summaryrefslogtreecommitdiffstats
path: root/src/cpus.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/cpus.c')
-rw-r--r--src/cpus.c1727
1 files changed, 1727 insertions, 0 deletions
diff --git a/src/cpus.c b/src/cpus.c
new file mode 100644
index 0000000..04da0ad
--- /dev/null
+++ b/src/cpus.c
@@ -0,0 +1,1727 @@
+/*
+ * QEMU System Emulator
+ *
+ * Copyright (c) 2003-2008 Fabrice Bellard
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+/* Needed early for CONFIG_BSD etc. */
+#include "config-host.h"
+
+#include "monitor/monitor.h"
+#include "qapi/qmp/qerror.h"
+#include "qemu/error-report.h"
+#include "sysemu/sysemu.h"
+#include "exec/gdbstub.h"
+#include "sysemu/dma.h"
+#include "sysemu/kvm.h"
+#include "qmp-commands.h"
+
+#include "qemu/thread.h"
+#include "sysemu/cpus.h"
+#include "sysemu/qtest.h"
+#include "qemu/main-loop.h"
+#include "qemu/bitmap.h"
+#include "qemu/seqlock.h"
+#include "qapi-event.h"
+#include "hw/nmi.h"
+#include "sysemu/replay.h"
+
+#ifndef _WIN32
+#include "qemu/compatfd.h"
+#endif
+
+#ifdef CONFIG_LINUX
+
+#include <sys/prctl.h>
+
+#ifndef PR_MCE_KILL
+#define PR_MCE_KILL 33
+#endif
+
+#ifndef PR_MCE_KILL_SET
+#define PR_MCE_KILL_SET 1
+#endif
+
+#ifndef PR_MCE_KILL_EARLY
+#define PR_MCE_KILL_EARLY 1
+#endif
+
+#endif /* CONFIG_LINUX */
+
+#include "tcg.h"
+#include "hqemu.h"
+
+static CPUState *next_cpu;
+int64_t max_delay;
+int64_t max_advance;
+
+/* vcpu throttling controls */
+static QEMUTimer *throttle_timer;
+static unsigned int throttle_percentage;
+
+#define CPU_THROTTLE_PCT_MIN 1
+#define CPU_THROTTLE_PCT_MAX 99
+#define CPU_THROTTLE_TIMESLICE_NS 10000000
+
+bool cpu_is_stopped(CPUState *cpu)
+{
+ return cpu->stopped || !runstate_is_running();
+}
+
+static bool cpu_thread_is_idle(CPUState *cpu)
+{
+ if (cpu->stop || cpu->queued_work_first) {
+ return false;
+ }
+ if (cpu_is_stopped(cpu)) {
+ return true;
+ }
+ if (!cpu->halted || cpu_has_work(cpu) ||
+ kvm_halt_in_kernel()) {
+ return false;
+ }
+ return true;
+}
+
+static bool all_cpu_threads_idle(void)
+{
+ CPUState *cpu;
+
+ CPU_FOREACH(cpu) {
+ if (!cpu_thread_is_idle(cpu)) {
+ return false;
+ }
+ }
+ return true;
+}
+
+/***********************************************************/
+/* guest cycle counter */
+
+/* Protected by TimersState seqlock */
+
+static bool icount_sleep = true;
+static int64_t vm_clock_warp_start = -1;
+/* Conversion factor from emulated instructions to virtual clock ticks. */
+static int icount_time_shift;
+/* Arbitrarily pick 1MIPS as the minimum allowable speed. */
+#define MAX_ICOUNT_SHIFT 10
+
+static QEMUTimer *icount_rt_timer;
+static QEMUTimer *icount_vm_timer;
+static QEMUTimer *icount_warp_timer;
+
+typedef struct TimersState {
+ /* Protected by BQL. */
+ int64_t cpu_ticks_prev;
+ int64_t cpu_ticks_offset;
+
+ /* cpu_clock_offset can be read out of BQL, so protect it with
+ * this lock.
+ */
+ QemuSeqLock vm_clock_seqlock;
+ int64_t cpu_clock_offset;
+ int32_t cpu_ticks_enabled;
+ int64_t dummy;
+
+ /* Compensate for varying guest execution speed. */
+ int64_t qemu_icount_bias;
+ /* Only written by TCG thread */
+ int64_t qemu_icount;
+} TimersState;
+
+static TimersState timers_state;
+
+int64_t cpu_get_icount_raw(void)
+{
+ int64_t icount;
+ CPUState *cpu = current_cpu;
+
+ icount = timers_state.qemu_icount;
+ if (cpu) {
+ if (!cpu->can_do_io) {
+ fprintf(stderr, "Bad icount read\n");
+ exit(1);
+ }
+ icount -= (cpu->icount_decr.u16.low + cpu->icount_extra);
+ }
+ return icount;
+}
+
+/* Return the virtual CPU time, based on the instruction counter. */
+static int64_t cpu_get_icount_locked(void)
+{
+ int64_t icount = cpu_get_icount_raw();
+ return timers_state.qemu_icount_bias + cpu_icount_to_ns(icount);
+}
+
+int64_t cpu_get_icount(void)
+{
+ int64_t icount;
+ unsigned start;
+
+ do {
+ start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
+ icount = cpu_get_icount_locked();
+ } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
+
+ return icount;
+}
+
+int64_t cpu_icount_to_ns(int64_t icount)
+{
+ return icount << icount_time_shift;
+}
+
+/* return the host CPU cycle counter and handle stop/restart */
+/* Caller must hold the BQL */
+int64_t cpu_get_ticks(void)
+{
+ int64_t ticks;
+
+ if (use_icount) {
+ return cpu_get_icount();
+ }
+
+ ticks = timers_state.cpu_ticks_offset;
+ if (timers_state.cpu_ticks_enabled) {
+ ticks += cpu_get_host_ticks();
+ }
+
+ if (timers_state.cpu_ticks_prev > ticks) {
+ /* Note: non increasing ticks may happen if the host uses
+ software suspend */
+ timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
+ ticks = timers_state.cpu_ticks_prev;
+ }
+
+ timers_state.cpu_ticks_prev = ticks;
+ return ticks;
+}
+
+static int64_t cpu_get_clock_locked(void)
+{
+ int64_t ticks;
+
+ ticks = timers_state.cpu_clock_offset;
+ if (timers_state.cpu_ticks_enabled) {
+ ticks += get_clock();
+ }
+
+ return ticks;
+}
+
+/* return the host CPU monotonic timer and handle stop/restart */
+int64_t cpu_get_clock(void)
+{
+ int64_t ti;
+ unsigned start;
+
+ do {
+ start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
+ ti = cpu_get_clock_locked();
+ } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
+
+ return ti;
+}
+
+/* enable cpu_get_ticks()
+ * Caller must hold BQL which server as mutex for vm_clock_seqlock.
+ */
+void cpu_enable_ticks(void)
+{
+ /* Here, the really thing protected by seqlock is cpu_clock_offset. */
+ seqlock_write_lock(&timers_state.vm_clock_seqlock);
+ if (!timers_state.cpu_ticks_enabled) {
+ timers_state.cpu_ticks_offset -= cpu_get_host_ticks();
+ timers_state.cpu_clock_offset -= get_clock();
+ timers_state.cpu_ticks_enabled = 1;
+ }
+ seqlock_write_unlock(&timers_state.vm_clock_seqlock);
+}
+
+/* disable cpu_get_ticks() : the clock is stopped. You must not call
+ * cpu_get_ticks() after that.
+ * Caller must hold BQL which server as mutex for vm_clock_seqlock.
+ */
+void cpu_disable_ticks(void)
+{
+ /* Here, the really thing protected by seqlock is cpu_clock_offset. */
+ seqlock_write_lock(&timers_state.vm_clock_seqlock);
+ if (timers_state.cpu_ticks_enabled) {
+ timers_state.cpu_ticks_offset += cpu_get_host_ticks();
+ timers_state.cpu_clock_offset = cpu_get_clock_locked();
+ timers_state.cpu_ticks_enabled = 0;
+ }
+ seqlock_write_unlock(&timers_state.vm_clock_seqlock);
+}
+
+/* Correlation between real and virtual time is always going to be
+ fairly approximate, so ignore small variation.
+ When the guest is idle real and virtual time will be aligned in
+ the IO wait loop. */
+#define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
+
+static void icount_adjust(void)
+{
+ int64_t cur_time;
+ int64_t cur_icount;
+ int64_t delta;
+
+ /* Protected by TimersState mutex. */
+ static int64_t last_delta;
+
+ /* If the VM is not running, then do nothing. */
+ if (!runstate_is_running()) {
+ return;
+ }
+
+ seqlock_write_lock(&timers_state.vm_clock_seqlock);
+ cur_time = cpu_get_clock_locked();
+ cur_icount = cpu_get_icount_locked();
+
+ delta = cur_icount - cur_time;
+ /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
+ if (delta > 0
+ && last_delta + ICOUNT_WOBBLE < delta * 2
+ && icount_time_shift > 0) {
+ /* The guest is getting too far ahead. Slow time down. */
+ icount_time_shift--;
+ }
+ if (delta < 0
+ && last_delta - ICOUNT_WOBBLE > delta * 2
+ && icount_time_shift < MAX_ICOUNT_SHIFT) {
+ /* The guest is getting too far behind. Speed time up. */
+ icount_time_shift++;
+ }
+ last_delta = delta;
+ timers_state.qemu_icount_bias = cur_icount
+ - (timers_state.qemu_icount << icount_time_shift);
+ seqlock_write_unlock(&timers_state.vm_clock_seqlock);
+}
+
+static void icount_adjust_rt(void *opaque)
+{
+ timer_mod(icount_rt_timer,
+ qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
+ icount_adjust();
+}
+
+static void icount_adjust_vm(void *opaque)
+{
+ timer_mod(icount_vm_timer,
+ qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
+ get_ticks_per_sec() / 10);
+ icount_adjust();
+}
+
+static int64_t qemu_icount_round(int64_t count)
+{
+ return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
+}
+
+static void icount_warp_rt(void)
+{
+ /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start
+ * changes from -1 to another value, so the race here is okay.
+ */
+ if (atomic_read(&vm_clock_warp_start) == -1) {
+ return;
+ }
+
+ seqlock_write_lock(&timers_state.vm_clock_seqlock);
+ if (runstate_is_running()) {
+ int64_t clock = REPLAY_CLOCK(REPLAY_CLOCK_VIRTUAL_RT,
+ cpu_get_clock_locked());
+ int64_t warp_delta;
+
+ warp_delta = clock - vm_clock_warp_start;
+ if (use_icount == 2) {
+ /*
+ * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
+ * far ahead of real time.
+ */
+ int64_t cur_icount = cpu_get_icount_locked();
+ int64_t delta = clock - cur_icount;
+ warp_delta = MIN(warp_delta, delta);
+ }
+ timers_state.qemu_icount_bias += warp_delta;
+ }
+ vm_clock_warp_start = -1;
+ seqlock_write_unlock(&timers_state.vm_clock_seqlock);
+
+ if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
+ qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
+ }
+}
+
+static void icount_dummy_timer(void *opaque)
+{
+ (void)opaque;
+}
+
+void qtest_clock_warp(int64_t dest)
+{
+ int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
+ AioContext *aio_context;
+ assert(qtest_enabled());
+ aio_context = qemu_get_aio_context();
+ while (clock < dest) {
+ int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
+ int64_t warp = qemu_soonest_timeout(dest - clock, deadline);
+
+ seqlock_write_lock(&timers_state.vm_clock_seqlock);
+ timers_state.qemu_icount_bias += warp;
+ seqlock_write_unlock(&timers_state.vm_clock_seqlock);
+
+ qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
+ timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]);
+ clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
+ }
+ qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
+}
+
+void qemu_clock_warp(QEMUClockType type)
+{
+ int64_t clock;
+ int64_t deadline;
+
+ /*
+ * There are too many global variables to make the "warp" behavior
+ * applicable to other clocks. But a clock argument removes the
+ * need for if statements all over the place.
+ */
+ if (type != QEMU_CLOCK_VIRTUAL || !use_icount) {
+ return;
+ }
+
+ /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
+ * do not fire, so computing the deadline does not make sense.
+ */
+ if (!runstate_is_running()) {
+ return;
+ }
+
+ /* warp clock deterministically in record/replay mode */
+ if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP)) {
+ return;
+ }
+
+ if (icount_sleep) {
+ /*
+ * If the CPUs have been sleeping, advance QEMU_CLOCK_VIRTUAL timer now.
+ * This ensures that the deadline for the timer is computed correctly
+ * below.
+ * This also makes sure that the insn counter is synchronized before
+ * the CPU starts running, in case the CPU is woken by an event other
+ * than the earliest QEMU_CLOCK_VIRTUAL timer.
+ */
+ icount_warp_rt();
+ timer_del(icount_warp_timer);
+ }
+ if (!all_cpu_threads_idle()) {
+ return;
+ }
+
+ if (qtest_enabled()) {
+ /* When testing, qtest commands advance icount. */
+ return;
+ }
+
+ /* We want to use the earliest deadline from ALL vm_clocks */
+ clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
+ deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
+ if (deadline < 0) {
+ static bool notified;
+ if (!icount_sleep && !notified) {
+ error_report("WARNING: icount sleep disabled and no active timers");
+ notified = true;
+ }
+ return;
+ }
+
+ if (deadline > 0) {
+ /*
+ * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
+ * sleep. Otherwise, the CPU might be waiting for a future timer
+ * interrupt to wake it up, but the interrupt never comes because
+ * the vCPU isn't running any insns and thus doesn't advance the
+ * QEMU_CLOCK_VIRTUAL.
+ */
+ if (!icount_sleep) {
+ /*
+ * We never let VCPUs sleep in no sleep icount mode.
+ * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
+ * to the next QEMU_CLOCK_VIRTUAL event and notify it.
+ * It is useful when we want a deterministic execution time,
+ * isolated from host latencies.
+ */
+ seqlock_write_lock(&timers_state.vm_clock_seqlock);
+ timers_state.qemu_icount_bias += deadline;
+ seqlock_write_unlock(&timers_state.vm_clock_seqlock);
+ qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
+ } else {
+ /*
+ * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
+ * "real" time, (related to the time left until the next event) has
+ * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
+ * This avoids that the warps are visible externally; for example,
+ * you will not be sending network packets continuously instead of
+ * every 100ms.
+ */
+ seqlock_write_lock(&timers_state.vm_clock_seqlock);
+ if (vm_clock_warp_start == -1 || vm_clock_warp_start > clock) {
+ vm_clock_warp_start = clock;
+ }
+ seqlock_write_unlock(&timers_state.vm_clock_seqlock);
+ timer_mod_anticipate(icount_warp_timer, clock + deadline);
+ }
+ } else if (deadline == 0) {
+ qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
+ }
+}
+
+static bool icount_state_needed(void *opaque)
+{
+ return use_icount;
+}
+
+/*
+ * This is a subsection for icount migration.
+ */
+static const VMStateDescription icount_vmstate_timers = {
+ .name = "timer/icount",
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .needed = icount_state_needed,
+ .fields = (VMStateField[]) {
+ VMSTATE_INT64(qemu_icount_bias, TimersState),
+ VMSTATE_INT64(qemu_icount, TimersState),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
+static const VMStateDescription vmstate_timers = {
+ .name = "timer",
+ .version_id = 2,
+ .minimum_version_id = 1,
+ .fields = (VMStateField[]) {
+ VMSTATE_INT64(cpu_ticks_offset, TimersState),
+ VMSTATE_INT64(dummy, TimersState),
+ VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
+ VMSTATE_END_OF_LIST()
+ },
+ .subsections = (const VMStateDescription*[]) {
+ &icount_vmstate_timers,
+ NULL
+ }
+};
+
+static void cpu_throttle_thread(void *opaque)
+{
+ CPUState *cpu = opaque;
+ double pct;
+ double throttle_ratio;
+ long sleeptime_ns;
+
+ if (!cpu_throttle_get_percentage()) {
+ return;
+ }
+
+ pct = (double)cpu_throttle_get_percentage()/100;
+ throttle_ratio = pct / (1 - pct);
+ sleeptime_ns = (long)(throttle_ratio * CPU_THROTTLE_TIMESLICE_NS);
+
+ qemu_mutex_unlock_iothread();
+ atomic_set(&cpu->throttle_thread_scheduled, 0);
+ g_usleep(sleeptime_ns / 1000); /* Convert ns to us for usleep call */
+ qemu_mutex_lock_iothread();
+}
+
+static void cpu_throttle_timer_tick(void *opaque)
+{
+ CPUState *cpu;
+ double pct;
+
+ /* Stop the timer if needed */
+ if (!cpu_throttle_get_percentage()) {
+ return;
+ }
+ CPU_FOREACH(cpu) {
+ if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) {
+ async_run_on_cpu(cpu, cpu_throttle_thread, cpu);
+ }
+ }
+
+ pct = (double)cpu_throttle_get_percentage()/100;
+ timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
+ CPU_THROTTLE_TIMESLICE_NS / (1-pct));
+}
+
+void cpu_throttle_set(int new_throttle_pct)
+{
+ /* Ensure throttle percentage is within valid range */
+ new_throttle_pct = MIN(new_throttle_pct, CPU_THROTTLE_PCT_MAX);
+ new_throttle_pct = MAX(new_throttle_pct, CPU_THROTTLE_PCT_MIN);
+
+ atomic_set(&throttle_percentage, new_throttle_pct);
+
+ timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
+ CPU_THROTTLE_TIMESLICE_NS);
+}
+
+void cpu_throttle_stop(void)
+{
+ atomic_set(&throttle_percentage, 0);
+}
+
+bool cpu_throttle_active(void)
+{
+ return (cpu_throttle_get_percentage() != 0);
+}
+
+int cpu_throttle_get_percentage(void)
+{
+ return atomic_read(&throttle_percentage);
+}
+
+void cpu_ticks_init(void)
+{
+ seqlock_init(&timers_state.vm_clock_seqlock, NULL);
+ vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
+ throttle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
+ cpu_throttle_timer_tick, NULL);
+}
+
+void configure_icount(QemuOpts *opts, Error **errp)
+{
+ const char *option;
+ char *rem_str = NULL;
+
+ option = qemu_opt_get(opts, "shift");
+ if (!option) {
+ if (qemu_opt_get(opts, "align") != NULL) {
+ error_setg(errp, "Please specify shift option when using align");
+ }
+ return;
+ }
+
+ icount_sleep = qemu_opt_get_bool(opts, "sleep", true);
+ if (icount_sleep) {
+ icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
+ icount_dummy_timer, NULL);
+ }
+
+ icount_align_option = qemu_opt_get_bool(opts, "align", false);
+
+ if (icount_align_option && !icount_sleep) {
+ error_setg(errp, "align=on and sleep=no are incompatible");
+ }
+ if (strcmp(option, "auto") != 0) {
+ errno = 0;
+ icount_time_shift = strtol(option, &rem_str, 0);
+ if (errno != 0 || *rem_str != '\0' || !strlen(option)) {
+ error_setg(errp, "icount: Invalid shift value");
+ }
+ use_icount = 1;
+ return;
+ } else if (icount_align_option) {
+ error_setg(errp, "shift=auto and align=on are incompatible");
+ } else if (!icount_sleep) {
+ error_setg(errp, "shift=auto and sleep=no are incompatible");
+ }
+
+ use_icount = 2;
+
+ /* 125MIPS seems a reasonable initial guess at the guest speed.
+ It will be corrected fairly quickly anyway. */
+ icount_time_shift = 3;
+
+ /* Have both realtime and virtual time triggers for speed adjustment.
+ The realtime trigger catches emulated time passing too slowly,
+ the virtual time trigger catches emulated time passing too fast.
+ Realtime triggers occur even when idle, so use them less frequently
+ than VM triggers. */
+ icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
+ icount_adjust_rt, NULL);
+ timer_mod(icount_rt_timer,
+ qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
+ icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
+ icount_adjust_vm, NULL);
+ timer_mod(icount_vm_timer,
+ qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
+ get_ticks_per_sec() / 10);
+}
+
+/***********************************************************/
+void hw_error(const char *fmt, ...)
+{
+ va_list ap;
+ CPUState *cpu;
+
+ va_start(ap, fmt);
+ fprintf(stderr, "qemu: hardware error: ");
+ vfprintf(stderr, fmt, ap);
+ fprintf(stderr, "\n");
+ CPU_FOREACH(cpu) {
+ fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
+ cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU);
+ }
+ va_end(ap);
+ abort();
+}
+
+void cpu_synchronize_all_states(void)
+{
+ CPUState *cpu;
+
+ CPU_FOREACH(cpu) {
+ cpu_synchronize_state(cpu);
+ }
+}
+
+void cpu_synchronize_all_post_reset(void)
+{
+ CPUState *cpu;
+
+ CPU_FOREACH(cpu) {
+ cpu_synchronize_post_reset(cpu);
+ }
+}
+
+void cpu_synchronize_all_post_init(void)
+{
+ CPUState *cpu;
+
+ CPU_FOREACH(cpu) {
+ cpu_synchronize_post_init(cpu);
+ }
+}
+
+static int do_vm_stop(RunState state)
+{
+ int ret = 0;
+
+ if (runstate_is_running()) {
+ cpu_disable_ticks();
+ pause_all_vcpus();
+ runstate_set(state);
+ vm_state_notify(0, state);
+ qapi_event_send_stop(&error_abort);
+ }
+
+ bdrv_drain_all();
+ ret = bdrv_flush_all();
+
+ return ret;
+}
+
+static bool cpu_can_run(CPUState *cpu)
+{
+ if (cpu->stop) {
+ return false;
+ }
+ if (cpu_is_stopped(cpu)) {
+ return false;
+ }
+ return true;
+}
+
+static void cpu_handle_guest_debug(CPUState *cpu)
+{
+ gdb_set_stop_cpu(cpu);
+ qemu_system_debug_request();
+ cpu->stopped = true;
+}
+
+#ifdef CONFIG_LINUX
+static void sigbus_reraise(void)
+{
+ sigset_t set;
+ struct sigaction action;
+
+ memset(&action, 0, sizeof(action));
+ action.sa_handler = SIG_DFL;
+ if (!sigaction(SIGBUS, &action, NULL)) {
+ raise(SIGBUS);
+ sigemptyset(&set);
+ sigaddset(&set, SIGBUS);
+ sigprocmask(SIG_UNBLOCK, &set, NULL);
+ }
+ perror("Failed to re-raise SIGBUS!\n");
+ abort();
+}
+
+static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
+ void *ctx)
+{
+ if (kvm_on_sigbus(siginfo->ssi_code,
+ (void *)(intptr_t)siginfo->ssi_addr)) {
+ sigbus_reraise();
+ }
+}
+
+static void qemu_init_sigbus(void)
+{
+ struct sigaction action;
+
+ memset(&action, 0, sizeof(action));
+ action.sa_flags = SA_SIGINFO;
+ action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
+ sigaction(SIGBUS, &action, NULL);
+
+ prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
+}
+
+static void qemu_kvm_eat_signals(CPUState *cpu)
+{
+ struct timespec ts = { 0, 0 };
+ siginfo_t siginfo;
+ sigset_t waitset;
+ sigset_t chkset;
+ int r;
+
+ sigemptyset(&waitset);
+ sigaddset(&waitset, SIG_IPI);
+ sigaddset(&waitset, SIGBUS);
+
+ do {
+ r = sigtimedwait(&waitset, &siginfo, &ts);
+ if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
+ perror("sigtimedwait");
+ exit(1);
+ }
+
+ switch (r) {
+ case SIGBUS:
+ if (kvm_on_sigbus_vcpu(cpu, siginfo.si_code, siginfo.si_addr)) {
+ sigbus_reraise();
+ }
+ break;
+ default:
+ break;
+ }
+
+ r = sigpending(&chkset);
+ if (r == -1) {
+ perror("sigpending");
+ exit(1);
+ }
+ } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
+}
+
+#else /* !CONFIG_LINUX */
+
+static void qemu_init_sigbus(void)
+{
+}
+
+static void qemu_kvm_eat_signals(CPUState *cpu)
+{
+}
+#endif /* !CONFIG_LINUX */
+
+#ifndef _WIN32
+static void dummy_signal(int sig)
+{
+}
+
+static void qemu_kvm_init_cpu_signals(CPUState *cpu)
+{
+ int r;
+ sigset_t set;
+ struct sigaction sigact;
+
+ memset(&sigact, 0, sizeof(sigact));
+ sigact.sa_handler = dummy_signal;
+ sigaction(SIG_IPI, &sigact, NULL);
+
+ pthread_sigmask(SIG_BLOCK, NULL, &set);
+ sigdelset(&set, SIG_IPI);
+ sigdelset(&set, SIGBUS);
+ r = kvm_set_signal_mask(cpu, &set);
+ if (r) {
+ fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
+ exit(1);
+ }
+}
+
+#else /* _WIN32 */
+static void qemu_kvm_init_cpu_signals(CPUState *cpu)
+{
+ abort();
+}
+#endif /* _WIN32 */
+
+static QemuMutex qemu_global_mutex;
+static QemuCond qemu_io_proceeded_cond;
+static unsigned iothread_requesting_mutex;
+
+static QemuThread io_thread;
+
+/* cpu creation */
+static QemuCond qemu_cpu_cond;
+/* system init */
+static QemuCond qemu_pause_cond;
+static QemuCond qemu_work_cond;
+
+void qemu_init_cpu_loop(void)
+{
+ qemu_init_sigbus();
+ qemu_cond_init(&qemu_cpu_cond);
+ qemu_cond_init(&qemu_pause_cond);
+ qemu_cond_init(&qemu_work_cond);
+ qemu_cond_init(&qemu_io_proceeded_cond);
+ qemu_mutex_init(&qemu_global_mutex);
+
+ qemu_thread_get_self(&io_thread);
+}
+
+void qemu_end_cpu_loop(void)
+{
+ CPUState *cpu;
+
+ CPU_FOREACH(cpu)
+ optimization_finalize(cpu->env_ptr);
+
+#if defined(CONFIG_LLVM)
+ llvm_finalize();
+#endif
+}
+
+void run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data)
+{
+ struct qemu_work_item wi;
+
+ if (qemu_cpu_is_self(cpu)) {
+ func(data);
+ return;
+ }
+
+ wi.func = func;
+ wi.data = data;
+ wi.free = false;
+
+ qemu_mutex_lock(&cpu->work_mutex);
+ if (cpu->queued_work_first == NULL) {
+ cpu->queued_work_first = &wi;
+ } else {
+ cpu->queued_work_last->next = &wi;
+ }
+ cpu->queued_work_last = &wi;
+ wi.next = NULL;
+ wi.done = false;
+ qemu_mutex_unlock(&cpu->work_mutex);
+
+ qemu_cpu_kick(cpu);
+ while (!atomic_mb_read(&wi.done)) {
+ CPUState *self_cpu = current_cpu;
+
+ qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
+ current_cpu = self_cpu;
+ }
+}
+
+void async_run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data)
+{
+ struct qemu_work_item *wi;
+
+ if (qemu_cpu_is_self(cpu)) {
+ func(data);
+ return;
+ }
+
+ wi = g_malloc0(sizeof(struct qemu_work_item));
+ wi->func = func;
+ wi->data = data;
+ wi->free = true;
+
+ qemu_mutex_lock(&cpu->work_mutex);
+ if (cpu->queued_work_first == NULL) {
+ cpu->queued_work_first = wi;
+ } else {
+ cpu->queued_work_last->next = wi;
+ }
+ cpu->queued_work_last = wi;
+ wi->next = NULL;
+ wi->done = false;
+ qemu_mutex_unlock(&cpu->work_mutex);
+
+ qemu_cpu_kick(cpu);
+}
+
+static void flush_queued_work(CPUState *cpu)
+{
+ struct qemu_work_item *wi;
+
+ if (cpu->queued_work_first == NULL) {
+ return;
+ }
+
+ qemu_mutex_lock(&cpu->work_mutex);
+ while (cpu->queued_work_first != NULL) {
+ wi = cpu->queued_work_first;
+ cpu->queued_work_first = wi->next;
+ if (!cpu->queued_work_first) {
+ cpu->queued_work_last = NULL;
+ }
+ qemu_mutex_unlock(&cpu->work_mutex);
+ wi->func(wi->data);
+ qemu_mutex_lock(&cpu->work_mutex);
+ if (wi->free) {
+ g_free(wi);
+ } else {
+ atomic_mb_set(&wi->done, true);
+ }
+ }
+ qemu_mutex_unlock(&cpu->work_mutex);
+ qemu_cond_broadcast(&qemu_work_cond);
+}
+
+static void qemu_wait_io_event_common(CPUState *cpu)
+{
+ if (cpu->stop) {
+ cpu->stop = false;
+ cpu->stopped = true;
+ qemu_cond_broadcast(&qemu_pause_cond);
+ }
+ flush_queued_work(cpu);
+ cpu->thread_kicked = false;
+}
+
+static void qemu_tcg_wait_io_event(CPUState *cpu)
+{
+ while (all_cpu_threads_idle()) {
+ /* Start accounting real time to the virtual clock if the CPUs
+ are idle. */
+ qemu_clock_warp(QEMU_CLOCK_VIRTUAL);
+ qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
+ }
+
+ while (iothread_requesting_mutex) {
+ qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
+ }
+
+ CPU_FOREACH(cpu) {
+ qemu_wait_io_event_common(cpu);
+ }
+}
+
+static void qemu_kvm_wait_io_event(CPUState *cpu)
+{
+ while (cpu_thread_is_idle(cpu)) {
+ qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
+ }
+
+ qemu_kvm_eat_signals(cpu);
+ qemu_wait_io_event_common(cpu);
+}
+
+static void *qemu_kvm_cpu_thread_fn(void *arg)
+{
+ CPUState *cpu = arg;
+ int r;
+
+ rcu_register_thread();
+
+ qemu_mutex_lock_iothread();
+ qemu_thread_get_self(cpu->thread);
+ cpu->thread_id = qemu_get_thread_id();
+ cpu->can_do_io = 1;
+ current_cpu = cpu;
+
+ r = kvm_init_vcpu(cpu);
+ if (r < 0) {
+ fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
+ exit(1);
+ }
+
+ qemu_kvm_init_cpu_signals(cpu);
+
+ /* signal CPU creation */
+ cpu->created = true;
+ qemu_cond_signal(&qemu_cpu_cond);
+
+ while (1) {
+ if (cpu_can_run(cpu)) {
+ r = kvm_cpu_exec(cpu);
+ if (r == EXCP_DEBUG) {
+ cpu_handle_guest_debug(cpu);
+ }
+ }
+ qemu_kvm_wait_io_event(cpu);
+ }
+
+ return NULL;
+}
+
+static void *qemu_dummy_cpu_thread_fn(void *arg)
+{
+#ifdef _WIN32
+ fprintf(stderr, "qtest is not supported under Windows\n");
+ exit(1);
+#else
+ CPUState *cpu = arg;
+ sigset_t waitset;
+ int r;
+
+ rcu_register_thread();
+
+ qemu_mutex_lock_iothread();
+ qemu_thread_get_self(cpu->thread);
+ cpu->thread_id = qemu_get_thread_id();
+ cpu->can_do_io = 1;
+
+ sigemptyset(&waitset);
+ sigaddset(&waitset, SIG_IPI);
+
+ /* signal CPU creation */
+ cpu->created = true;
+ qemu_cond_signal(&qemu_cpu_cond);
+
+ current_cpu = cpu;
+ while (1) {
+ current_cpu = NULL;
+ qemu_mutex_unlock_iothread();
+ do {
+ int sig;
+ r = sigwait(&waitset, &sig);
+ } while (r == -1 && (errno == EAGAIN || errno == EINTR));
+ if (r == -1) {
+ perror("sigwait");
+ exit(1);
+ }
+ qemu_mutex_lock_iothread();
+ current_cpu = cpu;
+ qemu_wait_io_event_common(cpu);
+ }
+
+ return NULL;
+#endif
+}
+
+static void tcg_exec_all(void);
+
+static void *qemu_tcg_cpu_thread_fn(void *arg)
+{
+ CPUState *cpu = arg;
+
+ rcu_register_thread();
+
+ qemu_mutex_lock_iothread();
+ qemu_thread_get_self(cpu->thread);
+
+ CPU_FOREACH(cpu) {
+ cpu->thread_id = qemu_get_thread_id();
+ cpu->created = true;
+ cpu->can_do_io = 1;
+ }
+ qemu_cond_signal(&qemu_cpu_cond);
+
+ /* wait for initial kick-off after machine start */
+ while (first_cpu->stopped) {
+ qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex);
+
+ /* process any pending work */
+ CPU_FOREACH(cpu) {
+ qemu_wait_io_event_common(cpu);
+ }
+ }
+
+ /* process any pending work */
+ atomic_mb_set(&exit_request, 1);
+
+#if defined(CONFIG_LLVM)
+ llvm_init();
+#endif
+ /* we can safely initialize optimization resources after
+ * the setup of CPUArchState is completed. */
+ CPU_FOREACH(cpu) {
+ copy_tcg_context();
+ optimization_init(cpu->env_ptr);
+ }
+
+ while (1) {
+ tcg_exec_all();
+
+ if (use_icount) {
+ int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
+
+ if (deadline == 0) {
+ qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
+ }
+ }
+ qemu_tcg_wait_io_event(QTAILQ_FIRST(&cpus));
+ }
+
+ return NULL;
+}
+
+static void qemu_cpu_kick_thread(CPUState *cpu)
+{
+#ifndef _WIN32
+ int err;
+
+ if (cpu->thread_kicked) {
+ return;
+ }
+ cpu->thread_kicked = true;
+ err = pthread_kill(cpu->thread->thread, SIG_IPI);
+ if (err) {
+ fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
+ exit(1);
+ }
+#else /* _WIN32 */
+ abort();
+#endif
+}
+
+static void qemu_cpu_kick_no_halt(void)
+{
+ CPUState *cpu;
+ /* Ensure whatever caused the exit has reached the CPU threads before
+ * writing exit_request.
+ */
+ atomic_mb_set(&exit_request, 1);
+ cpu = atomic_mb_read(&tcg_current_cpu);
+ if (cpu) {
+ cpu_exit(cpu);
+ }
+}
+
+void qemu_cpu_kick(CPUState *cpu)
+{
+ qemu_cond_broadcast(cpu->halt_cond);
+ if (tcg_enabled()) {
+ qemu_cpu_kick_no_halt();
+ } else {
+ qemu_cpu_kick_thread(cpu);
+ }
+}
+
+void qemu_cpu_kick_self(void)
+{
+ assert(current_cpu);
+ qemu_cpu_kick_thread(current_cpu);
+}
+
+bool qemu_cpu_is_self(CPUState *cpu)
+{
+ return qemu_thread_is_self(cpu->thread);
+}
+
+bool qemu_in_vcpu_thread(void)
+{
+ return current_cpu && qemu_cpu_is_self(current_cpu);
+}
+
+static __thread bool iothread_locked = false;
+
+bool qemu_mutex_iothread_locked(void)
+{
+ return iothread_locked;
+}
+
+void qemu_mutex_lock_iothread(void)
+{
+ atomic_inc(&iothread_requesting_mutex);
+ /* In the simple case there is no need to bump the VCPU thread out of
+ * TCG code execution.
+ */
+ if (!tcg_enabled() || qemu_in_vcpu_thread() ||
+ !first_cpu || !first_cpu->created) {
+ qemu_mutex_lock(&qemu_global_mutex);
+ atomic_dec(&iothread_requesting_mutex);
+ } else {
+ if (qemu_mutex_trylock(&qemu_global_mutex)) {
+ qemu_cpu_kick_no_halt();
+ qemu_mutex_lock(&qemu_global_mutex);
+ }
+ atomic_dec(&iothread_requesting_mutex);
+ qemu_cond_broadcast(&qemu_io_proceeded_cond);
+ }
+ iothread_locked = true;
+}
+
+void qemu_mutex_unlock_iothread(void)
+{
+ iothread_locked = false;
+ qemu_mutex_unlock(&qemu_global_mutex);
+}
+
+static int all_vcpus_paused(void)
+{
+ CPUState *cpu;
+
+ CPU_FOREACH(cpu) {
+ if (!cpu->stopped) {
+ return 0;
+ }
+ }
+
+ return 1;
+}
+
+void pause_all_vcpus(void)
+{
+ CPUState *cpu;
+
+ qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false);
+ CPU_FOREACH(cpu) {
+ cpu->stop = true;
+ qemu_cpu_kick(cpu);
+ }
+
+ if (qemu_in_vcpu_thread()) {
+ cpu_stop_current();
+ if (!kvm_enabled()) {
+ CPU_FOREACH(cpu) {
+ cpu->stop = false;
+ cpu->stopped = true;
+ }
+ return;
+ }
+ }
+
+ while (!all_vcpus_paused()) {
+ qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
+ CPU_FOREACH(cpu) {
+ qemu_cpu_kick(cpu);
+ }
+ }
+}
+
+void cpu_resume(CPUState *cpu)
+{
+ cpu->stop = false;
+ cpu->stopped = false;
+ qemu_cpu_kick(cpu);
+}
+
+void resume_all_vcpus(void)
+{
+ CPUState *cpu;
+
+ qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
+ CPU_FOREACH(cpu) {
+ cpu_resume(cpu);
+ }
+}
+
+/* For temporary buffers for forming a name */
+#define VCPU_THREAD_NAME_SIZE 16
+
+static void qemu_tcg_init_vcpu(CPUState *cpu)
+{
+ char thread_name[VCPU_THREAD_NAME_SIZE];
+ static QemuCond *tcg_halt_cond;
+ static QemuThread *tcg_cpu_thread;
+
+ tcg_cpu_address_space_init(cpu, cpu->as);
+
+ /* share a single thread for all cpus with TCG */
+ if (!tcg_cpu_thread) {
+ cpu->thread = g_malloc0(sizeof(QemuThread));
+ cpu->halt_cond = g_malloc0(sizeof(QemuCond));
+ qemu_cond_init(cpu->halt_cond);
+ tcg_halt_cond = cpu->halt_cond;
+ snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG",
+ cpu->cpu_index);
+ qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn,
+ cpu, QEMU_THREAD_JOINABLE);
+#ifdef _WIN32
+ cpu->hThread = qemu_thread_get_handle(cpu->thread);
+#endif
+ while (!cpu->created) {
+ qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
+ }
+ tcg_cpu_thread = cpu->thread;
+ } else {
+ cpu->thread = tcg_cpu_thread;
+ cpu->halt_cond = tcg_halt_cond;
+ }
+}
+
+static void qemu_kvm_start_vcpu(CPUState *cpu)
+{
+ char thread_name[VCPU_THREAD_NAME_SIZE];
+
+ cpu->thread = g_malloc0(sizeof(QemuThread));
+ cpu->halt_cond = g_malloc0(sizeof(QemuCond));
+ qemu_cond_init(cpu->halt_cond);
+ snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM",
+ cpu->cpu_index);
+ qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn,
+ cpu, QEMU_THREAD_JOINABLE);
+ while (!cpu->created) {
+ qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
+ }
+}
+
+static void qemu_dummy_start_vcpu(CPUState *cpu)
+{
+ char thread_name[VCPU_THREAD_NAME_SIZE];
+
+ cpu->thread = g_malloc0(sizeof(QemuThread));
+ cpu->halt_cond = g_malloc0(sizeof(QemuCond));
+ qemu_cond_init(cpu->halt_cond);
+ snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY",
+ cpu->cpu_index);
+ qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu,
+ QEMU_THREAD_JOINABLE);
+ while (!cpu->created) {
+ qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
+ }
+}
+
+void qemu_init_vcpu(CPUState *cpu)
+{
+ cpu->nr_cores = smp_cores;
+ cpu->nr_threads = smp_threads;
+ cpu->stopped = true;
+ if (kvm_enabled()) {
+ qemu_kvm_start_vcpu(cpu);
+ } else if (tcg_enabled()) {
+ qemu_tcg_init_vcpu(cpu);
+ } else {
+ qemu_dummy_start_vcpu(cpu);
+ }
+}
+
+void cpu_stop_current(void)
+{
+ if (current_cpu) {
+ current_cpu->stop = false;
+ current_cpu->stopped = true;
+ cpu_exit(current_cpu);
+ qemu_cond_broadcast(&qemu_pause_cond);
+ }
+}
+
+int vm_stop(RunState state)
+{
+ if (qemu_in_vcpu_thread()) {
+ qemu_system_vmstop_request_prepare();
+ qemu_system_vmstop_request(state);
+ /*
+ * FIXME: should not return to device code in case
+ * vm_stop() has been requested.
+ */
+ cpu_stop_current();
+ return 0;
+ }
+
+ return do_vm_stop(state);
+}
+
+/* does a state transition even if the VM is already stopped,
+ current state is forgotten forever */
+int vm_stop_force_state(RunState state)
+{
+ if (runstate_is_running()) {
+ return vm_stop(state);
+ } else {
+ runstate_set(state);
+
+ bdrv_drain_all();
+ /* Make sure to return an error if the flush in a previous vm_stop()
+ * failed. */
+ return bdrv_flush_all();
+ }
+}
+
+static int64_t tcg_get_icount_limit(void)
+{
+ int64_t deadline;
+
+ if (replay_mode != REPLAY_MODE_PLAY) {
+ deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
+
+ /* Maintain prior (possibly buggy) behaviour where if no deadline
+ * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
+ * INT32_MAX nanoseconds ahead, we still use INT32_MAX
+ * nanoseconds.
+ */
+ if ((deadline < 0) || (deadline > INT32_MAX)) {
+ deadline = INT32_MAX;
+ }
+
+ return qemu_icount_round(deadline);
+ } else {
+ return replay_get_instructions();
+ }
+}
+
+static int tcg_cpu_exec(CPUState *cpu)
+{
+ int ret;
+#ifdef CONFIG_PROFILER
+ int64_t ti;
+#endif
+
+#ifdef CONFIG_PROFILER
+ ti = profile_getclock();
+#endif
+ if (use_icount) {
+ int64_t count;
+ int decr;
+ timers_state.qemu_icount -= (cpu->icount_decr.u16.low
+ + cpu->icount_extra);
+ cpu->icount_decr.u16.low = 0;
+ cpu->icount_extra = 0;
+ count = tcg_get_icount_limit();
+ timers_state.qemu_icount += count;
+ decr = (count > 0xffff) ? 0xffff : count;
+ count -= decr;
+ cpu->icount_decr.u16.low = decr;
+ cpu->icount_extra = count;
+ }
+ ret = cpu_exec(cpu);
+#ifdef CONFIG_PROFILER
+ tcg_time += profile_getclock() - ti;
+#endif
+ if (use_icount) {
+ /* Fold pending instructions back into the
+ instruction counter, and clear the interrupt flag. */
+ timers_state.qemu_icount -= (cpu->icount_decr.u16.low
+ + cpu->icount_extra);
+ cpu->icount_decr.u32 = 0;
+ cpu->icount_extra = 0;
+ replay_account_executed_instructions();
+ }
+ return ret;
+}
+
+static void tcg_exec_all(void)
+{
+ int r;
+
+ /* Account partial waits to QEMU_CLOCK_VIRTUAL. */
+ qemu_clock_warp(QEMU_CLOCK_VIRTUAL);
+
+ if (next_cpu == NULL) {
+ next_cpu = first_cpu;
+ }
+ for (; next_cpu != NULL && !exit_request; next_cpu = CPU_NEXT(next_cpu)) {
+ CPUState *cpu = next_cpu;
+
+ qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
+ (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
+
+ if (cpu_can_run(cpu)) {
+ r = tcg_cpu_exec(cpu);
+ if (r == EXCP_DEBUG) {
+ cpu_handle_guest_debug(cpu);
+ break;
+ }
+ } else if (cpu->stop || cpu->stopped) {
+ break;
+ }
+ }
+
+ /* Pairs with smp_wmb in qemu_cpu_kick. */
+ atomic_mb_set(&exit_request, 0);
+}
+
+void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
+{
+ /* XXX: implement xxx_cpu_list for targets that still miss it */
+#if defined(cpu_list)
+ cpu_list(f, cpu_fprintf);
+#endif
+}
+
+CpuInfoList *qmp_query_cpus(Error **errp)
+{
+ CpuInfoList *head = NULL, *cur_item = NULL;
+ CPUState *cpu;
+
+ CPU_FOREACH(cpu) {
+ CpuInfoList *info;
+#if defined(TARGET_I386)
+ X86CPU *x86_cpu = X86_CPU(cpu);
+ CPUX86State *env = &x86_cpu->env;
+#elif defined(TARGET_PPC)
+ PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu);
+ CPUPPCState *env = &ppc_cpu->env;
+#elif defined(TARGET_SPARC)
+ SPARCCPU *sparc_cpu = SPARC_CPU(cpu);
+ CPUSPARCState *env = &sparc_cpu->env;
+#elif defined(TARGET_MIPS)
+ MIPSCPU *mips_cpu = MIPS_CPU(cpu);
+ CPUMIPSState *env = &mips_cpu->env;
+#elif defined(TARGET_TRICORE)
+ TriCoreCPU *tricore_cpu = TRICORE_CPU(cpu);
+ CPUTriCoreState *env = &tricore_cpu->env;
+#endif
+
+ cpu_synchronize_state(cpu);
+
+ info = g_malloc0(sizeof(*info));
+ info->value = g_malloc0(sizeof(*info->value));
+ info->value->CPU = cpu->cpu_index;
+ info->value->current = (cpu == first_cpu);
+ info->value->halted = cpu->halted;
+ info->value->qom_path = object_get_canonical_path(OBJECT(cpu));
+ info->value->thread_id = cpu->thread_id;
+#if defined(TARGET_I386)
+ info->value->has_pc = true;
+ info->value->pc = env->eip + env->segs[R_CS].base;
+#elif defined(TARGET_PPC)
+ info->value->has_nip = true;
+ info->value->nip = env->nip;
+#elif defined(TARGET_SPARC)
+ info->value->has_pc = true;
+ info->value->pc = env->pc;
+ info->value->has_npc = true;
+ info->value->npc = env->npc;
+#elif defined(TARGET_MIPS)
+ info->value->has_PC = true;
+ info->value->PC = env->active_tc.PC;
+#elif defined(TARGET_TRICORE)
+ info->value->has_PC = true;
+ info->value->PC = env->PC;
+#endif
+
+ /* XXX: waiting for the qapi to support GSList */
+ if (!cur_item) {
+ head = cur_item = info;
+ } else {
+ cur_item->next = info;
+ cur_item = info;
+ }
+ }
+
+ return head;
+}
+
+void qmp_memsave(int64_t addr, int64_t size, const char *filename,
+ bool has_cpu, int64_t cpu_index, Error **errp)
+{
+ FILE *f;
+ uint32_t l;
+ CPUState *cpu;
+ uint8_t buf[1024];
+ int64_t orig_addr = addr, orig_size = size;
+
+ if (!has_cpu) {
+ cpu_index = 0;
+ }
+
+ cpu = qemu_get_cpu(cpu_index);
+ if (cpu == NULL) {
+ error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
+ "a CPU number");
+ return;
+ }
+
+ f = fopen(filename, "wb");
+ if (!f) {
+ error_setg_file_open(errp, errno, filename);
+ return;
+ }
+
+ while (size != 0) {
+ l = sizeof(buf);
+ if (l > size)
+ l = size;
+ if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) {
+ error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64
+ " specified", orig_addr, orig_size);
+ goto exit;
+ }
+ if (fwrite(buf, 1, l, f) != l) {
+ error_setg(errp, QERR_IO_ERROR);
+ goto exit;
+ }
+ addr += l;
+ size -= l;
+ }
+
+exit:
+ fclose(f);
+}
+
+void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
+ Error **errp)
+{
+ FILE *f;
+ uint32_t l;
+ uint8_t buf[1024];
+
+ f = fopen(filename, "wb");
+ if (!f) {
+ error_setg_file_open(errp, errno, filename);
+ return;
+ }
+
+ while (size != 0) {
+ l = sizeof(buf);
+ if (l > size)
+ l = size;
+ cpu_physical_memory_read(addr, buf, l);
+ if (fwrite(buf, 1, l, f) != l) {
+ error_setg(errp, QERR_IO_ERROR);
+ goto exit;
+ }
+ addr += l;
+ size -= l;
+ }
+
+exit:
+ fclose(f);
+}
+
+void qmp_inject_nmi(Error **errp)
+{
+#if defined(TARGET_I386)
+ CPUState *cs;
+
+ CPU_FOREACH(cs) {
+ X86CPU *cpu = X86_CPU(cs);
+
+ if (!cpu->apic_state) {
+ cpu_interrupt(cs, CPU_INTERRUPT_NMI);
+ } else {
+ apic_deliver_nmi(cpu->apic_state);
+ }
+ }
+#else
+ nmi_monitor_handle(monitor_get_cpu_index(), errp);
+#endif
+}
+
+void dump_drift_info(FILE *f, fprintf_function cpu_fprintf)
+{
+ if (!use_icount) {
+ return;
+ }
+
+ cpu_fprintf(f, "Host - Guest clock %"PRIi64" ms\n",
+ (cpu_get_clock() - cpu_get_icount())/SCALE_MS);
+ if (icount_align_option) {
+ cpu_fprintf(f, "Max guest delay %"PRIi64" ms\n", -max_delay/SCALE_MS);
+ cpu_fprintf(f, "Max guest advance %"PRIi64" ms\n", max_advance/SCALE_MS);
+ } else {
+ cpu_fprintf(f, "Max guest delay NA\n");
+ cpu_fprintf(f, "Max guest advance NA\n");
+ }
+}
OpenPOWER on IntegriCloud