/* * QEMU Floppy disk emulator (Intel 82078) * * Copyright (c) 2003, 2007 Jocelyn Mayer * Copyright (c) 2008 Hervé Poussineau * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ /* * The controller is used in Sun4m systems in a slightly different * way. There are changes in DOR register and DMA is not available. */ #include "hw.h" #include "fdc.h" #include "block.h" #include "qemu-timer.h" #include "isa.h" #include "sysbus.h" #include "qdev-addr.h" /********************************************************/ /* debug Floppy devices */ //#define DEBUG_FLOPPY #ifdef DEBUG_FLOPPY #define FLOPPY_DPRINTF(fmt, ...) \ do { printf("FLOPPY: " fmt , ## __VA_ARGS__); } while (0) #else #define FLOPPY_DPRINTF(fmt, ...) #endif #define FLOPPY_ERROR(fmt, ...) \ do { printf("FLOPPY ERROR: %s: " fmt, __func__ , ## __VA_ARGS__); } while (0) /********************************************************/ /* Floppy drive emulation */ #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv) #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive)) /* Will always be a fixed parameter for us */ #define FD_SECTOR_LEN 512 #define FD_SECTOR_SC 2 /* Sector size code */ #define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */ /* Floppy disk drive emulation */ typedef enum fdisk_type_t { FDRIVE_DISK_288 = 0x01, /* 2.88 MB disk */ FDRIVE_DISK_144 = 0x02, /* 1.44 MB disk */ FDRIVE_DISK_720 = 0x03, /* 720 kB disk */ FDRIVE_DISK_USER = 0x04, /* User defined geometry */ FDRIVE_DISK_NONE = 0x05, /* No disk */ } fdisk_type_t; typedef enum fdrive_type_t { FDRIVE_DRV_144 = 0x00, /* 1.44 MB 3"5 drive */ FDRIVE_DRV_288 = 0x01, /* 2.88 MB 3"5 drive */ FDRIVE_DRV_120 = 0x02, /* 1.2 MB 5"25 drive */ FDRIVE_DRV_NONE = 0x03, /* No drive connected */ } fdrive_type_t; typedef enum fdisk_flags_t { FDISK_DBL_SIDES = 0x01, } fdisk_flags_t; typedef struct fdrive_t { DriveInfo *dinfo; BlockDriverState *bs; /* Drive status */ fdrive_type_t drive; uint8_t perpendicular; /* 2.88 MB access mode */ /* Position */ uint8_t head; uint8_t track; uint8_t sect; /* Media */ fdisk_flags_t flags; uint8_t last_sect; /* Nb sector per track */ uint8_t max_track; /* Nb of tracks */ uint16_t bps; /* Bytes per sector */ uint8_t ro; /* Is read-only */ } fdrive_t; static void fd_init (fdrive_t *drv) { /* Drive */ drv->bs = drv->dinfo ? drv->dinfo->bdrv : NULL; drv->drive = FDRIVE_DRV_NONE; drv->perpendicular = 0; /* Disk */ drv->last_sect = 0; drv->max_track = 0; } static int _fd_sector (uint8_t head, uint8_t track, uint8_t sect, uint8_t last_sect) { return (((track * 2) + head) * last_sect) + sect - 1; } /* Returns current position, in sectors, for given drive */ static int fd_sector (fdrive_t *drv) { return _fd_sector(drv->head, drv->track, drv->sect, drv->last_sect); } /* Seek to a new position: * returns 0 if already on right track * returns 1 if track changed * returns 2 if track is invalid * returns 3 if sector is invalid * returns 4 if seek is disabled */ static int fd_seek (fdrive_t *drv, uint8_t head, uint8_t track, uint8_t sect, int enable_seek) { uint32_t sector; int ret; if (track > drv->max_track || (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) { FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n", head, track, sect, 1, (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1, drv->max_track, drv->last_sect); return 2; } if (sect > drv->last_sect) { FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n", head, track, sect, 1, (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1, drv->max_track, drv->last_sect); return 3; } sector = _fd_sector(head, track, sect, drv->last_sect); ret = 0; if (sector != fd_sector(drv)) { #if 0 if (!enable_seek) { FLOPPY_ERROR("no implicit seek %d %02x %02x (max=%d %02x %02x)\n", head, track, sect, 1, drv->max_track, drv->last_sect); return 4; } #endif drv->head = head; if (drv->track != track) ret = 1; drv->track = track; drv->sect = sect; } return ret; } /* Set drive back to track 0 */ static void fd_recalibrate (fdrive_t *drv) { FLOPPY_DPRINTF("recalibrate\n"); drv->head = 0; drv->track = 0; drv->sect = 1; } /* Recognize floppy formats */ typedef struct fd_format_t { fdrive_type_t drive; fdisk_type_t disk; uint8_t last_sect; uint8_t max_track; uint8_t max_head; const char *str; } fd_format_t; static const fd_format_t fd_formats[] = { /* First entry is default format */ /* 1.44 MB 3"1/2 floppy disks */ { FDRIVE_DRV_144, FDRIVE_DISK_144, 18, 80, 1, "1.44 MB 3\"1/2", }, { FDRIVE_DRV_144, FDRIVE_DISK_144, 20, 80, 1, "1.6 MB 3\"1/2", }, { FDRIVE_DRV_144, FDRIVE_DISK_144, 21, 80, 1, "1.68 MB 3\"1/2", }, { FDRIVE_DRV_144, FDRIVE_DISK_144, 21, 82, 1, "1.72 MB 3\"1/2", }, { FDRIVE_DRV_144, FDRIVE_DISK_144, 21, 83, 1, "1.74 MB 3\"1/2", }, { FDRIVE_DRV_144, FDRIVE_DISK_144, 22, 80, 1, "1.76 MB 3\"1/2", }, { FDRIVE_DRV_144, FDRIVE_DISK_144, 23, 80, 1, "1.84 MB 3\"1/2", }, { FDRIVE_DRV_144, FDRIVE_DISK_144, 24, 80, 1, "1.92 MB 3\"1/2", }, /* 2.88 MB 3"1/2 floppy disks */ { FDRIVE_DRV_288, FDRIVE_DISK_288, 36, 80, 1, "2.88 MB 3\"1/2", }, { FDRIVE_DRV_288, FDRIVE_DISK_288, 39, 80, 1, "3.12 MB 3\"1/2", }, { FDRIVE_DRV_288, FDRIVE_DISK_288, 40, 80, 1, "3.2 MB 3\"1/2", }, { FDRIVE_DRV_288, FDRIVE_DISK_288, 44, 80, 1, "3.52 MB 3\"1/2", }, { FDRIVE_DRV_288, FDRIVE_DISK_288, 48, 80, 1, "3.84 MB 3\"1/2", }, /* 720 kB 3"1/2 floppy disks */ { FDRIVE_DRV_144, FDRIVE_DISK_720, 9, 80, 1, "720 kB 3\"1/2", }, { FDRIVE_DRV_144, FDRIVE_DISK_720, 10, 80, 1, "800 kB 3\"1/2", }, { FDRIVE_DRV_144, FDRIVE_DISK_720, 10, 82, 1, "820 kB 3\"1/2", }, { FDRIVE_DRV_144, FDRIVE_DISK_720, 10, 83, 1, "830 kB 3\"1/2", }, { FDRIVE_DRV_144, FDRIVE_DISK_720, 13, 80, 1, "1.04 MB 3\"1/2", }, { FDRIVE_DRV_144, FDRIVE_DISK_720, 14, 80, 1, "1.12 MB 3\"1/2", }, /* 1.2 MB 5"1/4 floppy disks */ { FDRIVE_DRV_120, FDRIVE_DISK_288, 15, 80, 1, "1.2 kB 5\"1/4", }, { FDRIVE_DRV_120, FDRIVE_DISK_288, 18, 80, 1, "1.44 MB 5\"1/4", }, { FDRIVE_DRV_120, FDRIVE_DISK_288, 18, 82, 1, "1.48 MB 5\"1/4", }, { FDRIVE_DRV_120, FDRIVE_DISK_288, 18, 83, 1, "1.49 MB 5\"1/4", }, { FDRIVE_DRV_120, FDRIVE_DISK_288, 20, 80, 1, "1.6 MB 5\"1/4", }, /* 720 kB 5"1/4 floppy disks */ { FDRIVE_DRV_120, FDRIVE_DISK_288, 9, 80, 1, "720 kB 5\"1/4", }, { FDRIVE_DRV_120, FDRIVE_DISK_288, 11, 80, 1, "880 kB 5\"1/4", }, /* 360 kB 5"1/4 floppy disks */ { FDRIVE_DRV_120, FDRIVE_DISK_288, 9, 40, 1, "360 kB 5\"1/4", }, { FDRIVE_DRV_120, FDRIVE_DISK_288, 9, 40, 0, "180 kB 5\"1/4", }, { FDRIVE_DRV_120, FDRIVE_DISK_288, 10, 41, 1, "410 kB 5\"1/4", }, { FDRIVE_DRV_120, FDRIVE_DISK_288, 10, 42, 1, "420 kB 5\"1/4", }, /* 320 kB 5"1/4 floppy disks */ { FDRIVE_DRV_120, FDRIVE_DISK_288, 8, 40, 1, "320 kB 5\"1/4", }, { FDRIVE_DRV_120, FDRIVE_DISK_288, 8, 40, 0, "160 kB 5\"1/4", }, /* 360 kB must match 5"1/4 better than 3"1/2... */ { FDRIVE_DRV_144, FDRIVE_DISK_720, 9, 80, 0, "360 kB 3\"1/2", }, /* end */ { FDRIVE_DRV_NONE, FDRIVE_DISK_NONE, -1, -1, 0, NULL, }, }; /* Revalidate a disk drive after a disk change */ static void fd_revalidate (fdrive_t *drv) { const fd_format_t *parse; uint64_t nb_sectors, size; int i, first_match, match; int nb_heads, max_track, last_sect, ro; FLOPPY_DPRINTF("revalidate\n"); if (drv->bs != NULL && bdrv_is_inserted(drv->bs)) { ro = bdrv_is_read_only(drv->bs); bdrv_get_geometry_hint(drv->bs, &nb_heads, &max_track, &last_sect); if (nb_heads != 0 && max_track != 0 && last_sect != 0) { FLOPPY_DPRINTF("User defined disk (%d %d %d)", nb_heads - 1, max_track, last_sect); } else { bdrv_get_geometry(drv->bs, &nb_sectors); match = -1; first_match = -1; for (i = 0;; i++) { parse = &fd_formats[i]; if (parse->drive == FDRIVE_DRV_NONE) break; if (drv->drive == parse->drive || drv->drive == FDRIVE_DRV_NONE) { size = (parse->max_head + 1) * parse->max_track * parse->last_sect; if (nb_sectors == size) { match = i; break; } if (first_match == -1) first_match = i; } } if (match == -1) { if (first_match == -1) match = 1; else match = first_match; parse = &fd_formats[match]; } nb_heads = parse->max_head + 1; max_track = parse->max_track; last_sect = parse->last_sect; drv->drive = parse->drive; FLOPPY_DPRINTF("%s floppy disk (%d h %d t %d s) %s\n", parse->str, nb_heads, max_track, last_sect, ro ? "ro" : "rw"); } if (nb_heads == 1) { drv->flags &= ~FDISK_DBL_SIDES; } else { drv->flags |= FDISK_DBL_SIDES; } drv->max_track = max_track; drv->last_sect = last_sect; drv->ro = ro; } else { FLOPPY_DPRINTF("No disk in drive\n"); drv->last_sect = 0; drv->max_track = 0; drv->flags &= ~FDISK_DBL_SIDES; } } /********************************************************/ /* Intel 82078 floppy disk controller emulation */ static void fdctrl_reset (fdctrl_t *fdctrl, int do_irq); static void fdctrl_reset_fifo (fdctrl_t *fdctrl); static int fdctrl_transfer_handler (void *opaque, int nchan, int dma_pos, int dma_len); static void fdctrl_raise_irq (fdctrl_t *fdctrl, uint8_t status0); static uint32_t fdctrl_read_statusA (fdctrl_t *fdctrl); static uint32_t fdctrl_read_statusB (fdctrl_t *fdctrl); static uint32_t fdctrl_read_dor (fdctrl_t *fdctrl); static void fdctrl_write_dor (fdctrl_t *fdctrl, uint32_t value); static uint32_t fdctrl_read_tape (fdctrl_t *fdctrl); static void fdctrl_write_tape (fdctrl_t *fdctrl, uint32_t value); static uint32_t fdctrl_read_main_status (fdctrl_t *fdctrl); static void fdctrl_write_rate (fdctrl_t *fdctrl, uint32_t value); static uint32_t fdctrl_read_data (fdctrl_t *fdctrl); static void fdctrl_write_data (fdctrl_t *fdctrl, uint32_t value); static uint32_t fdctrl_read_dir (fdctrl_t *fdctrl); enum { FD_DIR_WRITE = 0, FD_DIR_READ = 1, FD_DIR_SCANE = 2, FD_DIR_SCANL = 3, FD_DIR_SCANH = 4, }; enum { FD_STATE_MULTI = 0x01, /* multi track flag */ FD_STATE_FORMAT = 0x02, /* format flag */ FD_STATE_SEEK = 0x04, /* seek flag */ }; enum { FD_REG_SRA = 0x00, FD_REG_SRB = 0x01, FD_REG_DOR = 0x02, FD_REG_TDR = 0x03, FD_REG_MSR = 0x04, FD_REG_DSR = 0x04, FD_REG_FIFO = 0x05, FD_REG_DIR = 0x07, }; enum { FD_CMD_READ_TRACK = 0x02, FD_CMD_SPECIFY = 0x03, FD_CMD_SENSE_DRIVE_STATUS = 0x04, FD_CMD_WRITE = 0x05, FD_CMD_READ = 0x06, FD_CMD_RECALIBRATE = 0x07, FD_CMD_SENSE_INTERRUPT_STATUS = 0x08, FD_CMD_WRITE_DELETED = 0x09, FD_CMD_READ_ID = 0x0a, FD_CMD_READ_DELETED = 0x0c, FD_CMD_FORMAT_TRACK = 0x0d, FD_CMD_DUMPREG = 0x0e, FD_CMD_SEEK = 0x0f, FD_CMD_VERSION = 0x10, FD_CMD_SCAN_EQUAL = 0x11, FD_CMD_PERPENDICULAR_MODE = 0x12, FD_CMD_CONFIGURE = 0x13, FD_CMD_LOCK = 0x14, FD_CMD_VERIFY = 0x16, FD_CMD_POWERDOWN_MODE = 0x17, FD_CMD_PART_ID = 0x18, FD_CMD_SCAN_LOW_OR_EQUAL = 0x19, FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d, FD_CMD_SAVE = 0x2c, FD_CMD_OPTION = 0x33, FD_CMD_RESTORE = 0x4c, FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e, FD_CMD_RELATIVE_SEEK_OUT = 0x8f, FD_CMD_FORMAT_AND_WRITE = 0xcd, FD_CMD_RELATIVE_SEEK_IN = 0xcf, }; enum { FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */ FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */ FD_CONFIG_POLL = 0x10, /* Poll enabled */ FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */ FD_CONFIG_EIS = 0x40, /* No implied seeks */ }; enum { FD_SR0_EQPMT = 0x10, FD_SR0_SEEK = 0x20, FD_SR0_ABNTERM = 0x40, FD_SR0_INVCMD = 0x80, FD_SR0_RDYCHG = 0xc0, }; enum { FD_SR1_EC = 0x80, /* End of cylinder */ }; enum { FD_SR2_SNS = 0x04, /* Scan not satisfied */ FD_SR2_SEH = 0x08, /* Scan equal hit */ }; enum { FD_SRA_DIR = 0x01, FD_SRA_nWP = 0x02, FD_SRA_nINDX = 0x04, FD_SRA_HDSEL = 0x08, FD_SRA_nTRK0 = 0x10, FD_SRA_STEP = 0x20, FD_SRA_nDRV2 = 0x40, FD_SRA_INTPEND = 0x80, }; enum { FD_SRB_MTR0 = 0x01, FD_SRB_MTR1 = 0x02, FD_SRB_WGATE = 0x04, FD_SRB_RDATA = 0x08, FD_SRB_WDATA = 0x10, FD_SRB_DR0 = 0x20, }; enum { #if MAX_FD == 4 FD_DOR_SELMASK = 0x03, #else FD_DOR_SELMASK = 0x01, #endif FD_DOR_nRESET = 0x04, FD_DOR_DMAEN = 0x08, FD_DOR_MOTEN0 = 0x10, FD_DOR_MOTEN1 = 0x20, FD_DOR_MOTEN2 = 0x40, FD_DOR_MOTEN3 = 0x80, }; enum { #if MAX_FD == 4 FD_TDR_BOOTSEL = 0x0c, #else FD_TDR_BOOTSEL = 0x04, #endif }; enum { FD_DSR_DRATEMASK= 0x03, FD_DSR_PWRDOWN = 0x40, FD_DSR_SWRESET = 0x80, }; enum { FD_MSR_DRV0BUSY = 0x01, FD_MSR_DRV1BUSY = 0x02, FD_MSR_DRV2BUSY = 0x04, FD_MSR_DRV3BUSY = 0x08, FD_MSR_CMDBUSY = 0x10, FD_MSR_NONDMA = 0x20, FD_MSR_DIO = 0x40, FD_MSR_RQM = 0x80, }; enum { FD_DIR_DSKCHG = 0x80, }; #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI) #define FD_DID_SEEK(state) ((state) & FD_STATE_SEEK) #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT) struct fdctrl_t { /* Controller's identification */ uint8_t version; /* HW */ qemu_irq irq; int dma_chann; /* Controller state */ QEMUTimer *result_timer; uint8_t sra; uint8_t srb; uint8_t dor; uint8_t dor_vmstate; /* only used as temp during vmstate */ uint8_t tdr; uint8_t dsr; uint8_t msr; uint8_t cur_drv; uint8_t status0; uint8_t status1; uint8_t status2; /* Command FIFO */ uint8_t *fifo; int32_t fifo_size; uint32_t data_pos; uint32_t data_len; uint8_t data_state; uint8_t data_dir; uint8_t eot; /* last wanted sector */ /* States kept only to be returned back */ /* Timers state */ uint8_t timer0; uint8_t timer1; /* precompensation */ uint8_t precomp_trk; uint8_t config; uint8_t lock; /* Power down config (also with status regB access mode */ uint8_t pwrd; /* Sun4m quirks? */ int sun4m; /* Floppy drives */ uint8_t num_floppies; fdrive_t drives[MAX_FD]; int reset_sensei; }; typedef struct fdctrl_sysbus_t { SysBusDevice busdev; struct fdctrl_t state; } fdctrl_sysbus_t; typedef struct fdctrl_isabus_t { ISADevice busdev; struct fdctrl_t state; } fdctrl_isabus_t; static uint32_t fdctrl_read (void *opaque, uint32_t reg) { fdctrl_t *fdctrl = opaque; uint32_t retval; switch (reg) { case FD_REG_SRA: retval = fdctrl_read_statusA(fdctrl); break; case FD_REG_SRB: retval = fdctrl_read_statusB(fdctrl); break; case FD_REG_DOR: retval = fdctrl_read_dor(fdctrl); break; case FD_REG_TDR: retval = fdctrl_read_tape(fdctrl); break; case FD_REG_MSR: retval = fdctrl_read_main_status(fdctrl); break; case FD_REG_FIFO: retval = fdctrl_read_data(fdctrl); break; case FD_REG_DIR: retval = fdctrl_read_dir(fdctrl); break; default: retval = (uint32_t)(-1); break; } FLOPPY_DPRINTF("read reg%d: 0x%02x\n", reg & 7, retval); return retval; } static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value) { fdctrl_t *fdctrl = opaque; FLOPPY_DPRINTF("write reg%d: 0x%02x\n", reg & 7, value); switch (reg) { case FD_REG_DOR: fdctrl_write_dor(fdctrl, value); break; case FD_REG_TDR: fdctrl_write_tape(fdctrl, value); break; case FD_REG_DSR: fdctrl_write_rate(fdctrl, value); break; case FD_REG_FIFO: fdctrl_write_data(fdctrl, value); break; default: break; } } static uint32_t fdctrl_read_port (void *opaque, uint32_t reg) { return fdctrl_read(opaque, reg & 7); } static void fdctrl_write_port (void *opaque, uint32_t reg, uint32_t value) { fdctrl_write(opaque, reg & 7, value); } static uint32_t fdctrl_read_mem (void *opaque, target_phys_addr_t reg) { return fdctrl_read(opaque, (uint32_t)reg); } static void fdctrl_write_mem (void *opaque, target_phys_addr_t reg, uint32_t value) { fdctrl_write(opaque, (uint32_t)reg, value); } static CPUReadMemoryFunc * const fdctrl_mem_read[3] = { fdctrl_read_mem, fdctrl_read_mem, fdctrl_read_mem, }; static CPUWriteMemoryFunc * const fdctrl_mem_write[3] = { fdctrl_write_mem, fdctrl_write_mem, fdctrl_write_mem, }; static CPUReadMemoryFunc * const fdctrl_mem_read_strict[3] = { fdctrl_read_mem, NULL, NULL, }; static CPUWriteMemoryFunc * const fdctrl_mem_write_strict[3] = { fdctrl_write_mem, NULL, NULL, }; static const VMStateDescription vmstate_fdrive = { .name = "fdrive", .version_id = 1, .minimum_version_id = 1, .minimum_version_id_old = 1, .fields = (VMStateField []) { VMSTATE_UINT8(head, fdrive_t), VMSTATE_UINT8(track, fdrive_t), VMSTATE_UINT8(sect, fdrive_t), VMSTATE_END_OF_LIST() } }; static void fdc_pre_save(void *opaque) { fdctrl_t *s = opaque; s->dor_vmstate = s->dor | GET_CUR_DRV(s); } static int fdc_post_load(void *opaque, int version_id) { fdctrl_t *s = opaque; SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK); s->dor = s->dor_vmstate & ~FD_DOR_SELMASK; return 0; } static const VMStateDescription vmstate_fdc = { .name = "fdc", .version_id = 2, .minimum_version_id = 2, .minimum_version_id_old = 2, .pre_save = fdc_pre_save, .post_load = fdc_post_load, .fields = (VMStateField []) { /* Controller State */ VMSTATE_UINT8(sra, fdctrl_t), VMSTATE_UINT8(srb, fdctrl_t), VMSTATE_UINT8(dor_vmstate, fdctrl_t), VMSTATE_UINT8(tdr, fdctrl_t), VMSTATE_UINT8(dsr, fdctrl_t), VMSTATE_UINT8(msr, fdctrl_t), VMSTATE_UINT8(status0, fdctrl_t), VMSTATE_UINT8(status1, fdctrl_t), VMSTATE_UINT8(status2, fdctrl_t), /* Command FIFO */ VMSTATE_VARRAY(fifo, fdctrl_t, fifo_size, 0, vmstate_info_uint8, uint8), VMSTATE_UINT32(data_pos, fdctrl_t), VMSTATE_UINT32(data_len, fdctrl_t), VMSTATE_UINT8(data_state, fdctrl_t), VMSTATE_UINT8(data_dir, fdctrl_t), VMSTATE_UINT8(eot, fdctrl_t), /* States kept only to be returned back */ VMSTATE_UINT8(timer0, fdctrl_t), VMSTATE_UINT8(timer1, fdctrl_t), VMSTATE_UINT8(precomp_trk, fdctrl_t), VMSTATE_UINT8(config, fdctrl_t), VMSTATE_UINT8(lock, fdctrl_t), VMSTATE_UINT8(pwrd, fdctrl_t), VMSTATE_UINT8_EQUAL(num_floppies, fdctrl_t), VMSTATE_STRUCT_ARRAY(drives, fdctrl_t, MAX_FD, 1, vmstate_fdrive, fdrive_t), VMSTATE_END_OF_LIST() } }; static void fdctrl_external_reset(void *opaque) { fdctrl_t *s = opaque; fdctrl_reset(s, 0); } static void fdctrl_handle_tc(void *opaque, int irq, int level) { //fdctrl_t *s = opaque; if (level) { // XXX FLOPPY_DPRINTF("TC pulsed\n"); } } /* XXX: may change if moved to bdrv */ int fdctrl_get_drive_type(fdctrl_t *fdctrl, int drive_num) { return fdctrl->drives[drive_num].drive; } /* Change IRQ state */ static void fdctrl_reset_irq (fdctrl_t *fdctrl) { if (!(fdctrl->sra & FD_SRA_INTPEND)) return; FLOPPY_DPRINTF("Reset interrupt\n"); qemu_set_irq(fdctrl->irq, 0); fdctrl->sra &= ~FD_SRA_INTPEND; } static void fdctrl_raise_irq (fdctrl_t *fdctrl, uint8_t status0) { /* Sparc mutation */ if (fdctrl->sun4m && (fdctrl->msr & FD_MSR_CMDBUSY)) { /* XXX: not sure */ fdctrl->msr &= ~FD_MSR_CMDBUSY; fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO; fdctrl->status0 = status0; return; } if (!(fdctrl->sra & FD_SRA_INTPEND)) { qemu_set_irq(fdctrl->irq, 1); fdctrl->sra |= FD_SRA_INTPEND; } fdctrl->reset_sensei = 0; fdctrl->status0 = status0; FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0); } /* Reset controller */ static void fdctrl_reset (fdctrl_t *fdctrl, int do_irq) { int i; FLOPPY_DPRINTF("reset controller\n"); fdctrl_reset_irq(fdctrl); /* Initialise controller */ fdctrl->sra = 0; fdctrl->srb = 0xc0; if (!fdctrl->drives[1].bs) fdctrl->sra |= FD_SRA_nDRV2; fdctrl->cur_drv = 0; fdctrl->dor = FD_DOR_nRESET; fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0; fdctrl->msr = FD_MSR_RQM; /* FIFO state */ fdctrl->data_pos = 0; fdctrl->data_len = 0; fdctrl->data_state = 0; fdctrl->data_dir = FD_DIR_WRITE; for (i = 0; i < MAX_FD; i++) fd_recalibrate(&fdctrl->drives[i]); fdctrl_reset_fifo(fdctrl); if (do_irq) { fdctrl_raise_irq(fdctrl, FD_SR0_RDYCHG); fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT; } } static inline fdrive_t *drv0 (fdctrl_t *fdctrl) { return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2]; } static inline fdrive_t *drv1 (fdctrl_t *fdctrl) { if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2)) return &fdctrl->drives[1]; else return &fdctrl->drives[0]; } #if MAX_FD == 4 static inline fdrive_t *drv2 (fdctrl_t *fdctrl) { if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2)) return &fdctrl->drives[2]; else return &fdctrl->drives[1]; } static inline fdrive_t *drv3 (fdctrl_t *fdctrl) { if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2)) return &fdctrl->drives[3]; else return &fdctrl->drives[2]; } #endif static fdrive_t *get_cur_drv (fdctrl_t *fdctrl) { switch (fdctrl->cur_drv) { case 0: return drv0(fdctrl); case 1: return drv1(fdctrl); #if MAX_FD == 4 case 2: return drv2(fdctrl); case 3: return drv3(fdctrl); #endif default: return NULL; } } /* Status A register : 0x00 (read-only) */ static uint32_t fdctrl_read_statusA (fdctrl_t *fdctrl) { uint32_t retval = fdctrl->sra; FLOPPY_DPRINTF("status register A: 0x%02x\n", retval); return retval; } /* Status B register : 0x01 (read-only) */ static uint32_t fdctrl_read_statusB (fdctrl_t *fdctrl) { uint32_t retval = fdctrl->srb; FLOPPY_DPRINTF("status register B: 0x%02x\n", retval); return retval; } /* Digital output register : 0x02 */ static uint32_t fdctrl_read_dor (fdctrl_t *fdctrl) { uint32_t retval = fdctrl->dor; /* Selected drive */ retval |= fdctrl->cur_drv; FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval); return retval; } static void fdctrl_write_dor (fdctrl_t *fdctrl, uint32_t value) { FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value); /* Motors */ if (value & FD_DOR_MOTEN0) fdctrl->srb |= FD_SRB_MTR0; else fdctrl->srb &= ~FD_SRB_MTR0; if (value & FD_DOR_MOTEN1) fdctrl->srb |= FD_SRB_MTR1; else fdctrl->srb &= ~FD_SRB_MTR1; /* Drive */ if (value & 1) fdctrl->srb |= FD_SRB_DR0; else fdctrl->srb &= ~FD_SRB_DR0; /* Reset */ if (!(value & FD_DOR_nRESET)) { if (fdctrl->dor & FD_DOR_nRESET) { FLOPPY_DPRINTF("controller enter RESET state\n"); } } else { if (!(fdctrl->dor & FD_DOR_nRESET)) { FLOPPY_DPRINTF("controller out of RESET state\n"); fdctrl_reset(fdctrl, 1); fdctrl->dsr &= ~FD_DSR_PWRDOWN; } } /* Selected drive */ fdctrl->cur_drv = value & FD_DOR_SELMASK; fdctrl->dor = value; } /* Tape drive register : 0x03 */ static uint32_t fdctrl_read_tape (fdctrl_t *fdctrl) { uint32_t retval = fdctrl->tdr; FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval); return retval; } static void fdctrl_write_tape (fdctrl_t *fdctrl, uint32_t value) { /* Reset mode */ if (!(fdctrl->dor & FD_DOR_nRESET)) { FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); return; } FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value); /* Disk boot selection indicator */ fdctrl->tdr = value & FD_TDR_BOOTSEL; /* Tape indicators: never allow */ } /* Main status register : 0x04 (read) */ static uint32_t fdctrl_read_main_status (fdctrl_t *fdctrl) { uint32_t retval = fdctrl->msr; fdctrl->dsr &= ~FD_DSR_PWRDOWN; fdctrl->dor |= FD_DOR_nRESET; FLOPPY_DPRINTF("main status register: 0x%02x\n", retval); return retval; } /* Data select rate register : 0x04 (write) */ static void fdctrl_write_rate (fdctrl_t *fdctrl, uint32_t value) { /* Reset mode */ if (!(fdctrl->dor & FD_DOR_nRESET)) { FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); return; } FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value); /* Reset: autoclear */ if (value & FD_DSR_SWRESET) { fdctrl->dor &= ~FD_DOR_nRESET; fdctrl_reset(fdctrl, 1); fdctrl->dor |= FD_DOR_nRESET; } if (value & FD_DSR_PWRDOWN) { fdctrl_reset(fdctrl, 1); } fdctrl->dsr = value; } static int fdctrl_media_changed(fdrive_t *drv) { int ret; if (!drv->bs) return 0; ret = bdrv_media_changed(drv->bs); if (ret) { fd_revalidate(drv); } return ret; } /* Digital input register : 0x07 (read-only) */ static uint32_t fdctrl_read_dir (fdctrl_t *fdctrl) { uint32_t retval = 0; if (fdctrl_media_changed(drv0(fdctrl)) || fdctrl_media_changed(drv1(fdctrl)) #if MAX_FD == 4 || fdctrl_media_changed(drv2(fdctrl)) || fdctrl_media_changed(drv3(fdctrl)) #endif ) retval |= FD_DIR_DSKCHG; if (retval != 0) FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval); return retval; } /* FIFO state control */ static void fdctrl_reset_fifo (fdctrl_t *fdctrl) { fdctrl->data_dir = FD_DIR_WRITE; fdctrl->data_pos = 0; fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO); } /* Set FIFO status for the host to read */ static void fdctrl_set_fifo (fdctrl_t *fdctrl, int fifo_len, int do_irq) { fdctrl->data_dir = FD_DIR_READ; fdctrl->data_len = fifo_len; fdctrl->data_pos = 0; fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO; if (do_irq) fdctrl_raise_irq(fdctrl, 0x00); } /* Set an error: unimplemented/unknown command */ static void fdctrl_unimplemented (fdctrl_t *fdctrl, int direction) { FLOPPY_ERROR("unimplemented command 0x%02x\n", fdctrl->fifo[0]); fdctrl->fifo[0] = FD_SR0_INVCMD; fdctrl_set_fifo(fdctrl, 1, 0); } /* Seek to next sector */ static int fdctrl_seek_to_next_sect (fdctrl_t *fdctrl, fdrive_t *cur_drv) { FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n", cur_drv->head, cur_drv->track, cur_drv->sect, fd_sector(cur_drv)); /* XXX: cur_drv->sect >= cur_drv->last_sect should be an error in fact */ if (cur_drv->sect >= cur_drv->last_sect || cur_drv->sect == fdctrl->eot) { cur_drv->sect = 1; if (FD_MULTI_TRACK(fdctrl->data_state)) { if (cur_drv->head == 0 && (cur_drv->flags & FDISK_DBL_SIDES) != 0) { cur_drv->head = 1; } else { cur_drv->head = 0; cur_drv->track++; if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) return 0; } } else { cur_drv->track++; return 0; } FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n", cur_drv->head, cur_drv->track, cur_drv->sect, fd_sector(cur_drv)); } else { cur_drv->sect++; } return 1; } /* Callback for transfer end (stop or abort) */ static void fdctrl_stop_transfer (fdctrl_t *fdctrl, uint8_t status0, uint8_t status1, uint8_t status2) { fdrive_t *cur_drv; cur_drv = get_cur_drv(fdctrl); FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n", status0, status1, status2, status0 | (cur_drv->head << 2) | GET_CUR_DRV(fdctrl)); fdctrl->fifo[0] = status0 | (cur_drv->head << 2) | GET_CUR_DRV(fdctrl); fdctrl->fifo[1] = status1; fdctrl->fifo[2] = status2; fdctrl->fifo[3] = cur_drv->track; fdctrl->fifo[4] = cur_drv->head; fdctrl->fifo[5] = cur_drv->sect; fdctrl->fifo[6] = FD_SECTOR_SC; fdctrl->data_dir = FD_DIR_READ; if (!(fdctrl->msr & FD_MSR_NONDMA)) { DMA_release_DREQ(fdctrl->dma_chann); } fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO; fdctrl->msr &= ~FD_MSR_NONDMA; fdctrl_set_fifo(fdctrl, 7, 1); } /* Prepare a data transfer (either DMA or FIFO) */ static void fdctrl_start_transfer (fdctrl_t *fdctrl, int direction) { fdrive_t *cur_drv; uint8_t kh, kt, ks; int did_seek = 0; SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); cur_drv = get_cur_drv(fdctrl); kt = fdctrl->fifo[2]; kh = fdctrl->fifo[3]; ks = fdctrl->fifo[4]; FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n", GET_CUR_DRV(fdctrl), kh, kt, ks, _fd_sector(kh, kt, ks, cur_drv->last_sect)); switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) { case 2: /* sect too big */ fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); fdctrl->fifo[3] = kt; fdctrl->fifo[4] = kh; fdctrl->fifo[5] = ks; return; case 3: /* track too big */ fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00); fdctrl->fifo[3] = kt; fdctrl->fifo[4] = kh; fdctrl->fifo[5] = ks; return; case 4: /* No seek enabled */ fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); fdctrl->fifo[3] = kt; fdctrl->fifo[4] = kh; fdctrl->fifo[5] = ks; return; case 1: did_seek = 1; break; default: break; } /* Set the FIFO state */ fdctrl->data_dir = direction; fdctrl->data_pos = 0; fdctrl->msr |= FD_MSR_CMDBUSY; if (fdctrl->fifo[0] & 0x80) fdctrl->data_state |= FD_STATE_MULTI; else fdctrl->data_state &= ~FD_STATE_MULTI; if (did_seek) fdctrl->data_state |= FD_STATE_SEEK; else fdctrl->data_state &= ~FD_STATE_SEEK; if (fdctrl->fifo[5] == 00) { fdctrl->data_len = fdctrl->fifo[8]; } else { int tmp; fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]); tmp = (fdctrl->fifo[6] - ks + 1); if (fdctrl->fifo[0] & 0x80) tmp += fdctrl->fifo[6]; fdctrl->data_len *= tmp; } fdctrl->eot = fdctrl->fifo[6]; if (fdctrl->dor & FD_DOR_DMAEN) { int dma_mode; /* DMA transfer are enabled. Check if DMA channel is well programmed */ dma_mode = DMA_get_channel_mode(fdctrl->dma_chann); dma_mode = (dma_mode >> 2) & 3; FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n", dma_mode, direction, (128 << fdctrl->fifo[5]) * (cur_drv->last_sect - ks + 1), fdctrl->data_len); if (((direction == FD_DIR_SCANE || direction == FD_DIR_SCANL || direction == FD_DIR_SCANH) && dma_mode == 0) || (direction == FD_DIR_WRITE && dma_mode == 2) || (direction == FD_DIR_READ && dma_mode == 1)) { /* No access is allowed until DMA transfer has completed */ fdctrl->msr &= ~FD_MSR_RQM; /* Now, we just have to wait for the DMA controller to * recall us... */ DMA_hold_DREQ(fdctrl->dma_chann); DMA_schedule(fdctrl->dma_chann); return; } else { FLOPPY_ERROR("dma_mode=%d direction=%d\n", dma_mode, direction); } } FLOPPY_DPRINTF("start non-DMA transfer\n"); fdctrl->msr |= FD_MSR_NONDMA; if (direction != FD_DIR_WRITE) fdctrl->msr |= FD_MSR_DIO; /* IO based transfer: calculate len */ fdctrl_raise_irq(fdctrl, 0x00); return; } /* Prepare a transfer of deleted data */ static void fdctrl_start_transfer_del (fdctrl_t *fdctrl, int direction) { FLOPPY_ERROR("fdctrl_start_transfer_del() unimplemented\n"); /* We don't handle deleted data, * so we don't return *ANYTHING* */ fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); } /* handlers for DMA transfers */ static int fdctrl_transfer_handler (void *opaque, int nchan, int dma_pos, int dma_len) { fdctrl_t *fdctrl; fdrive_t *cur_drv; int len, start_pos, rel_pos; uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00; fdctrl = opaque; if (fdctrl->msr & FD_MSR_RQM) { FLOPPY_DPRINTF("Not in DMA transfer mode !\n"); return 0; } cur_drv = get_cur_drv(fdctrl); if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL || fdctrl->data_dir == FD_DIR_SCANH) status2 = FD_SR2_SNS; if (dma_len > fdctrl->data_len) dma_len = fdctrl->data_len; if (cur_drv->bs == NULL) { if (fdctrl->data_dir == FD_DIR_WRITE) fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); else fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); len = 0; goto transfer_error; } rel_pos = fdctrl->data_pos % FD_SECTOR_LEN; for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) { len = dma_len - fdctrl->data_pos; if (len + rel_pos > FD_SECTOR_LEN) len = FD_SECTOR_LEN - rel_pos; FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x " "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos, fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head, cur_drv->track, cur_drv->sect, fd_sector(cur_drv), fd_sector(cur_drv) * FD_SECTOR_LEN); if (fdctrl->data_dir != FD_DIR_WRITE || len < FD_SECTOR_LEN || rel_pos != 0) { /* READ & SCAN commands and realign to a sector for WRITE */ if (bdrv_read(cur_drv->bs, fd_sector(cur_drv), fdctrl->fifo, 1) < 0) { FLOPPY_DPRINTF("Floppy: error getting sector %d\n", fd_sector(cur_drv)); /* Sure, image size is too small... */ memset(fdctrl->fifo, 0, FD_SECTOR_LEN); } } switch (fdctrl->data_dir) { case FD_DIR_READ: /* READ commands */ DMA_write_memory (nchan, fdctrl->fifo + rel_pos, fdctrl->data_pos, len); break; case FD_DIR_WRITE: /* WRITE commands */ DMA_read_memory (nchan, fdctrl->fifo + rel_pos, fdctrl->data_pos, len); if (bdrv_write(cur_drv->bs, fd_sector(cur_drv), fdctrl->fifo, 1) < 0) { FLOPPY_ERROR("writing sector %d\n", fd_sector(cur_drv)); fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); goto transfer_error; } break; default: /* SCAN commands */ { uint8_t tmpbuf[FD_SECTOR_LEN]; int ret; DMA_read_memory (nchan, tmpbuf, fdctrl->data_pos, len); ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len); if (ret == 0) { status2 = FD_SR2_SEH; goto end_transfer; } if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) || (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) { status2 = 0x00; goto end_transfer; } } break; } fdctrl->data_pos += len; rel_pos = fdctrl->data_pos % FD_SECTOR_LEN; if (rel_pos == 0) { /* Seek to next sector */ if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) break; } } end_transfer: len = fdctrl->data_pos - start_pos; FLOPPY_DPRINTF("end transfer %d %d %d\n", fdctrl->data_pos, len, fdctrl->data_len); if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL || fdctrl->data_dir == FD_DIR_SCANH) status2 = FD_SR2_SEH; if (FD_DID_SEEK(fdctrl->data_state)) status0 |= FD_SR0_SEEK; fdctrl->data_len -= len; fdctrl_stop_transfer(fdctrl, status0, status1, status2); transfer_error: return len; } /* Data register : 0x05 */ static uint32_t fdctrl_read_data (fdctrl_t *fdctrl) { fdrive_t *cur_drv; uint32_t retval = 0; int pos; cur_drv = get_cur_drv(fdctrl); fdctrl->dsr &= ~FD_DSR_PWRDOWN; if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) { FLOPPY_ERROR("controller not ready for reading\n"); return 0; } pos = fdctrl->data_pos; if (fdctrl->msr & FD_MSR_NONDMA) { pos %= FD_SECTOR_LEN; if (pos == 0) { if (fdctrl->data_pos != 0) if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) { FLOPPY_DPRINTF("error seeking to next sector %d\n", fd_sector(cur_drv)); return 0; } if (bdrv_read(cur_drv->bs, fd_sector(cur_drv), fdctrl->fifo, 1) < 0) { FLOPPY_DPRINTF("error getting sector %d\n", fd_sector(cur_drv)); /* Sure, image size is too small... */ memset(fdctrl->fifo, 0, FD_SECTOR_LEN); } } } retval = fdctrl->fifo[pos]; if (++fdctrl->data_pos == fdctrl->data_len) { fdctrl->data_pos = 0; /* Switch from transfer mode to status mode * then from status mode to command mode */ if (fdctrl->msr & FD_MSR_NONDMA) { fdctrl_stop_transfer(fdctrl, FD_SR0_SEEK, 0x00, 0x00); } else { fdctrl_reset_fifo(fdctrl); fdctrl_reset_irq(fdctrl); } } FLOPPY_DPRINTF("data register: 0x%02x\n", retval); return retval; } static void fdctrl_format_sector (fdctrl_t *fdctrl) { fdrive_t *cur_drv; uint8_t kh, kt, ks; SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); cur_drv = get_cur_drv(fdctrl); kt = fdctrl->fifo[6]; kh = fdctrl->fifo[7]; ks = fdctrl->fifo[8]; FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n", GET_CUR_DRV(fdctrl), kh, kt, ks, _fd_sector(kh, kt, ks, cur_drv->last_sect)); switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) { case 2: /* sect too big */ fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); fdctrl->fifo[3] = kt; fdctrl->fifo[4] = kh; fdctrl->fifo[5] = ks; return; case 3: /* track too big */ fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00); fdctrl->fifo[3] = kt; fdctrl->fifo[4] = kh; fdctrl->fifo[5] = ks; return; case 4: /* No seek enabled */ fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); fdctrl->fifo[3] = kt; fdctrl->fifo[4] = kh; fdctrl->fifo[5] = ks; return; case 1: fdctrl->data_state |= FD_STATE_SEEK; break; default: break; } memset(fdctrl->fifo, 0, FD_SECTOR_LEN); if (cur_drv->bs == NULL || bdrv_write(cur_drv->bs, fd_sector(cur_drv), fdctrl->fifo, 1) < 0) { FLOPPY_ERROR("formatting sector %d\n", fd_sector(cur_drv)); fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); } else { if (cur_drv->sect == cur_drv->last_sect) { fdctrl->data_state &= ~FD_STATE_FORMAT; /* Last sector done */ if (FD_DID_SEEK(fdctrl->data_state)) fdctrl_stop_transfer(fdctrl, FD_SR0_SEEK, 0x00, 0x00); else fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); } else { /* More to do */ fdctrl->data_pos = 0; fdctrl->data_len = 4; } } } static void fdctrl_handle_lock (fdctrl_t *fdctrl, int direction) { fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0; fdctrl->fifo[0] = fdctrl->lock << 4; fdctrl_set_fifo(fdctrl, 1, fdctrl->lock); } static void fdctrl_handle_dumpreg (fdctrl_t *fdctrl, int direction) { fdrive_t *cur_drv = get_cur_drv(fdctrl); /* Drives position */ fdctrl->fifo[0] = drv0(fdctrl)->track; fdctrl->fifo[1] = drv1(fdctrl)->track; #if MAX_FD == 4 fdctrl->fifo[2] = drv2(fdctrl)->track; fdctrl->fifo[3] = drv3(fdctrl)->track; #else fdctrl->fifo[2] = 0; fdctrl->fifo[3] = 0; #endif /* timers */ fdctrl->fifo[4] = fdctrl->timer0; fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0); fdctrl->fifo[6] = cur_drv->last_sect; fdctrl->fifo[7] = (fdctrl->lock << 7) | (cur_drv->perpendicular << 2); fdctrl->fifo[8] = fdctrl->config; fdctrl->fifo[9] = fdctrl->precomp_trk; fdctrl_set_fifo(fdctrl, 10, 0); } static void fdctrl_handle_version (fdctrl_t *fdctrl, int direction) { /* Controller's version */ fdctrl->fifo[0] = fdctrl->version; fdctrl_set_fifo(fdctrl, 1, 1); } static void fdctrl_handle_partid (fdctrl_t *fdctrl, int direction) { fdctrl->fifo[0] = 0x41; /* Stepping 1 */ fdctrl_set_fifo(fdctrl, 1, 0); } static void fdctrl_handle_restore (fdctrl_t *fdctrl, int direction) { fdrive_t *cur_drv = get_cur_drv(fdctrl); /* Drives position */ drv0(fdctrl)->track = fdctrl->fifo[3]; drv1(fdctrl)->track = fdctrl->fifo[4]; #if MAX_FD == 4 drv2(fdctrl)->track = fdctrl->fifo[5]; drv3(fdctrl)->track = fdctrl->fifo[6]; #endif /* timers */ fdctrl->timer0 = fdctrl->fifo[7]; fdctrl->timer1 = fdctrl->fifo[8]; cur_drv->last_sect = fdctrl->fifo[9]; fdctrl->lock = fdctrl->fifo[10] >> 7; cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF; fdctrl->config = fdctrl->fifo[11]; fdctrl->precomp_trk = fdctrl->fifo[12]; fdctrl->pwrd = fdctrl->fifo[13]; fdctrl_reset_fifo(fdctrl); } static void fdctrl_handle_save (fdctrl_t *fdctrl, int direction) { fdrive_t *cur_drv = get_cur_drv(fdctrl); fdctrl->fifo[0] = 0; fdctrl->fifo[1] = 0; /* Drives position */ fdctrl->fifo[2] = drv0(fdctrl)->track; fdctrl->fifo[3] = drv1(fdctrl)->track; #if MAX_FD == 4 fdctrl->fifo[4] = drv2(fdctrl)->track; fdctrl->fifo[5] = drv3(fdctrl)->track; #else fdctrl->fifo[4] = 0; fdctrl->fifo[5] = 0; #endif /* timers */ fdctrl->fifo[6] = fdctrl->timer0; fdctrl->fifo[7] = fdctrl->timer1; fdctrl->fifo[8] = cur_drv->last_sect; fdctrl->fifo[9] = (fdctrl->lock << 7) | (cur_drv->perpendicular << 2); fdctrl->fifo[10] = fdctrl->config; fdctrl->fifo[11] = fdctrl->precomp_trk; fdctrl->fifo[12] = fdctrl->pwrd; fdctrl->fifo[13] = 0; fdctrl->fifo[14] = 0; fdctrl_set_fifo(fdctrl, 15, 1); } static void fdctrl_handle_readid (fdctrl_t *fdctrl, int direction) { fdrive_t *cur_drv = get_cur_drv(fdctrl); /* XXX: should set main status register to busy */ cur_drv->head = (fdctrl->fifo[1] >> 2) & 1; qemu_mod_timer(fdctrl->result_timer, qemu_get_clock(vm_clock) + (get_ticks_per_sec() / 50)); } static void fdctrl_handle_format_track (fdctrl_t *fdctrl, int direction) { fdrive_t *cur_drv; SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); cur_drv = get_cur_drv(fdctrl); fdctrl->data_state |= FD_STATE_FORMAT; if (fdctrl->fifo[0] & 0x80) fdctrl->data_state |= FD_STATE_MULTI; else fdctrl->data_state &= ~FD_STATE_MULTI; fdctrl->data_state &= ~FD_STATE_SEEK; cur_drv->bps = fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2]; #if 0 cur_drv->last_sect = cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] : fdctrl->fifo[3] / 2; #else cur_drv->last_sect = fdctrl->fifo[3]; #endif /* TODO: implement format using DMA expected by the Bochs BIOS * and Linux fdformat (read 3 bytes per sector via DMA and fill * the sector with the specified fill byte */ fdctrl->data_state &= ~FD_STATE_FORMAT; fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); } static void fdctrl_handle_specify (fdctrl_t *fdctrl, int direction) { fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF; fdctrl->timer1 = fdctrl->fifo[2] >> 1; if (fdctrl->fifo[2] & 1) fdctrl->dor &= ~FD_DOR_DMAEN; else fdctrl->dor |= FD_DOR_DMAEN; /* No result back */ fdctrl_reset_fifo(fdctrl); } static void fdctrl_handle_sense_drive_status (fdctrl_t *fdctrl, int direction) { fdrive_t *cur_drv; SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); cur_drv = get_cur_drv(fdctrl); cur_drv->head = (fdctrl->fifo[1] >> 2) & 1; /* 1 Byte status back */ fdctrl->fifo[0] = (cur_drv->ro << 6) | (cur_drv->track == 0 ? 0x10 : 0x00) | (cur_drv->head << 2) | GET_CUR_DRV(fdctrl) | 0x28; fdctrl_set_fifo(fdctrl, 1, 0); } static void fdctrl_handle_recalibrate (fdctrl_t *fdctrl, int direction) { fdrive_t *cur_drv; SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); cur_drv = get_cur_drv(fdctrl); fd_recalibrate(cur_drv); fdctrl_reset_fifo(fdctrl); /* Raise Interrupt */ fdctrl_raise_irq(fdctrl, FD_SR0_SEEK); } static void fdctrl_handle_sense_interrupt_status (fdctrl_t *fdctrl, int direction) { fdrive_t *cur_drv = get_cur_drv(fdctrl); if(fdctrl->reset_sensei > 0) { fdctrl->fifo[0] = FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei; fdctrl->reset_sensei--; } else { /* XXX: status0 handling is broken for read/write commands, so we do this hack. It should be suppressed ASAP */ fdctrl->fifo[0] = FD_SR0_SEEK | (cur_drv->head << 2) | GET_CUR_DRV(fdctrl); } fdctrl->fifo[1] = cur_drv->track; fdctrl_set_fifo(fdctrl, 2, 0); fdctrl_reset_irq(fdctrl); fdctrl->status0 = FD_SR0_RDYCHG; } static void fdctrl_handle_seek (fdctrl_t *fdctrl, int direction) { fdrive_t *cur_drv; SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); cur_drv = get_cur_drv(fdctrl); fdctrl_reset_fifo(fdctrl); if (fdctrl->fifo[2] > cur_drv->max_track) { fdctrl_raise_irq(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK); } else { cur_drv->track = fdctrl->fifo[2]; /* Raise Interrupt */ fdctrl_raise_irq(fdctrl, FD_SR0_SEEK); } } static void fdctrl_handle_perpendicular_mode (fdctrl_t *fdctrl, int direction) { fdrive_t *cur_drv = get_cur_drv(fdctrl); if (fdctrl->fifo[1] & 0x80) cur_drv->perpendicular = fdctrl->fifo[1] & 0x7; /* No result back */ fdctrl_reset_fifo(fdctrl); } static void fdctrl_handle_configure (fdctrl_t *fdctrl, int direction) { fdctrl->config = fdctrl->fifo[2]; fdctrl->precomp_trk = fdctrl->fifo[3]; /* No result back */ fdctrl_reset_fifo(fdctrl); } static void fdctrl_handle_powerdown_mode (fdctrl_t *fdctrl, int direction) { fdctrl->pwrd = fdctrl->fifo[1]; fdctrl->fifo[0] = fdctrl->fifo[1]; fdctrl_set_fifo(fdctrl, 1, 1); } static void fdctrl_handle_option (fdctrl_t *fdctrl, int direction) { /* No result back */ fdctrl_reset_fifo(fdctrl); } static void fdctrl_handle_drive_specification_command (fdctrl_t *fdctrl, int direction) { fdrive_t *cur_drv = get_cur_drv(fdctrl); if (fdctrl->fifo[fdctrl->data_pos - 1] & 0x80) { /* Command parameters done */ if (fdctrl->fifo[fdctrl->data_pos - 1] & 0x40) { fdctrl->fifo[0] = fdctrl->fifo[1]; fdctrl->fifo[2] = 0; fdctrl->fifo[3] = 0; fdctrl_set_fifo(fdctrl, 4, 1); } else { fdctrl_reset_fifo(fdctrl); } } else if (fdctrl->data_len > 7) { /* ERROR */ fdctrl->fifo[0] = 0x80 | (cur_drv->head << 2) | GET_CUR_DRV(fdctrl); fdctrl_set_fifo(fdctrl, 1, 1); } } static void fdctrl_handle_relative_seek_out (fdctrl_t *fdctrl, int direction) { fdrive_t *cur_drv; SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); cur_drv = get_cur_drv(fdctrl); if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) { cur_drv->track = cur_drv->max_track - 1; } else { cur_drv->track += fdctrl->fifo[2]; } fdctrl_reset_fifo(fdctrl); /* Raise Interrupt */ fdctrl_raise_irq(fdctrl, FD_SR0_SEEK); } static void fdctrl_handle_relative_seek_in (fdctrl_t *fdctrl, int direction) { fdrive_t *cur_drv; SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); cur_drv = get_cur_drv(fdctrl); if (fdctrl->fifo[2] > cur_drv->track) { cur_drv->track = 0; } else { cur_drv->track -= fdctrl->fifo[2]; } fdctrl_reset_fifo(fdctrl); /* Raise Interrupt */ fdctrl_raise_irq(fdctrl, FD_SR0_SEEK); } static const struct { uint8_t value; uint8_t mask; const char* name; int parameters; void (*handler)(fdctrl_t *fdctrl, int direction); int direction; } handlers[] = { { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ }, { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE }, { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek }, { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status }, { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate }, { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track }, { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ }, { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */ { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */ { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ }, { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE }, { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_unimplemented }, { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL }, { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH }, { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE }, { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid }, { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify }, { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status }, { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode }, { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure }, { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode }, { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option }, { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command }, { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out }, { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented }, { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in }, { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock }, { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg }, { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version }, { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid }, { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */ { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */ }; /* Associate command to an index in the 'handlers' array */ static uint8_t command_to_handler[256]; static void fdctrl_write_data (fdctrl_t *fdctrl, uint32_t value) { fdrive_t *cur_drv; int pos; /* Reset mode */ if (!(fdctrl->dor & FD_DOR_nRESET)) { FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); return; } if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) { FLOPPY_ERROR("controller not ready for writing\n"); return; } fdctrl->dsr &= ~FD_DSR_PWRDOWN; /* Is it write command time ? */ if (fdctrl->msr & FD_MSR_NONDMA) { /* FIFO data write */ pos = fdctrl->data_pos++; pos %= FD_SECTOR_LEN; fdctrl->fifo[pos] = value; if (pos == FD_SECTOR_LEN - 1 || fdctrl->data_pos == fdctrl->data_len) { cur_drv = get_cur_drv(fdctrl); if (bdrv_write(cur_drv->bs, fd_sector(cur_drv), fdctrl->fifo, 1) < 0) { FLOPPY_ERROR("writing sector %d\n", fd_sector(cur_drv)); return; } if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) { FLOPPY_DPRINTF("error seeking to next sector %d\n", fd_sector(cur_drv)); return; } } /* Switch from transfer mode to status mode * then from status mode to command mode */ if (fdctrl->data_pos == fdctrl->data_len) fdctrl_stop_transfer(fdctrl, FD_SR0_SEEK, 0x00, 0x00); return; } if (fdctrl->data_pos == 0) { /* Command */ pos = command_to_handler[value & 0xff]; FLOPPY_DPRINTF("%s command\n", handlers[pos].name); fdctrl->data_len = handlers[pos].parameters + 1; } FLOPPY_DPRINTF("%s: %02x\n", __func__, value); fdctrl->fifo[fdctrl->data_pos++] = value; if (fdctrl->data_pos == fdctrl->data_len) { /* We now have all parameters * and will be able to treat the command */ if (fdctrl->data_state & FD_STATE_FORMAT) { fdctrl_format_sector(fdctrl); return; } pos = command_to_handler[fdctrl->fifo[0] & 0xff]; FLOPPY_DPRINTF("treat %s command\n", handlers[pos].name); (*handlers[pos].handler)(fdctrl, handlers[pos].direction); } } static void fdctrl_result_timer(void *opaque) { fdctrl_t *fdctrl = opaque; fdrive_t *cur_drv = get_cur_drv(fdctrl); /* Pretend we are spinning. * This is needed for Coherent, which uses READ ID to check for * sector interleaving. */ if (cur_drv->last_sect != 0) { cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1; } fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); } /* Init functions */ static void fdctrl_connect_drives(fdctrl_t *fdctrl) { unsigned int i; for (i = 0; i < MAX_FD; i++) { fd_init(&fdctrl->drives[i]); fd_revalidate(&fdctrl->drives[i]); } } fdctrl_t *fdctrl_init_isa(DriveInfo **fds) { ISADevice *dev; dev = isa_create("isa-fdc"); qdev_prop_set_drive(&dev->qdev, "driveA", fds[0]); qdev_prop_set_drive(&dev->qdev, "driveB", fds[1]); if (qdev_init(&dev->qdev) != 0) return NULL; return &(DO_UPCAST(fdctrl_isabus_t, busdev, dev)->state); } fdctrl_t *fdctrl_init_sysbus(qemu_irq irq, int dma_chann, target_phys_addr_t mmio_base, DriveInfo **fds) { fdctrl_t *fdctrl; DeviceState *dev; fdctrl_sysbus_t *sys; dev = qdev_create(NULL, "sysbus-fdc"); sys = DO_UPCAST(fdctrl_sysbus_t, busdev.qdev, dev); fdctrl = &sys->state; fdctrl->dma_chann = dma_chann; /* FIXME */ qdev_prop_set_drive(dev, "driveA", fds[0]); qdev_prop_set_drive(dev, "driveB", fds[1]); if (qdev_init(dev) != 0) return NULL; sysbus_connect_irq(&sys->busdev, 0, irq); sysbus_mmio_map(&sys->busdev, 0, mmio_base); return fdctrl; } fdctrl_t *sun4m_fdctrl_init (qemu_irq irq, target_phys_addr_t io_base, DriveInfo **fds, qemu_irq *fdc_tc) { DeviceState *dev; fdctrl_sysbus_t *sys; fdctrl_t *fdctrl; dev = qdev_create(NULL, "SUNW,fdtwo"); qdev_prop_set_drive(dev, "drive", fds[0]); if (qdev_init(dev) != 0) return NULL; sys = DO_UPCAST(fdctrl_sysbus_t, busdev.qdev, dev); fdctrl = &sys->state; sysbus_connect_irq(&sys->busdev, 0, irq); sysbus_mmio_map(&sys->busdev, 0, io_base); *fdc_tc = qdev_get_gpio_in(dev, 0); return fdctrl; } static int fdctrl_init_common(fdctrl_t *fdctrl) { int i, j; static int command_tables_inited = 0; /* Fill 'command_to_handler' lookup table */ if (!command_tables_inited) { command_tables_inited = 1; for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) { for (j = 0; j < sizeof(command_to_handler); j++) { if ((j & handlers[i].mask) == handlers[i].value) { command_to_handler[j] = i; } } } } FLOPPY_DPRINTF("init controller\n"); fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN); fdctrl->fifo_size = 512; fdctrl->result_timer = qemu_new_timer(vm_clock, fdctrl_result_timer, fdctrl); fdctrl->version = 0x90; /* Intel 82078 controller */ fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */ fdctrl->num_floppies = MAX_FD; if (fdctrl->dma_chann != -1) DMA_register_channel(fdctrl->dma_chann, &fdctrl_transfer_handler, fdctrl); fdctrl_connect_drives(fdctrl); fdctrl_external_reset(fdctrl); vmstate_register(-1, &vmstate_fdc, fdctrl); qemu_register_reset(fdctrl_external_reset, fdctrl); return 0; } static int isabus_fdc_init1(ISADevice *dev) { fdctrl_isabus_t *isa = DO_UPCAST(fdctrl_isabus_t, busdev, dev); fdctrl_t *fdctrl = &isa->state; int iobase = 0x3f0; int isairq = 6; int dma_chann = 2; register_ioport_read(iobase + 0x01, 5, 1, &fdctrl_read_port, fdctrl); register_ioport_read(iobase + 0x07, 1, 1, &fdctrl_read_port, fdctrl); register_ioport_write(iobase + 0x01, 5, 1, &fdctrl_write_port, fdctrl); register_ioport_write(iobase + 0x07, 1, 1, &fdctrl_write_port, fdctrl); isa_init_irq(&isa->busdev, &fdctrl->irq, isairq); fdctrl->dma_chann = dma_chann; return fdctrl_init_common(fdctrl); } static int sysbus_fdc_init1(SysBusDevice *dev) { fdctrl_t *fdctrl = &(FROM_SYSBUS(fdctrl_sysbus_t, dev)->state); int io; io = cpu_register_io_memory(fdctrl_mem_read, fdctrl_mem_write, fdctrl); sysbus_init_mmio(dev, 0x08, io); sysbus_init_irq(dev, &fdctrl->irq); qdev_init_gpio_in(&dev->qdev, fdctrl_handle_tc, 1); fdctrl->dma_chann = -1; return fdctrl_init_common(fdctrl); } static int sun4m_fdc_init1(SysBusDevice *dev) { fdctrl_t *fdctrl = &(FROM_SYSBUS(fdctrl_sysbus_t, dev)->state); int io; io = cpu_register_io_memory(fdctrl_mem_read_strict, fdctrl_mem_write_strict, fdctrl); sysbus_init_mmio(dev, 0x08, io); sysbus_init_irq(dev, &fdctrl->irq); qdev_init_gpio_in(&dev->qdev, fdctrl_handle_tc, 1); fdctrl->sun4m = 1; return fdctrl_init_common(fdctrl); } static ISADeviceInfo isa_fdc_info = { .init = isabus_fdc_init1, .qdev.name = "isa-fdc", .qdev.size = sizeof(fdctrl_isabus_t), .qdev.props = (Property[]) { DEFINE_PROP_DRIVE("driveA", fdctrl_isabus_t, state.drives[0].dinfo), DEFINE_PROP_DRIVE("driveB", fdctrl_isabus_t, state.drives[1].dinfo), DEFINE_PROP_END_OF_LIST(), }, }; static SysBusDeviceInfo sysbus_fdc_info = { .init = sysbus_fdc_init1, .qdev.name = "sysbus-fdc", .qdev.size = sizeof(fdctrl_sysbus_t), .qdev.props = (Property[]) { DEFINE_PROP_DRIVE("driveA", fdctrl_sysbus_t, state.drives[0].dinfo), DEFINE_PROP_DRIVE("driveB", fdctrl_sysbus_t, state.drives[1].dinfo), DEFINE_PROP_END_OF_LIST(), }, }; static SysBusDeviceInfo sun4m_fdc_info = { .init = sun4m_fdc_init1, .qdev.name = "SUNW,fdtwo", .qdev.size = sizeof(fdctrl_sysbus_t), .qdev.props = (Property[]) { DEFINE_PROP_DRIVE("drive", fdctrl_sysbus_t, state.drives[0].dinfo), DEFINE_PROP_END_OF_LIST(), }, }; static void fdc_register_devices(void) { isa_qdev_register(&isa_fdc_info); sysbus_register_withprop(&sysbus_fdc_info); sysbus_register_withprop(&sun4m_fdc_info); } device_init(fdc_register_devices)