gpio_clks[3] = omap_findclk(s, "gpio4_dbclk"); s->gpif = omap2_gpio_init(omap_l4ta(s->l4, 3), &s->irq[0][OMAP_INT_24XX_GPIO_BANK1], gpio_clks, omap_findclk(s, "gpio_iclk"), 4); s->sdrc = omap_sdrc_init(0x68009000); s->gpmc = omap_gpmc_init(0x6800a000, s->irq[0][OMAP_INT_24XX_GPMC_IRQ]); sdindex = drive_get_index(IF_SD, 0, 0); if (sdindex == -1) { fprintf(stderr, "qemu: missing SecureDigital device\n"); exit(1); } s->mmc = omap2_mmc_init(omap_l4tao(s->l4, 9), drives_table[sdindex].bdrv, s->irq[0][OMAP_INT_24XX_MMC_IRQ], &s->drq[OMAP24XX_DMA_MMC1_TX], omap_findclk(s, "mmc_fclk"), omap_findclk(s, "mmc_iclk")); s->mcspi[0] = omap_mcspi_init(omap_l4ta(s->l4, 35), 4, s->irq[0][OMAP_INT_24XX_MCSPI1_IRQ], &s->drq[OMAP24XX_DMA_SPI1_TX0], omap_findclk(s, "spi1_fclk"), omap_findclk(s, "spi1_iclk")); s->mcspi[1] = omap_mcspi_init(omap_l4ta(s->l4, 36), 2, s->irq[0][OMAP_INT_24XX_MCSPI2_IRQ], &s->drq[OMAP24XX_DMA_SPI2_TX0], omap_findclk(s, "spi2_fclk"), omap_findclk(s, "spi2_iclk")); s->dss = omap_dss_init(omap_l4ta(s->l4, 10), 0x68000800, /* XXX wire M_IRQ_25, D_L2_IRQ_30 and I_IRQ_13 together */ s->irq[0][OMAP_INT_24XX_DSS_IRQ], s->drq[OMAP24XX_DMA_DSS], omap_findclk(s, "dss_clk1"), omap_findclk(s, "dss_clk2"), omap_findclk(s, "dss_54m_clk"), omap_findclk(s, "dss_l3_iclk"), omap_findclk(s, "dss_l4_iclk")); omap_sti_init(omap_l4ta(s->l4, 18), 0x54000000, s->irq[0][OMAP_INT_24XX_STI], omap_findclk(s, "emul_ck"), serial_hds[0] && serial_hds[1] && serial_hds[2] ? serial_hds[3] : 0); s->eac = omap_eac_init(omap_l4ta(s->l4, 32), s->irq[0][OMAP_INT_24XX_EAC_IRQ], /* Ten consecutive lines */ &s->drq[OMAP24XX_DMA_EAC_AC_RD], omap_findclk(s, "func_96m_clk"), omap_findclk(s, "core_l4_iclk")); /* All register mappings (includin those not currenlty implemented): * SystemControlMod 48000000 - 48000fff * SystemControlL4 48001000 - 48001fff * 32kHz Timer Mod 48004000 - 48004fff * 32kHz Timer L4 48005000 - 48005fff * PRCM ModA 48008000 - 480087ff * PRCM ModB 48008800 - 48008fff * PRCM L4 48009000 - 48009fff * TEST-BCM Mod 48012000 - 48012fff * TEST-BCM L4 48013000 - 48013fff * TEST-TAP Mod 48014000 - 48014fff * TEST-TAP L4 48015000 - 48015fff * GPIO1 Mod 48018000 - 48018fff * GPIO Top 48019000 - 48019fff * GPIO2 Mod 4801a000 - 4801afff * GPIO L4 4801b000 - 4801bfff * GPIO3 Mod 4801c000 - 4801cfff * GPIO4 Mod 4801e000 - 4801efff * WDTIMER1 Mod 48020000 - 48010fff * WDTIMER Top 48021000 - 48011fff * WDTIMER2 Mod 48022000 - 48012fff * WDTIMER L4 48023000 - 48013fff * WDTIMER3 Mod 48024000 - 48014fff * WDTIMER3 L4 48025000 - 48015fff * WDTIMER4 Mod 48026000 - 48016fff * WDTIMER4 L4 48027000 - 48017fff * GPTIMER1 Mod 48028000 - 48018fff * GPTIMER1 L4 48029000 - 48019fff * GPTIMER2 Mod 4802a000 - 4801afff * GPTIMER2 L4 4802b000 - 4801bfff * L4-Config AP 48040000 - 480407ff * L4-Config IP 48040800 - 48040fff * L4-Config LA 48041000 - 48041fff * ARM11ETB Mod 48048000 - 48049fff * ARM11ETB L4 4804a000 - 4804afff * DISPLAY Top 48050000 - 480503ff * DISPLAY DISPC 48050400 - 480507ff * DISPLAY RFBI 48050800 - 48050bff * DISPLAY VENC 48050c00 - 48050fff * DISPLAY L4 48051000 - 48051fff * CAMERA Top 48052000 - 480523ff * CAMERA core 48052400 - 480527ff * CAMERA DMA 48052800 - 48052bff * CAMERA MMU 48052c00 - 48052fff * CAMERA L4 48053000 - 48053fff * SDMA Mod 48056000 - 48056fff * SDMA L4 48057000 - 48057fff * SSI Top 48058000 - 48058fff * SSI GDD 48059000 - 48059fff * SSI Port1 4805a000 - 4805afff * SSI Port2 4805b000 - 4805bfff * SSI L4 4805c000 - 4805cfff * USB Mod 4805e000 - 480fefff * USB L4 4805f000 - 480fffff * WIN_TRACER1 Mod 48060000 - 48060fff * WIN_TRACER1 L4 48061000 - 48061fff * WIN_TRACER2 Mod 48062000 - 48062fff * WIN_TRACER2 L4 48063000 - 48063fff * WIN_TRACER3 Mod 48064000 - 48064fff * WIN_TRACER3 L4 48065000 - 48065fff * WIN_TRACER4 Top 48066000 - 480660ff * WIN_TRACER4 ETT 48066100 - 480661ff * WIN_TRACER4 WT 48066200 - 480662ff * WIN_TRACER4 L4 48067000 - 48067fff * XTI Mod 48068000 - 48068fff * XTI L4 48069000 - 48069fff * UART1 Mod 4806a000 - 4806afff * UART1 L4 4806b000 - 4806bfff * UART2 Mod 4806c000 - 4806cfff * UART2 L4 4806d000 - 4806dfff * UART3 Mod 4806e000 - 4806efff * UART3 L4 4806f000 - 4806ffff * I2C1 Mod 48070000 - 48070fff * I2C1 L4 48071000 - 48071fff * I2C2 Mod 48072000 - 48072fff * I2C2 L4 48073000 - 48073fff * McBSP1 Mod 48074000 - 48074fff * McBSP1 L4 48075000 - 48075fff * McBSP2 Mod 48076000 - 48076fff * McBSP2 L4 48077000 - 48077fff * GPTIMER3 Mod 48078000 - 48078fff * GPTIMER3 L4 48079000 - 48079fff * GPTIMER4 Mod 4807a000 - 4807afff * GPTIMER4 L4 4807b000 - 4807bfff * GPTIMER5 Mod 4807c000 - 4807cfff * GPTIMER5 L4 4807d000 - 4807dfff * GPTIMER6 Mod 4807e000 - 4807efff * GPTIMER6 L4 4807f000 - 4807ffff * GPTIMER7 Mod 48080000 - 48080fff * GPTIMER7 L4 48081000 - 48081fff * GPTIMER8 Mod 48082000 - 48082fff * GPTIMER8 L4 48083000 - 48083fff * GPTIMER9 Mod 48084000 - 48084fff * GPTIMER9 L4 48085000 - 48085fff * GPTIMER10 Mod 48086000 - 48086fff * GPTIMER10 L4 48087000 - 48087fff * GPTIMER11 Mod 48088000 - 48088fff * GPTIMER11 L4 48089000 - 48089fff * GPTIMER12 Mod 4808a000 - 4808afff * GPTIMER12 L4 4808b000 - 4808bfff * EAC Mod 48090000 - 48090fff * EAC L4 48091000 - 48091fff * FAC Mod 48092000 - 48092fff * FAC L4 48093000 - 48093fff * MAILBOX Mod 48094000 - 48094fff * MAILBOX L4 48095000 - 48095fff * SPI1 Mod 48098000 - 48098fff * SPI1 L4 48099000 - 48099fff * SPI2 Mod 4809a000 - 4809afff * SPI2 L4 4809b000 - 4809bfff * MMC/SDIO Mod 4809c000 - 4809cfff * MMC/SDIO L4 4809d000 - 4809dfff * MS_PRO Mod 4809e000 - 4809efff * MS_PRO L4 4809f000 - 4809ffff * RNG Mod 480a0000 - 480a0fff * RNG L4 480a1000 - 480a1fff * DES3DES Mod 480a2000 - 480a2fff * DES3DES L4 480a3000 - 480a3fff * SHA1MD5 Mod 480a4000 - 480a4fff * SHA1MD5 L4 480a5000 - 480a5fff * AES Mod 480a6000 - 480a6fff * AES L4 480a7000 - 480a7fff * PKA Mod 480a8000 - 480a9fff * PKA L4 480aa000 - 480aafff * MG Mod 480b0000 - 480b0fff * MG L4 480b1000 - 480b1fff * HDQ/1-wire Mod 480b2000 - 480b2fff * HDQ/1-wire L4 480b3000 - 480b3fff * MPU interrupt 480fe000 - 480fefff * STI channel base 54000000 - 5400ffff * IVA RAM 5c000000 - 5c01ffff * IVA ROM 5c020000 - 5c027fff * IMG_BUF_A 5c040000 - 5c040fff * IMG_BUF_B 5c042000 - 5c042fff * VLCDS 5c048000 - 5c0487ff * IMX_COEF 5c049000 - 5c04afff * IMX_CMD 5c051000 - 5c051fff * VLCDQ 5c053000 - 5c0533ff * VLCDH 5c054000 - 5c054fff * SEQ_CMD 5c055000 - 5c055fff * IMX_REG 5c056000 - 5c0560ff * VLCD_REG 5c056100 - 5c0561ff * SEQ_REG 5c056200 - 5c0562ff * IMG_BUF_REG 5c056300 - 5c0563ff * SEQIRQ_REG 5c056400 - 5c0564ff * OCP_REG 5c060000 - 5c060fff * SYSC_REG 5c070000 - 5c070fff * MMU_REG 5d000000 - 5d000fff * sDMA R 68000400 - 680005ff * sDMA W 68000600 - 680007ff * Display Control 68000800 - 680009ff * DSP subsystem 68000a00 - 68000bff * MPU subsystem 68000c00 - 68000dff * IVA subsystem 68001000 - 680011ff * USB 68001200 - 680013ff * Camera 68001400 - 680015ff * VLYNQ (firewall) 68001800 - 68001bff * VLYNQ 68001e00 - 68001fff * SSI 68002000 - 680021ff * L4 68002400 - 680025ff * DSP (firewall) 68002800 - 68002bff * DSP subsystem 68002e00 - 68002fff * IVA (firewall) 68003000 - 680033ff * IVA 68003600 - 680037ff * GFX 68003a00 - 68003bff * CMDWR emulation 68003c00 - 68003dff * SMS 68004000 - 680041ff * OCM 68004200 - 680043ff * GPMC 68004400 - 680045ff * RAM (firewall) 68005000 - 680053ff * RAM (err login) 68005400 - 680057ff * ROM (firewall) 68005800 - 68005bff * ROM (err login) 68005c00 - 68005fff * GPMC (firewall) 68006000 - 680063ff * GPMC (err login) 68006400 - 680067ff * SMS (err login) 68006c00 - 68006fff * SMS registers 68008000 - 68008fff * SDRC registers 68009000 - 68009fff * GPMC registers 6800a000 6800afff */ qemu_register_reset(omap2_mpu_reset, s); return s; }