summaryrefslogtreecommitdiffstats
path: root/src/kvm-all.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/kvm-all.c')
-rw-r--r--src/kvm-all.c2361
1 files changed, 2361 insertions, 0 deletions
diff --git a/src/kvm-all.c b/src/kvm-all.c
new file mode 100644
index 0000000..c648b81
--- /dev/null
+++ b/src/kvm-all.c
@@ -0,0 +1,2361 @@
+/*
+ * QEMU KVM support
+ *
+ * Copyright IBM, Corp. 2008
+ * Red Hat, Inc. 2008
+ *
+ * Authors:
+ * Anthony Liguori <aliguori@us.ibm.com>
+ * Glauber Costa <gcosta@redhat.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2 or later.
+ * See the COPYING file in the top-level directory.
+ *
+ */
+
+#include <sys/types.h>
+#include <sys/ioctl.h>
+#include <sys/mman.h>
+#include <stdarg.h>
+
+#include <linux/kvm.h>
+
+#include "qemu-common.h"
+#include "qemu/atomic.h"
+#include "qemu/option.h"
+#include "qemu/config-file.h"
+#include "qemu/error-report.h"
+#include "hw/hw.h"
+#include "hw/pci/msi.h"
+#include "hw/s390x/adapter.h"
+#include "exec/gdbstub.h"
+#include "sysemu/kvm_int.h"
+#include "qemu/bswap.h"
+#include "exec/memory.h"
+#include "exec/ram_addr.h"
+#include "exec/address-spaces.h"
+#include "qemu/event_notifier.h"
+#include "trace.h"
+#include "hw/irq.h"
+
+#include "hw/boards.h"
+
+/* This check must be after config-host.h is included */
+#ifdef CONFIG_EVENTFD
+#include <sys/eventfd.h>
+#endif
+
+/* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
+#define PAGE_SIZE TARGET_PAGE_SIZE
+
+//#define DEBUG_KVM
+
+#ifdef DEBUG_KVM
+#define DPRINTF(fmt, ...) \
+ do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
+#else
+#define DPRINTF(fmt, ...) \
+ do { } while (0)
+#endif
+
+#define KVM_MSI_HASHTAB_SIZE 256
+
+struct KVMState
+{
+ AccelState parent_obj;
+
+ int nr_slots;
+ int fd;
+ int vmfd;
+ int coalesced_mmio;
+ struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
+ bool coalesced_flush_in_progress;
+ int broken_set_mem_region;
+ int vcpu_events;
+ int robust_singlestep;
+ int debugregs;
+#ifdef KVM_CAP_SET_GUEST_DEBUG
+ struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
+#endif
+ int many_ioeventfds;
+ int intx_set_mask;
+ /* The man page (and posix) say ioctl numbers are signed int, but
+ * they're not. Linux, glibc and *BSD all treat ioctl numbers as
+ * unsigned, and treating them as signed here can break things */
+ unsigned irq_set_ioctl;
+ unsigned int sigmask_len;
+ GHashTable *gsimap;
+#ifdef KVM_CAP_IRQ_ROUTING
+ struct kvm_irq_routing *irq_routes;
+ int nr_allocated_irq_routes;
+ uint32_t *used_gsi_bitmap;
+ unsigned int gsi_count;
+ QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
+#endif
+ KVMMemoryListener memory_listener;
+};
+
+KVMState *kvm_state;
+bool kvm_kernel_irqchip;
+bool kvm_async_interrupts_allowed;
+bool kvm_halt_in_kernel_allowed;
+bool kvm_eventfds_allowed;
+bool kvm_irqfds_allowed;
+bool kvm_resamplefds_allowed;
+bool kvm_msi_via_irqfd_allowed;
+bool kvm_gsi_routing_allowed;
+bool kvm_gsi_direct_mapping;
+bool kvm_allowed;
+bool kvm_readonly_mem_allowed;
+bool kvm_vm_attributes_allowed;
+bool kvm_direct_msi_allowed;
+bool kvm_ioeventfd_any_length_allowed;
+
+static const KVMCapabilityInfo kvm_required_capabilites[] = {
+ KVM_CAP_INFO(USER_MEMORY),
+ KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
+ KVM_CAP_LAST_INFO
+};
+
+static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
+{
+ KVMState *s = kvm_state;
+ int i;
+
+ for (i = 0; i < s->nr_slots; i++) {
+ if (kml->slots[i].memory_size == 0) {
+ return &kml->slots[i];
+ }
+ }
+
+ return NULL;
+}
+
+bool kvm_has_free_slot(MachineState *ms)
+{
+ KVMState *s = KVM_STATE(ms->accelerator);
+
+ return kvm_get_free_slot(&s->memory_listener);
+}
+
+static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
+{
+ KVMSlot *slot = kvm_get_free_slot(kml);
+
+ if (slot) {
+ return slot;
+ }
+
+ fprintf(stderr, "%s: no free slot available\n", __func__);
+ abort();
+}
+
+static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
+ hwaddr start_addr,
+ hwaddr end_addr)
+{
+ KVMState *s = kvm_state;
+ int i;
+
+ for (i = 0; i < s->nr_slots; i++) {
+ KVMSlot *mem = &kml->slots[i];
+
+ if (start_addr == mem->start_addr &&
+ end_addr == mem->start_addr + mem->memory_size) {
+ return mem;
+ }
+ }
+
+ return NULL;
+}
+
+/*
+ * Find overlapping slot with lowest start address
+ */
+static KVMSlot *kvm_lookup_overlapping_slot(KVMMemoryListener *kml,
+ hwaddr start_addr,
+ hwaddr end_addr)
+{
+ KVMState *s = kvm_state;
+ KVMSlot *found = NULL;
+ int i;
+
+ for (i = 0; i < s->nr_slots; i++) {
+ KVMSlot *mem = &kml->slots[i];
+
+ if (mem->memory_size == 0 ||
+ (found && found->start_addr < mem->start_addr)) {
+ continue;
+ }
+
+ if (end_addr > mem->start_addr &&
+ start_addr < mem->start_addr + mem->memory_size) {
+ found = mem;
+ }
+ }
+
+ return found;
+}
+
+int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
+ hwaddr *phys_addr)
+{
+ KVMMemoryListener *kml = &s->memory_listener;
+ int i;
+
+ for (i = 0; i < s->nr_slots; i++) {
+ KVMSlot *mem = &kml->slots[i];
+
+ if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
+ *phys_addr = mem->start_addr + (ram - mem->ram);
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot)
+{
+ KVMState *s = kvm_state;
+ struct kvm_userspace_memory_region mem;
+
+ mem.slot = slot->slot | (kml->as_id << 16);
+ mem.guest_phys_addr = slot->start_addr;
+ mem.userspace_addr = (unsigned long)slot->ram;
+ mem.flags = slot->flags;
+
+ if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
+ /* Set the slot size to 0 before setting the slot to the desired
+ * value. This is needed based on KVM commit 75d61fbc. */
+ mem.memory_size = 0;
+ kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
+ }
+ mem.memory_size = slot->memory_size;
+ return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
+}
+
+int kvm_init_vcpu(CPUState *cpu)
+{
+ KVMState *s = kvm_state;
+ long mmap_size;
+ int ret;
+
+ DPRINTF("kvm_init_vcpu\n");
+
+ ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
+ if (ret < 0) {
+ DPRINTF("kvm_create_vcpu failed\n");
+ goto err;
+ }
+
+ cpu->kvm_fd = ret;
+ cpu->kvm_state = s;
+ cpu->kvm_vcpu_dirty = true;
+
+ mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
+ if (mmap_size < 0) {
+ ret = mmap_size;
+ DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
+ goto err;
+ }
+
+ cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
+ cpu->kvm_fd, 0);
+ if (cpu->kvm_run == MAP_FAILED) {
+ ret = -errno;
+ DPRINTF("mmap'ing vcpu state failed\n");
+ goto err;
+ }
+
+ if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
+ s->coalesced_mmio_ring =
+ (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
+ }
+
+ ret = kvm_arch_init_vcpu(cpu);
+err:
+ return ret;
+}
+
+/*
+ * dirty pages logging control
+ */
+
+static int kvm_mem_flags(MemoryRegion *mr)
+{
+ bool readonly = mr->readonly || memory_region_is_romd(mr);
+ int flags = 0;
+
+ if (memory_region_get_dirty_log_mask(mr) != 0) {
+ flags |= KVM_MEM_LOG_DIRTY_PAGES;
+ }
+ if (readonly && kvm_readonly_mem_allowed) {
+ flags |= KVM_MEM_READONLY;
+ }
+ return flags;
+}
+
+static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
+ MemoryRegion *mr)
+{
+ int old_flags;
+
+ old_flags = mem->flags;
+ mem->flags = kvm_mem_flags(mr);
+
+ /* If nothing changed effectively, no need to issue ioctl */
+ if (mem->flags == old_flags) {
+ return 0;
+ }
+
+ return kvm_set_user_memory_region(kml, mem);
+}
+
+static int kvm_section_update_flags(KVMMemoryListener *kml,
+ MemoryRegionSection *section)
+{
+ hwaddr phys_addr = section->offset_within_address_space;
+ ram_addr_t size = int128_get64(section->size);
+ KVMSlot *mem = kvm_lookup_matching_slot(kml, phys_addr, phys_addr + size);
+
+ if (mem == NULL) {
+ return 0;
+ } else {
+ return kvm_slot_update_flags(kml, mem, section->mr);
+ }
+}
+
+static void kvm_log_start(MemoryListener *listener,
+ MemoryRegionSection *section,
+ int old, int new)
+{
+ KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
+ int r;
+
+ if (old != 0) {
+ return;
+ }
+
+ r = kvm_section_update_flags(kml, section);
+ if (r < 0) {
+ abort();
+ }
+}
+
+static void kvm_log_stop(MemoryListener *listener,
+ MemoryRegionSection *section,
+ int old, int new)
+{
+ KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
+ int r;
+
+ if (new != 0) {
+ return;
+ }
+
+ r = kvm_section_update_flags(kml, section);
+ if (r < 0) {
+ abort();
+ }
+}
+
+/* get kvm's dirty pages bitmap and update qemu's */
+static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
+ unsigned long *bitmap)
+{
+ ram_addr_t start = section->offset_within_region + section->mr->ram_addr;
+ ram_addr_t pages = int128_get64(section->size) / getpagesize();
+
+ cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
+ return 0;
+}
+
+#define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
+
+/**
+ * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
+ * This function updates qemu's dirty bitmap using
+ * memory_region_set_dirty(). This means all bits are set
+ * to dirty.
+ *
+ * @start_add: start of logged region.
+ * @end_addr: end of logged region.
+ */
+static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
+ MemoryRegionSection *section)
+{
+ KVMState *s = kvm_state;
+ unsigned long size, allocated_size = 0;
+ struct kvm_dirty_log d = {};
+ KVMSlot *mem;
+ int ret = 0;
+ hwaddr start_addr = section->offset_within_address_space;
+ hwaddr end_addr = start_addr + int128_get64(section->size);
+
+ d.dirty_bitmap = NULL;
+ while (start_addr < end_addr) {
+ mem = kvm_lookup_overlapping_slot(kml, start_addr, end_addr);
+ if (mem == NULL) {
+ break;
+ }
+
+ /* XXX bad kernel interface alert
+ * For dirty bitmap, kernel allocates array of size aligned to
+ * bits-per-long. But for case when the kernel is 64bits and
+ * the userspace is 32bits, userspace can't align to the same
+ * bits-per-long, since sizeof(long) is different between kernel
+ * and user space. This way, userspace will provide buffer which
+ * may be 4 bytes less than the kernel will use, resulting in
+ * userspace memory corruption (which is not detectable by valgrind
+ * too, in most cases).
+ * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
+ * a hope that sizeof(long) wont become >8 any time soon.
+ */
+ size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
+ /*HOST_LONG_BITS*/ 64) / 8;
+ if (!d.dirty_bitmap) {
+ d.dirty_bitmap = g_malloc(size);
+ } else if (size > allocated_size) {
+ d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
+ }
+ allocated_size = size;
+ memset(d.dirty_bitmap, 0, allocated_size);
+
+ d.slot = mem->slot | (kml->as_id << 16);
+ if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
+ DPRINTF("ioctl failed %d\n", errno);
+ ret = -1;
+ break;
+ }
+
+ kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
+ start_addr = mem->start_addr + mem->memory_size;
+ }
+ g_free(d.dirty_bitmap);
+
+ return ret;
+}
+
+static void kvm_coalesce_mmio_region(MemoryListener *listener,
+ MemoryRegionSection *secion,
+ hwaddr start, hwaddr size)
+{
+ KVMState *s = kvm_state;
+
+ if (s->coalesced_mmio) {
+ struct kvm_coalesced_mmio_zone zone;
+
+ zone.addr = start;
+ zone.size = size;
+ zone.pad = 0;
+
+ (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
+ }
+}
+
+static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
+ MemoryRegionSection *secion,
+ hwaddr start, hwaddr size)
+{
+ KVMState *s = kvm_state;
+
+ if (s->coalesced_mmio) {
+ struct kvm_coalesced_mmio_zone zone;
+
+ zone.addr = start;
+ zone.size = size;
+ zone.pad = 0;
+
+ (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
+ }
+}
+
+int kvm_check_extension(KVMState *s, unsigned int extension)
+{
+ int ret;
+
+ ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
+ if (ret < 0) {
+ ret = 0;
+ }
+
+ return ret;
+}
+
+int kvm_vm_check_extension(KVMState *s, unsigned int extension)
+{
+ int ret;
+
+ ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
+ if (ret < 0) {
+ /* VM wide version not implemented, use global one instead */
+ ret = kvm_check_extension(s, extension);
+ }
+
+ return ret;
+}
+
+static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
+{
+#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
+ /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
+ * endianness, but the memory core hands them in target endianness.
+ * For example, PPC is always treated as big-endian even if running
+ * on KVM and on PPC64LE. Correct here.
+ */
+ switch (size) {
+ case 2:
+ val = bswap16(val);
+ break;
+ case 4:
+ val = bswap32(val);
+ break;
+ }
+#endif
+ return val;
+}
+
+static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
+ bool assign, uint32_t size, bool datamatch)
+{
+ int ret;
+ struct kvm_ioeventfd iofd = {
+ .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
+ .addr = addr,
+ .len = size,
+ .flags = 0,
+ .fd = fd,
+ };
+
+ if (!kvm_enabled()) {
+ return -ENOSYS;
+ }
+
+ if (datamatch) {
+ iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
+ }
+ if (!assign) {
+ iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
+ }
+
+ ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
+
+ if (ret < 0) {
+ return -errno;
+ }
+
+ return 0;
+}
+
+static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
+ bool assign, uint32_t size, bool datamatch)
+{
+ struct kvm_ioeventfd kick = {
+ .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
+ .addr = addr,
+ .flags = KVM_IOEVENTFD_FLAG_PIO,
+ .len = size,
+ .fd = fd,
+ };
+ int r;
+ if (!kvm_enabled()) {
+ return -ENOSYS;
+ }
+ if (datamatch) {
+ kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
+ }
+ if (!assign) {
+ kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
+ }
+ r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
+ if (r < 0) {
+ return r;
+ }
+ return 0;
+}
+
+
+static int kvm_check_many_ioeventfds(void)
+{
+ /* Userspace can use ioeventfd for io notification. This requires a host
+ * that supports eventfd(2) and an I/O thread; since eventfd does not
+ * support SIGIO it cannot interrupt the vcpu.
+ *
+ * Older kernels have a 6 device limit on the KVM io bus. Find out so we
+ * can avoid creating too many ioeventfds.
+ */
+#if defined(CONFIG_EVENTFD)
+ int ioeventfds[7];
+ int i, ret = 0;
+ for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
+ ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
+ if (ioeventfds[i] < 0) {
+ break;
+ }
+ ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
+ if (ret < 0) {
+ close(ioeventfds[i]);
+ break;
+ }
+ }
+
+ /* Decide whether many devices are supported or not */
+ ret = i == ARRAY_SIZE(ioeventfds);
+
+ while (i-- > 0) {
+ kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
+ close(ioeventfds[i]);
+ }
+ return ret;
+#else
+ return 0;
+#endif
+}
+
+static const KVMCapabilityInfo *
+kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
+{
+ while (list->name) {
+ if (!kvm_check_extension(s, list->value)) {
+ return list;
+ }
+ list++;
+ }
+ return NULL;
+}
+
+static void kvm_set_phys_mem(KVMMemoryListener *kml,
+ MemoryRegionSection *section, bool add)
+{
+ KVMState *s = kvm_state;
+ KVMSlot *mem, old;
+ int err;
+ MemoryRegion *mr = section->mr;
+ bool writeable = !mr->readonly && !mr->rom_device;
+ hwaddr start_addr = section->offset_within_address_space;
+ ram_addr_t size = int128_get64(section->size);
+ void *ram = NULL;
+ unsigned delta;
+
+ /* kvm works in page size chunks, but the function may be called
+ with sub-page size and unaligned start address. Pad the start
+ address to next and truncate size to previous page boundary. */
+ delta = qemu_real_host_page_size - (start_addr & ~qemu_real_host_page_mask);
+ delta &= ~qemu_real_host_page_mask;
+ if (delta > size) {
+ return;
+ }
+ start_addr += delta;
+ size -= delta;
+ size &= qemu_real_host_page_mask;
+ if (!size || (start_addr & ~qemu_real_host_page_mask)) {
+ return;
+ }
+
+ if (!memory_region_is_ram(mr)) {
+ if (writeable || !kvm_readonly_mem_allowed) {
+ return;
+ } else if (!mr->romd_mode) {
+ /* If the memory device is not in romd_mode, then we actually want
+ * to remove the kvm memory slot so all accesses will trap. */
+ add = false;
+ }
+ }
+
+ ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
+
+ while (1) {
+ mem = kvm_lookup_overlapping_slot(kml, start_addr, start_addr + size);
+ if (!mem) {
+ break;
+ }
+
+ if (add && start_addr >= mem->start_addr &&
+ (start_addr + size <= mem->start_addr + mem->memory_size) &&
+ (ram - start_addr == mem->ram - mem->start_addr)) {
+ /* The new slot fits into the existing one and comes with
+ * identical parameters - update flags and done. */
+ kvm_slot_update_flags(kml, mem, mr);
+ return;
+ }
+
+ old = *mem;
+
+ if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
+ kvm_physical_sync_dirty_bitmap(kml, section);
+ }
+
+ /* unregister the overlapping slot */
+ mem->memory_size = 0;
+ err = kvm_set_user_memory_region(kml, mem);
+ if (err) {
+ fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
+ __func__, strerror(-err));
+ abort();
+ }
+
+ /* Workaround for older KVM versions: we can't join slots, even not by
+ * unregistering the previous ones and then registering the larger
+ * slot. We have to maintain the existing fragmentation. Sigh.
+ *
+ * This workaround assumes that the new slot starts at the same
+ * address as the first existing one. If not or if some overlapping
+ * slot comes around later, we will fail (not seen in practice so far)
+ * - and actually require a recent KVM version. */
+ if (s->broken_set_mem_region &&
+ old.start_addr == start_addr && old.memory_size < size && add) {
+ mem = kvm_alloc_slot(kml);
+ mem->memory_size = old.memory_size;
+ mem->start_addr = old.start_addr;
+ mem->ram = old.ram;
+ mem->flags = kvm_mem_flags(mr);
+
+ err = kvm_set_user_memory_region(kml, mem);
+ if (err) {
+ fprintf(stderr, "%s: error updating slot: %s\n", __func__,
+ strerror(-err));
+ abort();
+ }
+
+ start_addr += old.memory_size;
+ ram += old.memory_size;
+ size -= old.memory_size;
+ continue;
+ }
+
+ /* register prefix slot */
+ if (old.start_addr < start_addr) {
+ mem = kvm_alloc_slot(kml);
+ mem->memory_size = start_addr - old.start_addr;
+ mem->start_addr = old.start_addr;
+ mem->ram = old.ram;
+ mem->flags = kvm_mem_flags(mr);
+
+ err = kvm_set_user_memory_region(kml, mem);
+ if (err) {
+ fprintf(stderr, "%s: error registering prefix slot: %s\n",
+ __func__, strerror(-err));
+#ifdef TARGET_PPC
+ fprintf(stderr, "%s: This is probably because your kernel's " \
+ "PAGE_SIZE is too big. Please try to use 4k " \
+ "PAGE_SIZE!\n", __func__);
+#endif
+ abort();
+ }
+ }
+
+ /* register suffix slot */
+ if (old.start_addr + old.memory_size > start_addr + size) {
+ ram_addr_t size_delta;
+
+ mem = kvm_alloc_slot(kml);
+ mem->start_addr = start_addr + size;
+ size_delta = mem->start_addr - old.start_addr;
+ mem->memory_size = old.memory_size - size_delta;
+ mem->ram = old.ram + size_delta;
+ mem->flags = kvm_mem_flags(mr);
+
+ err = kvm_set_user_memory_region(kml, mem);
+ if (err) {
+ fprintf(stderr, "%s: error registering suffix slot: %s\n",
+ __func__, strerror(-err));
+ abort();
+ }
+ }
+ }
+
+ /* in case the KVM bug workaround already "consumed" the new slot */
+ if (!size) {
+ return;
+ }
+ if (!add) {
+ return;
+ }
+ mem = kvm_alloc_slot(kml);
+ mem->memory_size = size;
+ mem->start_addr = start_addr;
+ mem->ram = ram;
+ mem->flags = kvm_mem_flags(mr);
+
+ err = kvm_set_user_memory_region(kml, mem);
+ if (err) {
+ fprintf(stderr, "%s: error registering slot: %s\n", __func__,
+ strerror(-err));
+ abort();
+ }
+}
+
+static void kvm_region_add(MemoryListener *listener,
+ MemoryRegionSection *section)
+{
+ KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
+
+ memory_region_ref(section->mr);
+ kvm_set_phys_mem(kml, section, true);
+}
+
+static void kvm_region_del(MemoryListener *listener,
+ MemoryRegionSection *section)
+{
+ KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
+
+ kvm_set_phys_mem(kml, section, false);
+ memory_region_unref(section->mr);
+}
+
+static void kvm_log_sync(MemoryListener *listener,
+ MemoryRegionSection *section)
+{
+ KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
+ int r;
+
+ r = kvm_physical_sync_dirty_bitmap(kml, section);
+ if (r < 0) {
+ abort();
+ }
+}
+
+static void kvm_mem_ioeventfd_add(MemoryListener *listener,
+ MemoryRegionSection *section,
+ bool match_data, uint64_t data,
+ EventNotifier *e)
+{
+ int fd = event_notifier_get_fd(e);
+ int r;
+
+ r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
+ data, true, int128_get64(section->size),
+ match_data);
+ if (r < 0) {
+ fprintf(stderr, "%s: error adding ioeventfd: %s\n",
+ __func__, strerror(-r));
+ abort();
+ }
+}
+
+static void kvm_mem_ioeventfd_del(MemoryListener *listener,
+ MemoryRegionSection *section,
+ bool match_data, uint64_t data,
+ EventNotifier *e)
+{
+ int fd = event_notifier_get_fd(e);
+ int r;
+
+ r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
+ data, false, int128_get64(section->size),
+ match_data);
+ if (r < 0) {
+ abort();
+ }
+}
+
+static void kvm_io_ioeventfd_add(MemoryListener *listener,
+ MemoryRegionSection *section,
+ bool match_data, uint64_t data,
+ EventNotifier *e)
+{
+ int fd = event_notifier_get_fd(e);
+ int r;
+
+ r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
+ data, true, int128_get64(section->size),
+ match_data);
+ if (r < 0) {
+ fprintf(stderr, "%s: error adding ioeventfd: %s\n",
+ __func__, strerror(-r));
+ abort();
+ }
+}
+
+static void kvm_io_ioeventfd_del(MemoryListener *listener,
+ MemoryRegionSection *section,
+ bool match_data, uint64_t data,
+ EventNotifier *e)
+
+{
+ int fd = event_notifier_get_fd(e);
+ int r;
+
+ r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
+ data, false, int128_get64(section->size),
+ match_data);
+ if (r < 0) {
+ abort();
+ }
+}
+
+void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
+ AddressSpace *as, int as_id)
+{
+ int i;
+
+ kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
+ kml->as_id = as_id;
+
+ for (i = 0; i < s->nr_slots; i++) {
+ kml->slots[i].slot = i;
+ }
+
+ kml->listener.region_add = kvm_region_add;
+ kml->listener.region_del = kvm_region_del;
+ kml->listener.log_start = kvm_log_start;
+ kml->listener.log_stop = kvm_log_stop;
+ kml->listener.log_sync = kvm_log_sync;
+ kml->listener.priority = 10;
+
+ memory_listener_register(&kml->listener, as);
+}
+
+static MemoryListener kvm_io_listener = {
+ .eventfd_add = kvm_io_ioeventfd_add,
+ .eventfd_del = kvm_io_ioeventfd_del,
+ .priority = 10,
+};
+
+static void kvm_handle_interrupt(CPUState *cpu, int mask)
+{
+ cpu->interrupt_request |= mask;
+
+ if (!qemu_cpu_is_self(cpu)) {
+ qemu_cpu_kick(cpu);
+ }
+}
+
+int kvm_set_irq(KVMState *s, int irq, int level)
+{
+ struct kvm_irq_level event;
+ int ret;
+
+ assert(kvm_async_interrupts_enabled());
+
+ event.level = level;
+ event.irq = irq;
+ ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
+ if (ret < 0) {
+ perror("kvm_set_irq");
+ abort();
+ }
+
+ return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
+}
+
+#ifdef KVM_CAP_IRQ_ROUTING
+typedef struct KVMMSIRoute {
+ struct kvm_irq_routing_entry kroute;
+ QTAILQ_ENTRY(KVMMSIRoute) entry;
+} KVMMSIRoute;
+
+static void set_gsi(KVMState *s, unsigned int gsi)
+{
+ s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32);
+}
+
+static void clear_gsi(KVMState *s, unsigned int gsi)
+{
+ s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32));
+}
+
+void kvm_init_irq_routing(KVMState *s)
+{
+ int gsi_count, i;
+
+ gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
+ if (gsi_count > 0) {
+ unsigned int gsi_bits, i;
+
+ /* Round up so we can search ints using ffs */
+ gsi_bits = ALIGN(gsi_count, 32);
+ s->used_gsi_bitmap = g_malloc0(gsi_bits / 8);
+ s->gsi_count = gsi_count;
+
+ /* Mark any over-allocated bits as already in use */
+ for (i = gsi_count; i < gsi_bits; i++) {
+ set_gsi(s, i);
+ }
+ }
+
+ s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
+ s->nr_allocated_irq_routes = 0;
+
+ if (!kvm_direct_msi_allowed) {
+ for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
+ QTAILQ_INIT(&s->msi_hashtab[i]);
+ }
+ }
+
+ kvm_arch_init_irq_routing(s);
+}
+
+void kvm_irqchip_commit_routes(KVMState *s)
+{
+ int ret;
+
+ s->irq_routes->flags = 0;
+ ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
+ assert(ret == 0);
+}
+
+static void kvm_add_routing_entry(KVMState *s,
+ struct kvm_irq_routing_entry *entry)
+{
+ struct kvm_irq_routing_entry *new;
+ int n, size;
+
+ if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
+ n = s->nr_allocated_irq_routes * 2;
+ if (n < 64) {
+ n = 64;
+ }
+ size = sizeof(struct kvm_irq_routing);
+ size += n * sizeof(*new);
+ s->irq_routes = g_realloc(s->irq_routes, size);
+ s->nr_allocated_irq_routes = n;
+ }
+ n = s->irq_routes->nr++;
+ new = &s->irq_routes->entries[n];
+
+ *new = *entry;
+
+ set_gsi(s, entry->gsi);
+}
+
+static int kvm_update_routing_entry(KVMState *s,
+ struct kvm_irq_routing_entry *new_entry)
+{
+ struct kvm_irq_routing_entry *entry;
+ int n;
+
+ for (n = 0; n < s->irq_routes->nr; n++) {
+ entry = &s->irq_routes->entries[n];
+ if (entry->gsi != new_entry->gsi) {
+ continue;
+ }
+
+ if(!memcmp(entry, new_entry, sizeof *entry)) {
+ return 0;
+ }
+
+ *entry = *new_entry;
+
+ kvm_irqchip_commit_routes(s);
+
+ return 0;
+ }
+
+ return -ESRCH;
+}
+
+void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
+{
+ struct kvm_irq_routing_entry e = {};
+
+ assert(pin < s->gsi_count);
+
+ e.gsi = irq;
+ e.type = KVM_IRQ_ROUTING_IRQCHIP;
+ e.flags = 0;
+ e.u.irqchip.irqchip = irqchip;
+ e.u.irqchip.pin = pin;
+ kvm_add_routing_entry(s, &e);
+}
+
+void kvm_irqchip_release_virq(KVMState *s, int virq)
+{
+ struct kvm_irq_routing_entry *e;
+ int i;
+
+ if (kvm_gsi_direct_mapping()) {
+ return;
+ }
+
+ for (i = 0; i < s->irq_routes->nr; i++) {
+ e = &s->irq_routes->entries[i];
+ if (e->gsi == virq) {
+ s->irq_routes->nr--;
+ *e = s->irq_routes->entries[s->irq_routes->nr];
+ }
+ }
+ clear_gsi(s, virq);
+}
+
+static unsigned int kvm_hash_msi(uint32_t data)
+{
+ /* This is optimized for IA32 MSI layout. However, no other arch shall
+ * repeat the mistake of not providing a direct MSI injection API. */
+ return data & 0xff;
+}
+
+static void kvm_flush_dynamic_msi_routes(KVMState *s)
+{
+ KVMMSIRoute *route, *next;
+ unsigned int hash;
+
+ for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
+ QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
+ kvm_irqchip_release_virq(s, route->kroute.gsi);
+ QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
+ g_free(route);
+ }
+ }
+}
+
+static int kvm_irqchip_get_virq(KVMState *s)
+{
+ uint32_t *word = s->used_gsi_bitmap;
+ int max_words = ALIGN(s->gsi_count, 32) / 32;
+ int i, zeroes;
+
+ /*
+ * PIC and IOAPIC share the first 16 GSI numbers, thus the available
+ * GSI numbers are more than the number of IRQ route. Allocating a GSI
+ * number can succeed even though a new route entry cannot be added.
+ * When this happens, flush dynamic MSI entries to free IRQ route entries.
+ */
+ if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
+ kvm_flush_dynamic_msi_routes(s);
+ }
+
+ /* Return the lowest unused GSI in the bitmap */
+ for (i = 0; i < max_words; i++) {
+ zeroes = ctz32(~word[i]);
+ if (zeroes == 32) {
+ continue;
+ }
+
+ return zeroes + i * 32;
+ }
+ return -ENOSPC;
+
+}
+
+static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
+{
+ unsigned int hash = kvm_hash_msi(msg.data);
+ KVMMSIRoute *route;
+
+ QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
+ if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
+ route->kroute.u.msi.address_hi == (msg.address >> 32) &&
+ route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
+ return route;
+ }
+ }
+ return NULL;
+}
+
+int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
+{
+ struct kvm_msi msi;
+ KVMMSIRoute *route;
+
+ if (kvm_direct_msi_allowed) {
+ msi.address_lo = (uint32_t)msg.address;
+ msi.address_hi = msg.address >> 32;
+ msi.data = le32_to_cpu(msg.data);
+ msi.flags = 0;
+ memset(msi.pad, 0, sizeof(msi.pad));
+
+ return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
+ }
+
+ route = kvm_lookup_msi_route(s, msg);
+ if (!route) {
+ int virq;
+
+ virq = kvm_irqchip_get_virq(s);
+ if (virq < 0) {
+ return virq;
+ }
+
+ route = g_malloc0(sizeof(KVMMSIRoute));
+ route->kroute.gsi = virq;
+ route->kroute.type = KVM_IRQ_ROUTING_MSI;
+ route->kroute.flags = 0;
+ route->kroute.u.msi.address_lo = (uint32_t)msg.address;
+ route->kroute.u.msi.address_hi = msg.address >> 32;
+ route->kroute.u.msi.data = le32_to_cpu(msg.data);
+
+ kvm_add_routing_entry(s, &route->kroute);
+ kvm_irqchip_commit_routes(s);
+
+ QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
+ entry);
+ }
+
+ assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
+
+ return kvm_set_irq(s, route->kroute.gsi, 1);
+}
+
+int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg, PCIDevice *dev)
+{
+ struct kvm_irq_routing_entry kroute = {};
+ int virq;
+
+ if (kvm_gsi_direct_mapping()) {
+ return kvm_arch_msi_data_to_gsi(msg.data);
+ }
+
+ if (!kvm_gsi_routing_enabled()) {
+ return -ENOSYS;
+ }
+
+ virq = kvm_irqchip_get_virq(s);
+ if (virq < 0) {
+ return virq;
+ }
+
+ kroute.gsi = virq;
+ kroute.type = KVM_IRQ_ROUTING_MSI;
+ kroute.flags = 0;
+ kroute.u.msi.address_lo = (uint32_t)msg.address;
+ kroute.u.msi.address_hi = msg.address >> 32;
+ kroute.u.msi.data = le32_to_cpu(msg.data);
+ if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
+ kvm_irqchip_release_virq(s, virq);
+ return -EINVAL;
+ }
+
+ kvm_add_routing_entry(s, &kroute);
+ kvm_irqchip_commit_routes(s);
+
+ return virq;
+}
+
+int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
+ PCIDevice *dev)
+{
+ struct kvm_irq_routing_entry kroute = {};
+
+ if (kvm_gsi_direct_mapping()) {
+ return 0;
+ }
+
+ if (!kvm_irqchip_in_kernel()) {
+ return -ENOSYS;
+ }
+
+ kroute.gsi = virq;
+ kroute.type = KVM_IRQ_ROUTING_MSI;
+ kroute.flags = 0;
+ kroute.u.msi.address_lo = (uint32_t)msg.address;
+ kroute.u.msi.address_hi = msg.address >> 32;
+ kroute.u.msi.data = le32_to_cpu(msg.data);
+ if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
+ return -EINVAL;
+ }
+
+ return kvm_update_routing_entry(s, &kroute);
+}
+
+static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
+ bool assign)
+{
+ struct kvm_irqfd irqfd = {
+ .fd = fd,
+ .gsi = virq,
+ .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
+ };
+
+ if (rfd != -1) {
+ irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
+ irqfd.resamplefd = rfd;
+ }
+
+ if (!kvm_irqfds_enabled()) {
+ return -ENOSYS;
+ }
+
+ return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
+}
+
+int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
+{
+ struct kvm_irq_routing_entry kroute = {};
+ int virq;
+
+ if (!kvm_gsi_routing_enabled()) {
+ return -ENOSYS;
+ }
+
+ virq = kvm_irqchip_get_virq(s);
+ if (virq < 0) {
+ return virq;
+ }
+
+ kroute.gsi = virq;
+ kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
+ kroute.flags = 0;
+ kroute.u.adapter.summary_addr = adapter->summary_addr;
+ kroute.u.adapter.ind_addr = adapter->ind_addr;
+ kroute.u.adapter.summary_offset = adapter->summary_offset;
+ kroute.u.adapter.ind_offset = adapter->ind_offset;
+ kroute.u.adapter.adapter_id = adapter->adapter_id;
+
+ kvm_add_routing_entry(s, &kroute);
+
+ return virq;
+}
+
+#else /* !KVM_CAP_IRQ_ROUTING */
+
+void kvm_init_irq_routing(KVMState *s)
+{
+}
+
+void kvm_irqchip_release_virq(KVMState *s, int virq)
+{
+}
+
+int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
+{
+ abort();
+}
+
+int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
+{
+ return -ENOSYS;
+}
+
+int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
+{
+ return -ENOSYS;
+}
+
+static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
+{
+ abort();
+}
+
+int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
+{
+ return -ENOSYS;
+}
+#endif /* !KVM_CAP_IRQ_ROUTING */
+
+int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
+ EventNotifier *rn, int virq)
+{
+ return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
+ rn ? event_notifier_get_fd(rn) : -1, virq, true);
+}
+
+int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
+ int virq)
+{
+ return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
+ false);
+}
+
+int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
+ EventNotifier *rn, qemu_irq irq)
+{
+ gpointer key, gsi;
+ gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
+
+ if (!found) {
+ return -ENXIO;
+ }
+ return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
+}
+
+int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
+ qemu_irq irq)
+{
+ gpointer key, gsi;
+ gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
+
+ if (!found) {
+ return -ENXIO;
+ }
+ return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
+}
+
+void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
+{
+ g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
+}
+
+static void kvm_irqchip_create(MachineState *machine, KVMState *s)
+{
+ int ret;
+
+ if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
+ ;
+ } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
+ ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
+ if (ret < 0) {
+ fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
+ exit(1);
+ }
+ } else {
+ return;
+ }
+
+ /* First probe and see if there's a arch-specific hook to create the
+ * in-kernel irqchip for us */
+ ret = kvm_arch_irqchip_create(s);
+ if (ret == 0) {
+ ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
+ }
+ if (ret < 0) {
+ fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
+ exit(1);
+ }
+
+ kvm_kernel_irqchip = true;
+ /* If we have an in-kernel IRQ chip then we must have asynchronous
+ * interrupt delivery (though the reverse is not necessarily true)
+ */
+ kvm_async_interrupts_allowed = true;
+ kvm_halt_in_kernel_allowed = true;
+
+ kvm_init_irq_routing(s);
+
+ s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
+}
+
+/* Find number of supported CPUs using the recommended
+ * procedure from the kernel API documentation to cope with
+ * older kernels that may be missing capabilities.
+ */
+static int kvm_recommended_vcpus(KVMState *s)
+{
+ int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
+ return (ret) ? ret : 4;
+}
+
+static int kvm_max_vcpus(KVMState *s)
+{
+ int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
+ return (ret) ? ret : kvm_recommended_vcpus(s);
+}
+
+static int kvm_init(MachineState *ms)
+{
+ MachineClass *mc = MACHINE_GET_CLASS(ms);
+ static const char upgrade_note[] =
+ "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
+ "(see http://sourceforge.net/projects/kvm).\n";
+ struct {
+ const char *name;
+ int num;
+ } num_cpus[] = {
+ { "SMP", smp_cpus },
+ { "hotpluggable", max_cpus },
+ { NULL, }
+ }, *nc = num_cpus;
+ int soft_vcpus_limit, hard_vcpus_limit;
+ KVMState *s;
+ const KVMCapabilityInfo *missing_cap;
+ int ret;
+ int type = 0;
+ const char *kvm_type;
+
+ s = KVM_STATE(ms->accelerator);
+
+ /*
+ * On systems where the kernel can support different base page
+ * sizes, host page size may be different from TARGET_PAGE_SIZE,
+ * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
+ * page size for the system though.
+ */
+ assert(TARGET_PAGE_SIZE <= getpagesize());
+
+ s->sigmask_len = 8;
+
+#ifdef KVM_CAP_SET_GUEST_DEBUG
+ QTAILQ_INIT(&s->kvm_sw_breakpoints);
+#endif
+ s->vmfd = -1;
+ s->fd = qemu_open("/dev/kvm", O_RDWR);
+ if (s->fd == -1) {
+ fprintf(stderr, "Could not access KVM kernel module: %m\n");
+ ret = -errno;
+ goto err;
+ }
+
+ ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
+ if (ret < KVM_API_VERSION) {
+ if (ret >= 0) {
+ ret = -EINVAL;
+ }
+ fprintf(stderr, "kvm version too old\n");
+ goto err;
+ }
+
+ if (ret > KVM_API_VERSION) {
+ ret = -EINVAL;
+ fprintf(stderr, "kvm version not supported\n");
+ goto err;
+ }
+
+ s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
+
+ /* If unspecified, use the default value */
+ if (!s->nr_slots) {
+ s->nr_slots = 32;
+ }
+
+ /* check the vcpu limits */
+ soft_vcpus_limit = kvm_recommended_vcpus(s);
+ hard_vcpus_limit = kvm_max_vcpus(s);
+
+ while (nc->name) {
+ if (nc->num > soft_vcpus_limit) {
+ fprintf(stderr,
+ "Warning: Number of %s cpus requested (%d) exceeds "
+ "the recommended cpus supported by KVM (%d)\n",
+ nc->name, nc->num, soft_vcpus_limit);
+
+ if (nc->num > hard_vcpus_limit) {
+ fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
+ "the maximum cpus supported by KVM (%d)\n",
+ nc->name, nc->num, hard_vcpus_limit);
+ exit(1);
+ }
+ }
+ nc++;
+ }
+
+ kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
+ if (mc->kvm_type) {
+ type = mc->kvm_type(kvm_type);
+ } else if (kvm_type) {
+ ret = -EINVAL;
+ fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
+ goto err;
+ }
+
+ do {
+ ret = kvm_ioctl(s, KVM_CREATE_VM, type);
+ } while (ret == -EINTR);
+
+ if (ret < 0) {
+ fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
+ strerror(-ret));
+
+#ifdef TARGET_S390X
+ if (ret == -EINVAL) {
+ fprintf(stderr,
+ "Host kernel setup problem detected. Please verify:\n");
+ fprintf(stderr, "- for kernels supporting the switch_amode or"
+ " user_mode parameters, whether\n");
+ fprintf(stderr,
+ " user space is running in primary address space\n");
+ fprintf(stderr,
+ "- for kernels supporting the vm.allocate_pgste sysctl, "
+ "whether it is enabled\n");
+ }
+#endif
+ goto err;
+ }
+
+ s->vmfd = ret;
+ missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
+ if (!missing_cap) {
+ missing_cap =
+ kvm_check_extension_list(s, kvm_arch_required_capabilities);
+ }
+ if (missing_cap) {
+ ret = -EINVAL;
+ fprintf(stderr, "kvm does not support %s\n%s",
+ missing_cap->name, upgrade_note);
+ goto err;
+ }
+
+ s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
+
+ s->broken_set_mem_region = 1;
+ ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
+ if (ret > 0) {
+ s->broken_set_mem_region = 0;
+ }
+
+#ifdef KVM_CAP_VCPU_EVENTS
+ s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
+#endif
+
+ s->robust_singlestep =
+ kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
+
+#ifdef KVM_CAP_DEBUGREGS
+ s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
+#endif
+
+#ifdef KVM_CAP_IRQ_ROUTING
+ kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
+#endif
+
+ s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
+
+ s->irq_set_ioctl = KVM_IRQ_LINE;
+ if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
+ s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
+ }
+
+#ifdef KVM_CAP_READONLY_MEM
+ kvm_readonly_mem_allowed =
+ (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
+#endif
+
+ kvm_eventfds_allowed =
+ (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
+
+ kvm_irqfds_allowed =
+ (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
+
+ kvm_resamplefds_allowed =
+ (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
+
+ kvm_vm_attributes_allowed =
+ (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
+
+ kvm_ioeventfd_any_length_allowed =
+ (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
+
+ ret = kvm_arch_init(ms, s);
+ if (ret < 0) {
+ goto err;
+ }
+
+ if (machine_kernel_irqchip_allowed(ms)) {
+ kvm_irqchip_create(ms, s);
+ }
+
+ kvm_state = s;
+
+ s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
+ s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
+ s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region;
+ s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region;
+
+ kvm_memory_listener_register(s, &s->memory_listener,
+ &address_space_memory, 0);
+ memory_listener_register(&kvm_io_listener,
+ &address_space_io);
+
+ s->many_ioeventfds = kvm_check_many_ioeventfds();
+
+ cpu_interrupt_handler = kvm_handle_interrupt;
+
+ return 0;
+
+err:
+ assert(ret < 0);
+ if (s->vmfd >= 0) {
+ close(s->vmfd);
+ }
+ if (s->fd != -1) {
+ close(s->fd);
+ }
+ g_free(s->memory_listener.slots);
+
+ return ret;
+}
+
+void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
+{
+ s->sigmask_len = sigmask_len;
+}
+
+static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
+ int size, uint32_t count)
+{
+ int i;
+ uint8_t *ptr = data;
+
+ for (i = 0; i < count; i++) {
+ address_space_rw(&address_space_io, port, attrs,
+ ptr, size,
+ direction == KVM_EXIT_IO_OUT);
+ ptr += size;
+ }
+}
+
+static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
+{
+ fprintf(stderr, "KVM internal error. Suberror: %d\n",
+ run->internal.suberror);
+
+ if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
+ int i;
+
+ for (i = 0; i < run->internal.ndata; ++i) {
+ fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
+ i, (uint64_t)run->internal.data[i]);
+ }
+ }
+ if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
+ fprintf(stderr, "emulation failure\n");
+ if (!kvm_arch_stop_on_emulation_error(cpu)) {
+ cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
+ return EXCP_INTERRUPT;
+ }
+ }
+ /* FIXME: Should trigger a qmp message to let management know
+ * something went wrong.
+ */
+ return -1;
+}
+
+void kvm_flush_coalesced_mmio_buffer(void)
+{
+ KVMState *s = kvm_state;
+
+ if (s->coalesced_flush_in_progress) {
+ return;
+ }
+
+ s->coalesced_flush_in_progress = true;
+
+ if (s->coalesced_mmio_ring) {
+ struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
+ while (ring->first != ring->last) {
+ struct kvm_coalesced_mmio *ent;
+
+ ent = &ring->coalesced_mmio[ring->first];
+
+ cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
+ smp_wmb();
+ ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
+ }
+ }
+
+ s->coalesced_flush_in_progress = false;
+}
+
+static void do_kvm_cpu_synchronize_state(void *arg)
+{
+ CPUState *cpu = arg;
+
+ if (!cpu->kvm_vcpu_dirty) {
+ kvm_arch_get_registers(cpu);
+ cpu->kvm_vcpu_dirty = true;
+ }
+}
+
+void kvm_cpu_synchronize_state(CPUState *cpu)
+{
+ if (!cpu->kvm_vcpu_dirty) {
+ run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
+ }
+}
+
+static void do_kvm_cpu_synchronize_post_reset(void *arg)
+{
+ CPUState *cpu = arg;
+
+ kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
+ cpu->kvm_vcpu_dirty = false;
+}
+
+void kvm_cpu_synchronize_post_reset(CPUState *cpu)
+{
+ run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, cpu);
+}
+
+static void do_kvm_cpu_synchronize_post_init(void *arg)
+{
+ CPUState *cpu = arg;
+
+ kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
+ cpu->kvm_vcpu_dirty = false;
+}
+
+void kvm_cpu_synchronize_post_init(CPUState *cpu)
+{
+ run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, cpu);
+}
+
+int kvm_cpu_exec(CPUState *cpu)
+{
+ struct kvm_run *run = cpu->kvm_run;
+ int ret, run_ret;
+
+ DPRINTF("kvm_cpu_exec()\n");
+
+ if (kvm_arch_process_async_events(cpu)) {
+ cpu->exit_request = 0;
+ return EXCP_HLT;
+ }
+
+ qemu_mutex_unlock_iothread();
+
+ do {
+ MemTxAttrs attrs;
+
+ if (cpu->kvm_vcpu_dirty) {
+ kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
+ cpu->kvm_vcpu_dirty = false;
+ }
+
+ kvm_arch_pre_run(cpu, run);
+ if (cpu->exit_request) {
+ DPRINTF("interrupt exit requested\n");
+ /*
+ * KVM requires us to reenter the kernel after IO exits to complete
+ * instruction emulation. This self-signal will ensure that we
+ * leave ASAP again.
+ */
+ qemu_cpu_kick_self();
+ }
+
+ run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
+
+ attrs = kvm_arch_post_run(cpu, run);
+
+ if (run_ret < 0) {
+ if (run_ret == -EINTR || run_ret == -EAGAIN) {
+ DPRINTF("io window exit\n");
+ ret = EXCP_INTERRUPT;
+ break;
+ }
+ fprintf(stderr, "error: kvm run failed %s\n",
+ strerror(-run_ret));
+#ifdef TARGET_PPC
+ if (run_ret == -EBUSY) {
+ fprintf(stderr,
+ "This is probably because your SMT is enabled.\n"
+ "VCPU can only run on primary threads with all "
+ "secondary threads offline.\n");
+ }
+#endif
+ ret = -1;
+ break;
+ }
+
+ trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
+ switch (run->exit_reason) {
+ case KVM_EXIT_IO:
+ DPRINTF("handle_io\n");
+ /* Called outside BQL */
+ kvm_handle_io(run->io.port, attrs,
+ (uint8_t *)run + run->io.data_offset,
+ run->io.direction,
+ run->io.size,
+ run->io.count);
+ ret = 0;
+ break;
+ case KVM_EXIT_MMIO:
+ DPRINTF("handle_mmio\n");
+ /* Called outside BQL */
+ address_space_rw(&address_space_memory,
+ run->mmio.phys_addr, attrs,
+ run->mmio.data,
+ run->mmio.len,
+ run->mmio.is_write);
+ ret = 0;
+ break;
+ case KVM_EXIT_IRQ_WINDOW_OPEN:
+ DPRINTF("irq_window_open\n");
+ ret = EXCP_INTERRUPT;
+ break;
+ case KVM_EXIT_SHUTDOWN:
+ DPRINTF("shutdown\n");
+ qemu_system_reset_request();
+ ret = EXCP_INTERRUPT;
+ break;
+ case KVM_EXIT_UNKNOWN:
+ fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
+ (uint64_t)run->hw.hardware_exit_reason);
+ ret = -1;
+ break;
+ case KVM_EXIT_INTERNAL_ERROR:
+ ret = kvm_handle_internal_error(cpu, run);
+ break;
+ case KVM_EXIT_SYSTEM_EVENT:
+ switch (run->system_event.type) {
+ case KVM_SYSTEM_EVENT_SHUTDOWN:
+ qemu_system_shutdown_request();
+ ret = EXCP_INTERRUPT;
+ break;
+ case KVM_SYSTEM_EVENT_RESET:
+ qemu_system_reset_request();
+ ret = EXCP_INTERRUPT;
+ break;
+ case KVM_SYSTEM_EVENT_CRASH:
+ qemu_mutex_lock_iothread();
+ qemu_system_guest_panicked();
+ qemu_mutex_unlock_iothread();
+ ret = 0;
+ break;
+ default:
+ DPRINTF("kvm_arch_handle_exit\n");
+ ret = kvm_arch_handle_exit(cpu, run);
+ break;
+ }
+ break;
+ default:
+ DPRINTF("kvm_arch_handle_exit\n");
+ ret = kvm_arch_handle_exit(cpu, run);
+ break;
+ }
+ } while (ret == 0);
+
+ qemu_mutex_lock_iothread();
+
+ if (ret < 0) {
+ cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
+ vm_stop(RUN_STATE_INTERNAL_ERROR);
+ }
+
+ cpu->exit_request = 0;
+ return ret;
+}
+
+int kvm_ioctl(KVMState *s, int type, ...)
+{
+ int ret;
+ void *arg;
+ va_list ap;
+
+ va_start(ap, type);
+ arg = va_arg(ap, void *);
+ va_end(ap);
+
+ trace_kvm_ioctl(type, arg);
+ ret = ioctl(s->fd, type, arg);
+ if (ret == -1) {
+ ret = -errno;
+ }
+ return ret;
+}
+
+int kvm_vm_ioctl(KVMState *s, int type, ...)
+{
+ int ret;
+ void *arg;
+ va_list ap;
+
+ va_start(ap, type);
+ arg = va_arg(ap, void *);
+ va_end(ap);
+
+ trace_kvm_vm_ioctl(type, arg);
+ ret = ioctl(s->vmfd, type, arg);
+ if (ret == -1) {
+ ret = -errno;
+ }
+ return ret;
+}
+
+int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
+{
+ int ret;
+ void *arg;
+ va_list ap;
+
+ va_start(ap, type);
+ arg = va_arg(ap, void *);
+ va_end(ap);
+
+ trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
+ ret = ioctl(cpu->kvm_fd, type, arg);
+ if (ret == -1) {
+ ret = -errno;
+ }
+ return ret;
+}
+
+int kvm_device_ioctl(int fd, int type, ...)
+{
+ int ret;
+ void *arg;
+ va_list ap;
+
+ va_start(ap, type);
+ arg = va_arg(ap, void *);
+ va_end(ap);
+
+ trace_kvm_device_ioctl(fd, type, arg);
+ ret = ioctl(fd, type, arg);
+ if (ret == -1) {
+ ret = -errno;
+ }
+ return ret;
+}
+
+int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
+{
+ int ret;
+ struct kvm_device_attr attribute = {
+ .group = group,
+ .attr = attr,
+ };
+
+ if (!kvm_vm_attributes_allowed) {
+ return 0;
+ }
+
+ ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
+ /* kvm returns 0 on success for HAS_DEVICE_ATTR */
+ return ret ? 0 : 1;
+}
+
+int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
+{
+ struct kvm_device_attr attribute = {
+ .group = group,
+ .attr = attr,
+ .flags = 0,
+ };
+
+ return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
+}
+
+void kvm_device_access(int fd, int group, uint64_t attr,
+ void *val, bool write)
+{
+ struct kvm_device_attr kvmattr;
+ int err;
+
+ kvmattr.flags = 0;
+ kvmattr.group = group;
+ kvmattr.attr = attr;
+ kvmattr.addr = (uintptr_t)val;
+
+ err = kvm_device_ioctl(fd,
+ write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
+ &kvmattr);
+ if (err < 0) {
+ error_report("KVM_%s_DEVICE_ATTR failed: %s\n"
+ "Group %d attr 0x%016" PRIx64, write ? "SET" : "GET",
+ strerror(-err), group, attr);
+ abort();
+ }
+}
+
+int kvm_has_sync_mmu(void)
+{
+ return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
+}
+
+int kvm_has_vcpu_events(void)
+{
+ return kvm_state->vcpu_events;
+}
+
+int kvm_has_robust_singlestep(void)
+{
+ return kvm_state->robust_singlestep;
+}
+
+int kvm_has_debugregs(void)
+{
+ return kvm_state->debugregs;
+}
+
+int kvm_has_many_ioeventfds(void)
+{
+ if (!kvm_enabled()) {
+ return 0;
+ }
+ return kvm_state->many_ioeventfds;
+}
+
+int kvm_has_gsi_routing(void)
+{
+#ifdef KVM_CAP_IRQ_ROUTING
+ return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
+#else
+ return false;
+#endif
+}
+
+int kvm_has_intx_set_mask(void)
+{
+ return kvm_state->intx_set_mask;
+}
+
+void kvm_setup_guest_memory(void *start, size_t size)
+{
+ if (!kvm_has_sync_mmu()) {
+ int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
+
+ if (ret) {
+ perror("qemu_madvise");
+ fprintf(stderr,
+ "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
+ exit(1);
+ }
+ }
+}
+
+#ifdef KVM_CAP_SET_GUEST_DEBUG
+struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
+ target_ulong pc)
+{
+ struct kvm_sw_breakpoint *bp;
+
+ QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
+ if (bp->pc == pc) {
+ return bp;
+ }
+ }
+ return NULL;
+}
+
+int kvm_sw_breakpoints_active(CPUState *cpu)
+{
+ return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
+}
+
+struct kvm_set_guest_debug_data {
+ struct kvm_guest_debug dbg;
+ CPUState *cpu;
+ int err;
+};
+
+static void kvm_invoke_set_guest_debug(void *data)
+{
+ struct kvm_set_guest_debug_data *dbg_data = data;
+
+ dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
+ &dbg_data->dbg);
+}
+
+int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
+{
+ struct kvm_set_guest_debug_data data;
+
+ data.dbg.control = reinject_trap;
+
+ if (cpu->singlestep_enabled) {
+ data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
+ }
+ kvm_arch_update_guest_debug(cpu, &data.dbg);
+ data.cpu = cpu;
+
+ run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
+ return data.err;
+}
+
+int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
+ target_ulong len, int type)
+{
+ struct kvm_sw_breakpoint *bp;
+ int err;
+
+ if (type == GDB_BREAKPOINT_SW) {
+ bp = kvm_find_sw_breakpoint(cpu, addr);
+ if (bp) {
+ bp->use_count++;
+ return 0;
+ }
+
+ bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
+ bp->pc = addr;
+ bp->use_count = 1;
+ err = kvm_arch_insert_sw_breakpoint(cpu, bp);
+ if (err) {
+ g_free(bp);
+ return err;
+ }
+
+ QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
+ } else {
+ err = kvm_arch_insert_hw_breakpoint(addr, len, type);
+ if (err) {
+ return err;
+ }
+ }
+
+ CPU_FOREACH(cpu) {
+ err = kvm_update_guest_debug(cpu, 0);
+ if (err) {
+ return err;
+ }
+ }
+ return 0;
+}
+
+int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
+ target_ulong len, int type)
+{
+ struct kvm_sw_breakpoint *bp;
+ int err;
+
+ if (type == GDB_BREAKPOINT_SW) {
+ bp = kvm_find_sw_breakpoint(cpu, addr);
+ if (!bp) {
+ return -ENOENT;
+ }
+
+ if (bp->use_count > 1) {
+ bp->use_count--;
+ return 0;
+ }
+
+ err = kvm_arch_remove_sw_breakpoint(cpu, bp);
+ if (err) {
+ return err;
+ }
+
+ QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
+ g_free(bp);
+ } else {
+ err = kvm_arch_remove_hw_breakpoint(addr, len, type);
+ if (err) {
+ return err;
+ }
+ }
+
+ CPU_FOREACH(cpu) {
+ err = kvm_update_guest_debug(cpu, 0);
+ if (err) {
+ return err;
+ }
+ }
+ return 0;
+}
+
+void kvm_remove_all_breakpoints(CPUState *cpu)
+{
+ struct kvm_sw_breakpoint *bp, *next;
+ KVMState *s = cpu->kvm_state;
+ CPUState *tmpcpu;
+
+ QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
+ if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
+ /* Try harder to find a CPU that currently sees the breakpoint. */
+ CPU_FOREACH(tmpcpu) {
+ if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
+ break;
+ }
+ }
+ }
+ QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
+ g_free(bp);
+ }
+ kvm_arch_remove_all_hw_breakpoints();
+
+ CPU_FOREACH(cpu) {
+ kvm_update_guest_debug(cpu, 0);
+ }
+}
+
+#else /* !KVM_CAP_SET_GUEST_DEBUG */
+
+int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
+{
+ return -EINVAL;
+}
+
+int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
+ target_ulong len, int type)
+{
+ return -EINVAL;
+}
+
+int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
+ target_ulong len, int type)
+{
+ return -EINVAL;
+}
+
+void kvm_remove_all_breakpoints(CPUState *cpu)
+{
+}
+#endif /* !KVM_CAP_SET_GUEST_DEBUG */
+
+int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
+{
+ KVMState *s = kvm_state;
+ struct kvm_signal_mask *sigmask;
+ int r;
+
+ if (!sigset) {
+ return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
+ }
+
+ sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
+
+ sigmask->len = s->sigmask_len;
+ memcpy(sigmask->sigset, sigset, sizeof(*sigset));
+ r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
+ g_free(sigmask);
+
+ return r;
+}
+int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
+{
+ return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
+}
+
+int kvm_on_sigbus(int code, void *addr)
+{
+ return kvm_arch_on_sigbus(code, addr);
+}
+
+int kvm_create_device(KVMState *s, uint64_t type, bool test)
+{
+ int ret;
+ struct kvm_create_device create_dev;
+
+ create_dev.type = type;
+ create_dev.fd = -1;
+ create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
+
+ if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
+ return -ENOTSUP;
+ }
+
+ ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
+ if (ret) {
+ return ret;
+ }
+
+ return test ? 0 : create_dev.fd;
+}
+
+int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
+{
+ struct kvm_one_reg reg;
+ int r;
+
+ reg.id = id;
+ reg.addr = (uintptr_t) source;
+ r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
+ if (r) {
+ trace_kvm_failed_reg_set(id, strerror(r));
+ }
+ return r;
+}
+
+int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
+{
+ struct kvm_one_reg reg;
+ int r;
+
+ reg.id = id;
+ reg.addr = (uintptr_t) target;
+ r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
+ if (r) {
+ trace_kvm_failed_reg_get(id, strerror(r));
+ }
+ return r;
+}
+
+static void kvm_accel_class_init(ObjectClass *oc, void *data)
+{
+ AccelClass *ac = ACCEL_CLASS(oc);
+ ac->name = "KVM";
+ ac->init_machine = kvm_init;
+ ac->allowed = &kvm_allowed;
+}
+
+static const TypeInfo kvm_accel_type = {
+ .name = TYPE_KVM_ACCEL,
+ .parent = TYPE_ACCEL,
+ .class_init = kvm_accel_class_init,
+ .instance_size = sizeof(KVMState),
+};
+
+static void kvm_type_init(void)
+{
+ type_register_static(&kvm_accel_type);
+}
+
+type_init(kvm_type_init);
OpenPOWER on IntegriCloud