summaryrefslogtreecommitdiffstats
path: root/src/hw/block/onenand.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/hw/block/onenand.c')
-rw-r--r--src/hw/block/onenand.c848
1 files changed, 848 insertions, 0 deletions
diff --git a/src/hw/block/onenand.c b/src/hw/block/onenand.c
new file mode 100644
index 0000000..58eff50
--- /dev/null
+++ b/src/hw/block/onenand.c
@@ -0,0 +1,848 @@
+/*
+ * OneNAND flash memories emulation.
+ *
+ * Copyright (C) 2008 Nokia Corporation
+ * Written by Andrzej Zaborowski <andrew@openedhand.com>
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation; either version 2 or
+ * (at your option) version 3 of the License.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "qemu-common.h"
+#include "hw/hw.h"
+#include "hw/block/flash.h"
+#include "hw/irq.h"
+#include "sysemu/block-backend.h"
+#include "sysemu/blockdev.h"
+#include "exec/memory.h"
+#include "exec/address-spaces.h"
+#include "hw/sysbus.h"
+#include "qemu/error-report.h"
+
+/* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
+#define PAGE_SHIFT 11
+
+/* Fixed */
+#define BLOCK_SHIFT (PAGE_SHIFT + 6)
+
+#define TYPE_ONE_NAND "onenand"
+#define ONE_NAND(obj) OBJECT_CHECK(OneNANDState, (obj), TYPE_ONE_NAND)
+
+typedef struct OneNANDState {
+ SysBusDevice parent_obj;
+
+ struct {
+ uint16_t man;
+ uint16_t dev;
+ uint16_t ver;
+ } id;
+ int shift;
+ hwaddr base;
+ qemu_irq intr;
+ qemu_irq rdy;
+ BlockBackend *blk;
+ BlockBackend *blk_cur;
+ uint8_t *image;
+ uint8_t *otp;
+ uint8_t *current;
+ MemoryRegion ram;
+ MemoryRegion mapped_ram;
+ uint8_t current_direction;
+ uint8_t *boot[2];
+ uint8_t *data[2][2];
+ MemoryRegion iomem;
+ MemoryRegion container;
+ int cycle;
+ int otpmode;
+
+ uint16_t addr[8];
+ uint16_t unladdr[8];
+ int bufaddr;
+ int count;
+ uint16_t command;
+ uint16_t config[2];
+ uint16_t status;
+ uint16_t intstatus;
+ uint16_t wpstatus;
+
+ ECCState ecc;
+
+ int density_mask;
+ int secs;
+ int secs_cur;
+ int blocks;
+ uint8_t *blockwp;
+} OneNANDState;
+
+enum {
+ ONEN_BUF_BLOCK = 0,
+ ONEN_BUF_BLOCK2 = 1,
+ ONEN_BUF_DEST_BLOCK = 2,
+ ONEN_BUF_DEST_PAGE = 3,
+ ONEN_BUF_PAGE = 7,
+};
+
+enum {
+ ONEN_ERR_CMD = 1 << 10,
+ ONEN_ERR_ERASE = 1 << 11,
+ ONEN_ERR_PROG = 1 << 12,
+ ONEN_ERR_LOAD = 1 << 13,
+};
+
+enum {
+ ONEN_INT_RESET = 1 << 4,
+ ONEN_INT_ERASE = 1 << 5,
+ ONEN_INT_PROG = 1 << 6,
+ ONEN_INT_LOAD = 1 << 7,
+ ONEN_INT = 1 << 15,
+};
+
+enum {
+ ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
+ ONEN_LOCK_LOCKED = 1 << 1,
+ ONEN_LOCK_UNLOCKED = 1 << 2,
+};
+
+static void onenand_mem_setup(OneNANDState *s)
+{
+ /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
+ * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
+ * write boot commands. Also take note of the BWPS bit. */
+ memory_region_init(&s->container, OBJECT(s), "onenand",
+ 0x10000 << s->shift);
+ memory_region_add_subregion(&s->container, 0, &s->iomem);
+ memory_region_init_alias(&s->mapped_ram, OBJECT(s), "onenand-mapped-ram",
+ &s->ram, 0x0200 << s->shift,
+ 0xbe00 << s->shift);
+ memory_region_add_subregion_overlap(&s->container,
+ 0x0200 << s->shift,
+ &s->mapped_ram,
+ 1);
+}
+
+static void onenand_intr_update(OneNANDState *s)
+{
+ qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
+}
+
+static void onenand_pre_save(void *opaque)
+{
+ OneNANDState *s = opaque;
+ if (s->current == s->otp) {
+ s->current_direction = 1;
+ } else if (s->current == s->image) {
+ s->current_direction = 2;
+ } else {
+ s->current_direction = 0;
+ }
+}
+
+static int onenand_post_load(void *opaque, int version_id)
+{
+ OneNANDState *s = opaque;
+ switch (s->current_direction) {
+ case 0:
+ break;
+ case 1:
+ s->current = s->otp;
+ break;
+ case 2:
+ s->current = s->image;
+ break;
+ default:
+ return -1;
+ }
+ onenand_intr_update(s);
+ return 0;
+}
+
+static const VMStateDescription vmstate_onenand = {
+ .name = "onenand",
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .pre_save = onenand_pre_save,
+ .post_load = onenand_post_load,
+ .fields = (VMStateField[]) {
+ VMSTATE_UINT8(current_direction, OneNANDState),
+ VMSTATE_INT32(cycle, OneNANDState),
+ VMSTATE_INT32(otpmode, OneNANDState),
+ VMSTATE_UINT16_ARRAY(addr, OneNANDState, 8),
+ VMSTATE_UINT16_ARRAY(unladdr, OneNANDState, 8),
+ VMSTATE_INT32(bufaddr, OneNANDState),
+ VMSTATE_INT32(count, OneNANDState),
+ VMSTATE_UINT16(command, OneNANDState),
+ VMSTATE_UINT16_ARRAY(config, OneNANDState, 2),
+ VMSTATE_UINT16(status, OneNANDState),
+ VMSTATE_UINT16(intstatus, OneNANDState),
+ VMSTATE_UINT16(wpstatus, OneNANDState),
+ VMSTATE_INT32(secs_cur, OneNANDState),
+ VMSTATE_PARTIAL_VBUFFER(blockwp, OneNANDState, blocks),
+ VMSTATE_UINT8(ecc.cp, OneNANDState),
+ VMSTATE_UINT16_ARRAY(ecc.lp, OneNANDState, 2),
+ VMSTATE_UINT16(ecc.count, OneNANDState),
+ VMSTATE_BUFFER_POINTER_UNSAFE(otp, OneNANDState, 0,
+ ((64 + 2) << PAGE_SHIFT)),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
+/* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
+static void onenand_reset(OneNANDState *s, int cold)
+{
+ memset(&s->addr, 0, sizeof(s->addr));
+ s->command = 0;
+ s->count = 1;
+ s->bufaddr = 0;
+ s->config[0] = 0x40c0;
+ s->config[1] = 0x0000;
+ onenand_intr_update(s);
+ qemu_irq_raise(s->rdy);
+ s->status = 0x0000;
+ s->intstatus = cold ? 0x8080 : 0x8010;
+ s->unladdr[0] = 0;
+ s->unladdr[1] = 0;
+ s->wpstatus = 0x0002;
+ s->cycle = 0;
+ s->otpmode = 0;
+ s->blk_cur = s->blk;
+ s->current = s->image;
+ s->secs_cur = s->secs;
+
+ if (cold) {
+ /* Lock the whole flash */
+ memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
+
+ if (s->blk_cur && blk_read(s->blk_cur, 0, s->boot[0], 8) < 0) {
+ hw_error("%s: Loading the BootRAM failed.\n", __func__);
+ }
+ }
+}
+
+static void onenand_system_reset(DeviceState *dev)
+{
+ OneNANDState *s = ONE_NAND(dev);
+
+ onenand_reset(s, 1);
+}
+
+static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
+ void *dest)
+{
+ if (s->blk_cur) {
+ return blk_read(s->blk_cur, sec, dest, secn) < 0;
+ } else if (sec + secn > s->secs_cur) {
+ return 1;
+ }
+
+ memcpy(dest, s->current + (sec << 9), secn << 9);
+
+ return 0;
+}
+
+static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
+ void *src)
+{
+ int result = 0;
+
+ if (secn > 0) {
+ uint32_t size = (uint32_t)secn * 512;
+ const uint8_t *sp = (const uint8_t *)src;
+ uint8_t *dp = 0;
+ if (s->blk_cur) {
+ dp = g_malloc(size);
+ if (!dp || blk_read(s->blk_cur, sec, dp, secn) < 0) {
+ result = 1;
+ }
+ } else {
+ if (sec + secn > s->secs_cur) {
+ result = 1;
+ } else {
+ dp = (uint8_t *)s->current + (sec << 9);
+ }
+ }
+ if (!result) {
+ uint32_t i;
+ for (i = 0; i < size; i++) {
+ dp[i] &= sp[i];
+ }
+ if (s->blk_cur) {
+ result = blk_write(s->blk_cur, sec, dp, secn) < 0;
+ }
+ }
+ if (dp && s->blk_cur) {
+ g_free(dp);
+ }
+ }
+
+ return result;
+}
+
+static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
+ void *dest)
+{
+ uint8_t buf[512];
+
+ if (s->blk_cur) {
+ if (blk_read(s->blk_cur, s->secs_cur + (sec >> 5), buf, 1) < 0) {
+ return 1;
+ }
+ memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
+ } else if (sec + secn > s->secs_cur) {
+ return 1;
+ } else {
+ memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
+ }
+
+ return 0;
+}
+
+static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
+ void *src)
+{
+ int result = 0;
+ if (secn > 0) {
+ const uint8_t *sp = (const uint8_t *)src;
+ uint8_t *dp = 0, *dpp = 0;
+ if (s->blk_cur) {
+ dp = g_malloc(512);
+ if (!dp
+ || blk_read(s->blk_cur, s->secs_cur + (sec >> 5), dp, 1) < 0) {
+ result = 1;
+ } else {
+ dpp = dp + ((sec & 31) << 4);
+ }
+ } else {
+ if (sec + secn > s->secs_cur) {
+ result = 1;
+ } else {
+ dpp = s->current + (s->secs_cur << 9) + (sec << 4);
+ }
+ }
+ if (!result) {
+ uint32_t i;
+ for (i = 0; i < (secn << 4); i++) {
+ dpp[i] &= sp[i];
+ }
+ if (s->blk_cur) {
+ result = blk_write(s->blk_cur, s->secs_cur + (sec >> 5),
+ dp, 1) < 0;
+ }
+ }
+ g_free(dp);
+ }
+ return result;
+}
+
+static inline int onenand_erase(OneNANDState *s, int sec, int num)
+{
+ uint8_t *blankbuf, *tmpbuf;
+
+ blankbuf = g_malloc(512);
+ tmpbuf = g_malloc(512);
+ memset(blankbuf, 0xff, 512);
+ for (; num > 0; num--, sec++) {
+ if (s->blk_cur) {
+ int erasesec = s->secs_cur + (sec >> 5);
+ if (blk_write(s->blk_cur, sec, blankbuf, 1) < 0) {
+ goto fail;
+ }
+ if (blk_read(s->blk_cur, erasesec, tmpbuf, 1) < 0) {
+ goto fail;
+ }
+ memcpy(tmpbuf + ((sec & 31) << 4), blankbuf, 1 << 4);
+ if (blk_write(s->blk_cur, erasesec, tmpbuf, 1) < 0) {
+ goto fail;
+ }
+ } else {
+ if (sec + 1 > s->secs_cur) {
+ goto fail;
+ }
+ memcpy(s->current + (sec << 9), blankbuf, 512);
+ memcpy(s->current + (s->secs_cur << 9) + (sec << 4),
+ blankbuf, 1 << 4);
+ }
+ }
+
+ g_free(tmpbuf);
+ g_free(blankbuf);
+ return 0;
+
+fail:
+ g_free(tmpbuf);
+ g_free(blankbuf);
+ return 1;
+}
+
+static void onenand_command(OneNANDState *s)
+{
+ int b;
+ int sec;
+ void *buf;
+#define SETADDR(block, page) \
+ sec = (s->addr[page] & 3) + \
+ ((((s->addr[page] >> 2) & 0x3f) + \
+ (((s->addr[block] & 0xfff) | \
+ (s->addr[block] >> 15 ? \
+ s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
+#define SETBUF_M() \
+ buf = (s->bufaddr & 8) ? \
+ s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \
+ buf += (s->bufaddr & 3) << 9;
+#define SETBUF_S() \
+ buf = (s->bufaddr & 8) ? \
+ s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \
+ buf += (s->bufaddr & 3) << 4;
+
+ switch (s->command) {
+ case 0x00: /* Load single/multiple sector data unit into buffer */
+ SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
+
+ SETBUF_M()
+ if (onenand_load_main(s, sec, s->count, buf))
+ s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
+
+#if 0
+ SETBUF_S()
+ if (onenand_load_spare(s, sec, s->count, buf))
+ s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
+#endif
+
+ /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
+ * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
+ * then we need two split the read/write into two chunks.
+ */
+ s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
+ break;
+ case 0x13: /* Load single/multiple spare sector into buffer */
+ SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
+
+ SETBUF_S()
+ if (onenand_load_spare(s, sec, s->count, buf))
+ s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
+
+ /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
+ * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
+ * then we need two split the read/write into two chunks.
+ */
+ s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
+ break;
+ case 0x80: /* Program single/multiple sector data unit from buffer */
+ SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
+
+ SETBUF_M()
+ if (onenand_prog_main(s, sec, s->count, buf))
+ s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
+
+#if 0
+ SETBUF_S()
+ if (onenand_prog_spare(s, sec, s->count, buf))
+ s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
+#endif
+
+ /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
+ * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
+ * then we need two split the read/write into two chunks.
+ */
+ s->intstatus |= ONEN_INT | ONEN_INT_PROG;
+ break;
+ case 0x1a: /* Program single/multiple spare area sector from buffer */
+ SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
+
+ SETBUF_S()
+ if (onenand_prog_spare(s, sec, s->count, buf))
+ s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
+
+ /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
+ * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
+ * then we need two split the read/write into two chunks.
+ */
+ s->intstatus |= ONEN_INT | ONEN_INT_PROG;
+ break;
+ case 0x1b: /* Copy-back program */
+ SETBUF_S()
+
+ SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
+ if (onenand_load_main(s, sec, s->count, buf))
+ s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
+
+ SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
+ if (onenand_prog_main(s, sec, s->count, buf))
+ s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
+
+ /* TODO: spare areas */
+
+ s->intstatus |= ONEN_INT | ONEN_INT_PROG;
+ break;
+
+ case 0x23: /* Unlock NAND array block(s) */
+ s->intstatus |= ONEN_INT;
+
+ /* XXX the previous (?) area should be locked automatically */
+ for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
+ if (b >= s->blocks) {
+ s->status |= ONEN_ERR_CMD;
+ break;
+ }
+ if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
+ break;
+
+ s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
+ }
+ break;
+ case 0x27: /* Unlock All NAND array blocks */
+ s->intstatus |= ONEN_INT;
+
+ for (b = 0; b < s->blocks; b ++) {
+ if (b >= s->blocks) {
+ s->status |= ONEN_ERR_CMD;
+ break;
+ }
+ if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
+ break;
+
+ s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
+ }
+ break;
+
+ case 0x2a: /* Lock NAND array block(s) */
+ s->intstatus |= ONEN_INT;
+
+ for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
+ if (b >= s->blocks) {
+ s->status |= ONEN_ERR_CMD;
+ break;
+ }
+ if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
+ break;
+
+ s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
+ }
+ break;
+ case 0x2c: /* Lock-tight NAND array block(s) */
+ s->intstatus |= ONEN_INT;
+
+ for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
+ if (b >= s->blocks) {
+ s->status |= ONEN_ERR_CMD;
+ break;
+ }
+ if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
+ continue;
+
+ s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
+ }
+ break;
+
+ case 0x71: /* Erase-Verify-Read */
+ s->intstatus |= ONEN_INT;
+ break;
+ case 0x95: /* Multi-block erase */
+ qemu_irq_pulse(s->intr);
+ /* Fall through. */
+ case 0x94: /* Block erase */
+ sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
+ (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
+ << (BLOCK_SHIFT - 9);
+ if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
+ s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
+
+ s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
+ break;
+ case 0xb0: /* Erase suspend */
+ break;
+ case 0x30: /* Erase resume */
+ s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
+ break;
+
+ case 0xf0: /* Reset NAND Flash core */
+ onenand_reset(s, 0);
+ break;
+ case 0xf3: /* Reset OneNAND */
+ onenand_reset(s, 0);
+ break;
+
+ case 0x65: /* OTP Access */
+ s->intstatus |= ONEN_INT;
+ s->blk_cur = NULL;
+ s->current = s->otp;
+ s->secs_cur = 1 << (BLOCK_SHIFT - 9);
+ s->addr[ONEN_BUF_BLOCK] = 0;
+ s->otpmode = 1;
+ break;
+
+ default:
+ s->status |= ONEN_ERR_CMD;
+ s->intstatus |= ONEN_INT;
+ fprintf(stderr, "%s: unknown OneNAND command %x\n",
+ __func__, s->command);
+ }
+
+ onenand_intr_update(s);
+}
+
+static uint64_t onenand_read(void *opaque, hwaddr addr,
+ unsigned size)
+{
+ OneNANDState *s = (OneNANDState *) opaque;
+ int offset = addr >> s->shift;
+
+ switch (offset) {
+ case 0x0000 ... 0xc000:
+ return lduw_le_p(s->boot[0] + addr);
+
+ case 0xf000: /* Manufacturer ID */
+ return s->id.man;
+ case 0xf001: /* Device ID */
+ return s->id.dev;
+ case 0xf002: /* Version ID */
+ return s->id.ver;
+ /* TODO: get the following values from a real chip! */
+ case 0xf003: /* Data Buffer size */
+ return 1 << PAGE_SHIFT;
+ case 0xf004: /* Boot Buffer size */
+ return 0x200;
+ case 0xf005: /* Amount of buffers */
+ return 1 | (2 << 8);
+ case 0xf006: /* Technology */
+ return 0;
+
+ case 0xf100 ... 0xf107: /* Start addresses */
+ return s->addr[offset - 0xf100];
+
+ case 0xf200: /* Start buffer */
+ return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
+
+ case 0xf220: /* Command */
+ return s->command;
+ case 0xf221: /* System Configuration 1 */
+ return s->config[0] & 0xffe0;
+ case 0xf222: /* System Configuration 2 */
+ return s->config[1];
+
+ case 0xf240: /* Controller Status */
+ return s->status;
+ case 0xf241: /* Interrupt */
+ return s->intstatus;
+ case 0xf24c: /* Unlock Start Block Address */
+ return s->unladdr[0];
+ case 0xf24d: /* Unlock End Block Address */
+ return s->unladdr[1];
+ case 0xf24e: /* Write Protection Status */
+ return s->wpstatus;
+
+ case 0xff00: /* ECC Status */
+ return 0x00;
+ case 0xff01: /* ECC Result of main area data */
+ case 0xff02: /* ECC Result of spare area data */
+ case 0xff03: /* ECC Result of main area data */
+ case 0xff04: /* ECC Result of spare area data */
+ hw_error("%s: imeplement ECC\n", __FUNCTION__);
+ return 0x0000;
+ }
+
+ fprintf(stderr, "%s: unknown OneNAND register %x\n",
+ __FUNCTION__, offset);
+ return 0;
+}
+
+static void onenand_write(void *opaque, hwaddr addr,
+ uint64_t value, unsigned size)
+{
+ OneNANDState *s = (OneNANDState *) opaque;
+ int offset = addr >> s->shift;
+ int sec;
+
+ switch (offset) {
+ case 0x0000 ... 0x01ff:
+ case 0x8000 ... 0x800f:
+ if (s->cycle) {
+ s->cycle = 0;
+
+ if (value == 0x0000) {
+ SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
+ onenand_load_main(s, sec,
+ 1 << (PAGE_SHIFT - 9), s->data[0][0]);
+ s->addr[ONEN_BUF_PAGE] += 4;
+ s->addr[ONEN_BUF_PAGE] &= 0xff;
+ }
+ break;
+ }
+
+ switch (value) {
+ case 0x00f0: /* Reset OneNAND */
+ onenand_reset(s, 0);
+ break;
+
+ case 0x00e0: /* Load Data into Buffer */
+ s->cycle = 1;
+ break;
+
+ case 0x0090: /* Read Identification Data */
+ memset(s->boot[0], 0, 3 << s->shift);
+ s->boot[0][0 << s->shift] = s->id.man & 0xff;
+ s->boot[0][1 << s->shift] = s->id.dev & 0xff;
+ s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
+ break;
+
+ default:
+ fprintf(stderr, "%s: unknown OneNAND boot command %"PRIx64"\n",
+ __FUNCTION__, value);
+ }
+ break;
+
+ case 0xf100 ... 0xf107: /* Start addresses */
+ s->addr[offset - 0xf100] = value;
+ break;
+
+ case 0xf200: /* Start buffer */
+ s->bufaddr = (value >> 8) & 0xf;
+ if (PAGE_SHIFT == 11)
+ s->count = (value & 3) ?: 4;
+ else if (PAGE_SHIFT == 10)
+ s->count = (value & 1) ?: 2;
+ break;
+
+ case 0xf220: /* Command */
+ if (s->intstatus & (1 << 15))
+ break;
+ s->command = value;
+ onenand_command(s);
+ break;
+ case 0xf221: /* System Configuration 1 */
+ s->config[0] = value;
+ onenand_intr_update(s);
+ qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
+ break;
+ case 0xf222: /* System Configuration 2 */
+ s->config[1] = value;
+ break;
+
+ case 0xf241: /* Interrupt */
+ s->intstatus &= value;
+ if ((1 << 15) & ~s->intstatus)
+ s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
+ ONEN_ERR_PROG | ONEN_ERR_LOAD);
+ onenand_intr_update(s);
+ break;
+ case 0xf24c: /* Unlock Start Block Address */
+ s->unladdr[0] = value & (s->blocks - 1);
+ /* For some reason we have to set the end address to by default
+ * be same as start because the software forgets to write anything
+ * in there. */
+ s->unladdr[1] = value & (s->blocks - 1);
+ break;
+ case 0xf24d: /* Unlock End Block Address */
+ s->unladdr[1] = value & (s->blocks - 1);
+ break;
+
+ default:
+ fprintf(stderr, "%s: unknown OneNAND register %x\n",
+ __FUNCTION__, offset);
+ }
+}
+
+static const MemoryRegionOps onenand_ops = {
+ .read = onenand_read,
+ .write = onenand_write,
+ .endianness = DEVICE_NATIVE_ENDIAN,
+};
+
+static int onenand_initfn(SysBusDevice *sbd)
+{
+ DeviceState *dev = DEVICE(sbd);
+ OneNANDState *s = ONE_NAND(dev);
+ uint32_t size = 1 << (24 + ((s->id.dev >> 4) & 7));
+ void *ram;
+
+ s->base = (hwaddr)-1;
+ s->rdy = NULL;
+ s->blocks = size >> BLOCK_SHIFT;
+ s->secs = size >> 9;
+ s->blockwp = g_malloc(s->blocks);
+ s->density_mask = (s->id.dev & 0x08)
+ ? (1 << (6 + ((s->id.dev >> 4) & 7))) : 0;
+ memory_region_init_io(&s->iomem, OBJECT(s), &onenand_ops, s, "onenand",
+ 0x10000 << s->shift);
+ if (!s->blk) {
+ s->image = memset(g_malloc(size + (size >> 5)),
+ 0xff, size + (size >> 5));
+ } else {
+ if (blk_is_read_only(s->blk)) {
+ error_report("Can't use a read-only drive");
+ return -1;
+ }
+ s->blk_cur = s->blk;
+ }
+ s->otp = memset(g_malloc((64 + 2) << PAGE_SHIFT),
+ 0xff, (64 + 2) << PAGE_SHIFT);
+ memory_region_init_ram(&s->ram, OBJECT(s), "onenand.ram",
+ 0xc000 << s->shift, &error_fatal);
+ vmstate_register_ram_global(&s->ram);
+ ram = memory_region_get_ram_ptr(&s->ram);
+ s->boot[0] = ram + (0x0000 << s->shift);
+ s->boot[1] = ram + (0x8000 << s->shift);
+ s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
+ s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
+ s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
+ s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
+ onenand_mem_setup(s);
+ sysbus_init_irq(sbd, &s->intr);
+ sysbus_init_mmio(sbd, &s->container);
+ vmstate_register(dev,
+ ((s->shift & 0x7f) << 24)
+ | ((s->id.man & 0xff) << 16)
+ | ((s->id.dev & 0xff) << 8)
+ | (s->id.ver & 0xff),
+ &vmstate_onenand, s);
+ return 0;
+}
+
+static Property onenand_properties[] = {
+ DEFINE_PROP_UINT16("manufacturer_id", OneNANDState, id.man, 0),
+ DEFINE_PROP_UINT16("device_id", OneNANDState, id.dev, 0),
+ DEFINE_PROP_UINT16("version_id", OneNANDState, id.ver, 0),
+ DEFINE_PROP_INT32("shift", OneNANDState, shift, 0),
+ DEFINE_PROP_DRIVE("drive", OneNANDState, blk),
+ DEFINE_PROP_END_OF_LIST(),
+};
+
+static void onenand_class_init(ObjectClass *klass, void *data)
+{
+ DeviceClass *dc = DEVICE_CLASS(klass);
+ SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
+
+ k->init = onenand_initfn;
+ dc->reset = onenand_system_reset;
+ dc->props = onenand_properties;
+}
+
+static const TypeInfo onenand_info = {
+ .name = TYPE_ONE_NAND,
+ .parent = TYPE_SYS_BUS_DEVICE,
+ .instance_size = sizeof(OneNANDState),
+ .class_init = onenand_class_init,
+};
+
+static void onenand_register_types(void)
+{
+ type_register_static(&onenand_info);
+}
+
+void *onenand_raw_otp(DeviceState *onenand_device)
+{
+ OneNANDState *s = ONE_NAND(onenand_device);
+
+ return s->otp;
+}
+
+type_init(onenand_register_types)
OpenPOWER on IntegriCloud