diff options
author | Timothy Pearson <tpearson@raptorengineering.com> | 2019-05-11 15:12:49 -0500 |
---|---|---|
committer | Timothy Pearson <tpearson@raptorengineering.com> | 2019-05-11 15:12:49 -0500 |
commit | 9e80202352dd49bdd9e67b8b906d86f058431505 (patch) | |
tree | 5673c17aad6e3833da8c4ff21b5a11f666ec9fbe /src/cpus.c | |
download | hqemu-master.zip hqemu-master.tar.gz |
Diffstat (limited to 'src/cpus.c')
-rw-r--r-- | src/cpus.c | 1727 |
1 files changed, 1727 insertions, 0 deletions
diff --git a/src/cpus.c b/src/cpus.c new file mode 100644 index 0000000..04da0ad --- /dev/null +++ b/src/cpus.c @@ -0,0 +1,1727 @@ +/* + * QEMU System Emulator + * + * Copyright (c) 2003-2008 Fabrice Bellard + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ + +/* Needed early for CONFIG_BSD etc. */ +#include "config-host.h" + +#include "monitor/monitor.h" +#include "qapi/qmp/qerror.h" +#include "qemu/error-report.h" +#include "sysemu/sysemu.h" +#include "exec/gdbstub.h" +#include "sysemu/dma.h" +#include "sysemu/kvm.h" +#include "qmp-commands.h" + +#include "qemu/thread.h" +#include "sysemu/cpus.h" +#include "sysemu/qtest.h" +#include "qemu/main-loop.h" +#include "qemu/bitmap.h" +#include "qemu/seqlock.h" +#include "qapi-event.h" +#include "hw/nmi.h" +#include "sysemu/replay.h" + +#ifndef _WIN32 +#include "qemu/compatfd.h" +#endif + +#ifdef CONFIG_LINUX + +#include <sys/prctl.h> + +#ifndef PR_MCE_KILL +#define PR_MCE_KILL 33 +#endif + +#ifndef PR_MCE_KILL_SET +#define PR_MCE_KILL_SET 1 +#endif + +#ifndef PR_MCE_KILL_EARLY +#define PR_MCE_KILL_EARLY 1 +#endif + +#endif /* CONFIG_LINUX */ + +#include "tcg.h" +#include "hqemu.h" + +static CPUState *next_cpu; +int64_t max_delay; +int64_t max_advance; + +/* vcpu throttling controls */ +static QEMUTimer *throttle_timer; +static unsigned int throttle_percentage; + +#define CPU_THROTTLE_PCT_MIN 1 +#define CPU_THROTTLE_PCT_MAX 99 +#define CPU_THROTTLE_TIMESLICE_NS 10000000 + +bool cpu_is_stopped(CPUState *cpu) +{ + return cpu->stopped || !runstate_is_running(); +} + +static bool cpu_thread_is_idle(CPUState *cpu) +{ + if (cpu->stop || cpu->queued_work_first) { + return false; + } + if (cpu_is_stopped(cpu)) { + return true; + } + if (!cpu->halted || cpu_has_work(cpu) || + kvm_halt_in_kernel()) { + return false; + } + return true; +} + +static bool all_cpu_threads_idle(void) +{ + CPUState *cpu; + + CPU_FOREACH(cpu) { + if (!cpu_thread_is_idle(cpu)) { + return false; + } + } + return true; +} + +/***********************************************************/ +/* guest cycle counter */ + +/* Protected by TimersState seqlock */ + +static bool icount_sleep = true; +static int64_t vm_clock_warp_start = -1; +/* Conversion factor from emulated instructions to virtual clock ticks. */ +static int icount_time_shift; +/* Arbitrarily pick 1MIPS as the minimum allowable speed. */ +#define MAX_ICOUNT_SHIFT 10 + +static QEMUTimer *icount_rt_timer; +static QEMUTimer *icount_vm_timer; +static QEMUTimer *icount_warp_timer; + +typedef struct TimersState { + /* Protected by BQL. */ + int64_t cpu_ticks_prev; + int64_t cpu_ticks_offset; + + /* cpu_clock_offset can be read out of BQL, so protect it with + * this lock. + */ + QemuSeqLock vm_clock_seqlock; + int64_t cpu_clock_offset; + int32_t cpu_ticks_enabled; + int64_t dummy; + + /* Compensate for varying guest execution speed. */ + int64_t qemu_icount_bias; + /* Only written by TCG thread */ + int64_t qemu_icount; +} TimersState; + +static TimersState timers_state; + +int64_t cpu_get_icount_raw(void) +{ + int64_t icount; + CPUState *cpu = current_cpu; + + icount = timers_state.qemu_icount; + if (cpu) { + if (!cpu->can_do_io) { + fprintf(stderr, "Bad icount read\n"); + exit(1); + } + icount -= (cpu->icount_decr.u16.low + cpu->icount_extra); + } + return icount; +} + +/* Return the virtual CPU time, based on the instruction counter. */ +static int64_t cpu_get_icount_locked(void) +{ + int64_t icount = cpu_get_icount_raw(); + return timers_state.qemu_icount_bias + cpu_icount_to_ns(icount); +} + +int64_t cpu_get_icount(void) +{ + int64_t icount; + unsigned start; + + do { + start = seqlock_read_begin(&timers_state.vm_clock_seqlock); + icount = cpu_get_icount_locked(); + } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start)); + + return icount; +} + +int64_t cpu_icount_to_ns(int64_t icount) +{ + return icount << icount_time_shift; +} + +/* return the host CPU cycle counter and handle stop/restart */ +/* Caller must hold the BQL */ +int64_t cpu_get_ticks(void) +{ + int64_t ticks; + + if (use_icount) { + return cpu_get_icount(); + } + + ticks = timers_state.cpu_ticks_offset; + if (timers_state.cpu_ticks_enabled) { + ticks += cpu_get_host_ticks(); + } + + if (timers_state.cpu_ticks_prev > ticks) { + /* Note: non increasing ticks may happen if the host uses + software suspend */ + timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks; + ticks = timers_state.cpu_ticks_prev; + } + + timers_state.cpu_ticks_prev = ticks; + return ticks; +} + +static int64_t cpu_get_clock_locked(void) +{ + int64_t ticks; + + ticks = timers_state.cpu_clock_offset; + if (timers_state.cpu_ticks_enabled) { + ticks += get_clock(); + } + + return ticks; +} + +/* return the host CPU monotonic timer and handle stop/restart */ +int64_t cpu_get_clock(void) +{ + int64_t ti; + unsigned start; + + do { + start = seqlock_read_begin(&timers_state.vm_clock_seqlock); + ti = cpu_get_clock_locked(); + } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start)); + + return ti; +} + +/* enable cpu_get_ticks() + * Caller must hold BQL which server as mutex for vm_clock_seqlock. + */ +void cpu_enable_ticks(void) +{ + /* Here, the really thing protected by seqlock is cpu_clock_offset. */ + seqlock_write_lock(&timers_state.vm_clock_seqlock); + if (!timers_state.cpu_ticks_enabled) { + timers_state.cpu_ticks_offset -= cpu_get_host_ticks(); + timers_state.cpu_clock_offset -= get_clock(); + timers_state.cpu_ticks_enabled = 1; + } + seqlock_write_unlock(&timers_state.vm_clock_seqlock); +} + +/* disable cpu_get_ticks() : the clock is stopped. You must not call + * cpu_get_ticks() after that. + * Caller must hold BQL which server as mutex for vm_clock_seqlock. + */ +void cpu_disable_ticks(void) +{ + /* Here, the really thing protected by seqlock is cpu_clock_offset. */ + seqlock_write_lock(&timers_state.vm_clock_seqlock); + if (timers_state.cpu_ticks_enabled) { + timers_state.cpu_ticks_offset += cpu_get_host_ticks(); + timers_state.cpu_clock_offset = cpu_get_clock_locked(); + timers_state.cpu_ticks_enabled = 0; + } + seqlock_write_unlock(&timers_state.vm_clock_seqlock); +} + +/* Correlation between real and virtual time is always going to be + fairly approximate, so ignore small variation. + When the guest is idle real and virtual time will be aligned in + the IO wait loop. */ +#define ICOUNT_WOBBLE (get_ticks_per_sec() / 10) + +static void icount_adjust(void) +{ + int64_t cur_time; + int64_t cur_icount; + int64_t delta; + + /* Protected by TimersState mutex. */ + static int64_t last_delta; + + /* If the VM is not running, then do nothing. */ + if (!runstate_is_running()) { + return; + } + + seqlock_write_lock(&timers_state.vm_clock_seqlock); + cur_time = cpu_get_clock_locked(); + cur_icount = cpu_get_icount_locked(); + + delta = cur_icount - cur_time; + /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */ + if (delta > 0 + && last_delta + ICOUNT_WOBBLE < delta * 2 + && icount_time_shift > 0) { + /* The guest is getting too far ahead. Slow time down. */ + icount_time_shift--; + } + if (delta < 0 + && last_delta - ICOUNT_WOBBLE > delta * 2 + && icount_time_shift < MAX_ICOUNT_SHIFT) { + /* The guest is getting too far behind. Speed time up. */ + icount_time_shift++; + } + last_delta = delta; + timers_state.qemu_icount_bias = cur_icount + - (timers_state.qemu_icount << icount_time_shift); + seqlock_write_unlock(&timers_state.vm_clock_seqlock); +} + +static void icount_adjust_rt(void *opaque) +{ + timer_mod(icount_rt_timer, + qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000); + icount_adjust(); +} + +static void icount_adjust_vm(void *opaque) +{ + timer_mod(icount_vm_timer, + qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + + get_ticks_per_sec() / 10); + icount_adjust(); +} + +static int64_t qemu_icount_round(int64_t count) +{ + return (count + (1 << icount_time_shift) - 1) >> icount_time_shift; +} + +static void icount_warp_rt(void) +{ + /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start + * changes from -1 to another value, so the race here is okay. + */ + if (atomic_read(&vm_clock_warp_start) == -1) { + return; + } + + seqlock_write_lock(&timers_state.vm_clock_seqlock); + if (runstate_is_running()) { + int64_t clock = REPLAY_CLOCK(REPLAY_CLOCK_VIRTUAL_RT, + cpu_get_clock_locked()); + int64_t warp_delta; + + warp_delta = clock - vm_clock_warp_start; + if (use_icount == 2) { + /* + * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too + * far ahead of real time. + */ + int64_t cur_icount = cpu_get_icount_locked(); + int64_t delta = clock - cur_icount; + warp_delta = MIN(warp_delta, delta); + } + timers_state.qemu_icount_bias += warp_delta; + } + vm_clock_warp_start = -1; + seqlock_write_unlock(&timers_state.vm_clock_seqlock); + + if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) { + qemu_clock_notify(QEMU_CLOCK_VIRTUAL); + } +} + +static void icount_dummy_timer(void *opaque) +{ + (void)opaque; +} + +void qtest_clock_warp(int64_t dest) +{ + int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); + AioContext *aio_context; + assert(qtest_enabled()); + aio_context = qemu_get_aio_context(); + while (clock < dest) { + int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); + int64_t warp = qemu_soonest_timeout(dest - clock, deadline); + + seqlock_write_lock(&timers_state.vm_clock_seqlock); + timers_state.qemu_icount_bias += warp; + seqlock_write_unlock(&timers_state.vm_clock_seqlock); + + qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL); + timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]); + clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); + } + qemu_clock_notify(QEMU_CLOCK_VIRTUAL); +} + +void qemu_clock_warp(QEMUClockType type) +{ + int64_t clock; + int64_t deadline; + + /* + * There are too many global variables to make the "warp" behavior + * applicable to other clocks. But a clock argument removes the + * need for if statements all over the place. + */ + if (type != QEMU_CLOCK_VIRTUAL || !use_icount) { + return; + } + + /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers + * do not fire, so computing the deadline does not make sense. + */ + if (!runstate_is_running()) { + return; + } + + /* warp clock deterministically in record/replay mode */ + if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP)) { + return; + } + + if (icount_sleep) { + /* + * If the CPUs have been sleeping, advance QEMU_CLOCK_VIRTUAL timer now. + * This ensures that the deadline for the timer is computed correctly + * below. + * This also makes sure that the insn counter is synchronized before + * the CPU starts running, in case the CPU is woken by an event other + * than the earliest QEMU_CLOCK_VIRTUAL timer. + */ + icount_warp_rt(); + timer_del(icount_warp_timer); + } + if (!all_cpu_threads_idle()) { + return; + } + + if (qtest_enabled()) { + /* When testing, qtest commands advance icount. */ + return; + } + + /* We want to use the earliest deadline from ALL vm_clocks */ + clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); + deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); + if (deadline < 0) { + static bool notified; + if (!icount_sleep && !notified) { + error_report("WARNING: icount sleep disabled and no active timers"); + notified = true; + } + return; + } + + if (deadline > 0) { + /* + * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to + * sleep. Otherwise, the CPU might be waiting for a future timer + * interrupt to wake it up, but the interrupt never comes because + * the vCPU isn't running any insns and thus doesn't advance the + * QEMU_CLOCK_VIRTUAL. + */ + if (!icount_sleep) { + /* + * We never let VCPUs sleep in no sleep icount mode. + * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance + * to the next QEMU_CLOCK_VIRTUAL event and notify it. + * It is useful when we want a deterministic execution time, + * isolated from host latencies. + */ + seqlock_write_lock(&timers_state.vm_clock_seqlock); + timers_state.qemu_icount_bias += deadline; + seqlock_write_unlock(&timers_state.vm_clock_seqlock); + qemu_clock_notify(QEMU_CLOCK_VIRTUAL); + } else { + /* + * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some + * "real" time, (related to the time left until the next event) has + * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this. + * This avoids that the warps are visible externally; for example, + * you will not be sending network packets continuously instead of + * every 100ms. + */ + seqlock_write_lock(&timers_state.vm_clock_seqlock); + if (vm_clock_warp_start == -1 || vm_clock_warp_start > clock) { + vm_clock_warp_start = clock; + } + seqlock_write_unlock(&timers_state.vm_clock_seqlock); + timer_mod_anticipate(icount_warp_timer, clock + deadline); + } + } else if (deadline == 0) { + qemu_clock_notify(QEMU_CLOCK_VIRTUAL); + } +} + +static bool icount_state_needed(void *opaque) +{ + return use_icount; +} + +/* + * This is a subsection for icount migration. + */ +static const VMStateDescription icount_vmstate_timers = { + .name = "timer/icount", + .version_id = 1, + .minimum_version_id = 1, + .needed = icount_state_needed, + .fields = (VMStateField[]) { + VMSTATE_INT64(qemu_icount_bias, TimersState), + VMSTATE_INT64(qemu_icount, TimersState), + VMSTATE_END_OF_LIST() + } +}; + +static const VMStateDescription vmstate_timers = { + .name = "timer", + .version_id = 2, + .minimum_version_id = 1, + .fields = (VMStateField[]) { + VMSTATE_INT64(cpu_ticks_offset, TimersState), + VMSTATE_INT64(dummy, TimersState), + VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2), + VMSTATE_END_OF_LIST() + }, + .subsections = (const VMStateDescription*[]) { + &icount_vmstate_timers, + NULL + } +}; + +static void cpu_throttle_thread(void *opaque) +{ + CPUState *cpu = opaque; + double pct; + double throttle_ratio; + long sleeptime_ns; + + if (!cpu_throttle_get_percentage()) { + return; + } + + pct = (double)cpu_throttle_get_percentage()/100; + throttle_ratio = pct / (1 - pct); + sleeptime_ns = (long)(throttle_ratio * CPU_THROTTLE_TIMESLICE_NS); + + qemu_mutex_unlock_iothread(); + atomic_set(&cpu->throttle_thread_scheduled, 0); + g_usleep(sleeptime_ns / 1000); /* Convert ns to us for usleep call */ + qemu_mutex_lock_iothread(); +} + +static void cpu_throttle_timer_tick(void *opaque) +{ + CPUState *cpu; + double pct; + + /* Stop the timer if needed */ + if (!cpu_throttle_get_percentage()) { + return; + } + CPU_FOREACH(cpu) { + if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) { + async_run_on_cpu(cpu, cpu_throttle_thread, cpu); + } + } + + pct = (double)cpu_throttle_get_percentage()/100; + timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) + + CPU_THROTTLE_TIMESLICE_NS / (1-pct)); +} + +void cpu_throttle_set(int new_throttle_pct) +{ + /* Ensure throttle percentage is within valid range */ + new_throttle_pct = MIN(new_throttle_pct, CPU_THROTTLE_PCT_MAX); + new_throttle_pct = MAX(new_throttle_pct, CPU_THROTTLE_PCT_MIN); + + atomic_set(&throttle_percentage, new_throttle_pct); + + timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) + + CPU_THROTTLE_TIMESLICE_NS); +} + +void cpu_throttle_stop(void) +{ + atomic_set(&throttle_percentage, 0); +} + +bool cpu_throttle_active(void) +{ + return (cpu_throttle_get_percentage() != 0); +} + +int cpu_throttle_get_percentage(void) +{ + return atomic_read(&throttle_percentage); +} + +void cpu_ticks_init(void) +{ + seqlock_init(&timers_state.vm_clock_seqlock, NULL); + vmstate_register(NULL, 0, &vmstate_timers, &timers_state); + throttle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT, + cpu_throttle_timer_tick, NULL); +} + +void configure_icount(QemuOpts *opts, Error **errp) +{ + const char *option; + char *rem_str = NULL; + + option = qemu_opt_get(opts, "shift"); + if (!option) { + if (qemu_opt_get(opts, "align") != NULL) { + error_setg(errp, "Please specify shift option when using align"); + } + return; + } + + icount_sleep = qemu_opt_get_bool(opts, "sleep", true); + if (icount_sleep) { + icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT, + icount_dummy_timer, NULL); + } + + icount_align_option = qemu_opt_get_bool(opts, "align", false); + + if (icount_align_option && !icount_sleep) { + error_setg(errp, "align=on and sleep=no are incompatible"); + } + if (strcmp(option, "auto") != 0) { + errno = 0; + icount_time_shift = strtol(option, &rem_str, 0); + if (errno != 0 || *rem_str != '\0' || !strlen(option)) { + error_setg(errp, "icount: Invalid shift value"); + } + use_icount = 1; + return; + } else if (icount_align_option) { + error_setg(errp, "shift=auto and align=on are incompatible"); + } else if (!icount_sleep) { + error_setg(errp, "shift=auto and sleep=no are incompatible"); + } + + use_icount = 2; + + /* 125MIPS seems a reasonable initial guess at the guest speed. + It will be corrected fairly quickly anyway. */ + icount_time_shift = 3; + + /* Have both realtime and virtual time triggers for speed adjustment. + The realtime trigger catches emulated time passing too slowly, + the virtual time trigger catches emulated time passing too fast. + Realtime triggers occur even when idle, so use them less frequently + than VM triggers. */ + icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT, + icount_adjust_rt, NULL); + timer_mod(icount_rt_timer, + qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000); + icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, + icount_adjust_vm, NULL); + timer_mod(icount_vm_timer, + qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + + get_ticks_per_sec() / 10); +} + +/***********************************************************/ +void hw_error(const char *fmt, ...) +{ + va_list ap; + CPUState *cpu; + + va_start(ap, fmt); + fprintf(stderr, "qemu: hardware error: "); + vfprintf(stderr, fmt, ap); + fprintf(stderr, "\n"); + CPU_FOREACH(cpu) { + fprintf(stderr, "CPU #%d:\n", cpu->cpu_index); + cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU); + } + va_end(ap); + abort(); +} + +void cpu_synchronize_all_states(void) +{ + CPUState *cpu; + + CPU_FOREACH(cpu) { + cpu_synchronize_state(cpu); + } +} + +void cpu_synchronize_all_post_reset(void) +{ + CPUState *cpu; + + CPU_FOREACH(cpu) { + cpu_synchronize_post_reset(cpu); + } +} + +void cpu_synchronize_all_post_init(void) +{ + CPUState *cpu; + + CPU_FOREACH(cpu) { + cpu_synchronize_post_init(cpu); + } +} + +static int do_vm_stop(RunState state) +{ + int ret = 0; + + if (runstate_is_running()) { + cpu_disable_ticks(); + pause_all_vcpus(); + runstate_set(state); + vm_state_notify(0, state); + qapi_event_send_stop(&error_abort); + } + + bdrv_drain_all(); + ret = bdrv_flush_all(); + + return ret; +} + +static bool cpu_can_run(CPUState *cpu) +{ + if (cpu->stop) { + return false; + } + if (cpu_is_stopped(cpu)) { + return false; + } + return true; +} + +static void cpu_handle_guest_debug(CPUState *cpu) +{ + gdb_set_stop_cpu(cpu); + qemu_system_debug_request(); + cpu->stopped = true; +} + +#ifdef CONFIG_LINUX +static void sigbus_reraise(void) +{ + sigset_t set; + struct sigaction action; + + memset(&action, 0, sizeof(action)); + action.sa_handler = SIG_DFL; + if (!sigaction(SIGBUS, &action, NULL)) { + raise(SIGBUS); + sigemptyset(&set); + sigaddset(&set, SIGBUS); + sigprocmask(SIG_UNBLOCK, &set, NULL); + } + perror("Failed to re-raise SIGBUS!\n"); + abort(); +} + +static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo, + void *ctx) +{ + if (kvm_on_sigbus(siginfo->ssi_code, + (void *)(intptr_t)siginfo->ssi_addr)) { + sigbus_reraise(); + } +} + +static void qemu_init_sigbus(void) +{ + struct sigaction action; + + memset(&action, 0, sizeof(action)); + action.sa_flags = SA_SIGINFO; + action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler; + sigaction(SIGBUS, &action, NULL); + + prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0); +} + +static void qemu_kvm_eat_signals(CPUState *cpu) +{ + struct timespec ts = { 0, 0 }; + siginfo_t siginfo; + sigset_t waitset; + sigset_t chkset; + int r; + + sigemptyset(&waitset); + sigaddset(&waitset, SIG_IPI); + sigaddset(&waitset, SIGBUS); + + do { + r = sigtimedwait(&waitset, &siginfo, &ts); + if (r == -1 && !(errno == EAGAIN || errno == EINTR)) { + perror("sigtimedwait"); + exit(1); + } + + switch (r) { + case SIGBUS: + if (kvm_on_sigbus_vcpu(cpu, siginfo.si_code, siginfo.si_addr)) { + sigbus_reraise(); + } + break; + default: + break; + } + + r = sigpending(&chkset); + if (r == -1) { + perror("sigpending"); + exit(1); + } + } while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS)); +} + +#else /* !CONFIG_LINUX */ + +static void qemu_init_sigbus(void) +{ +} + +static void qemu_kvm_eat_signals(CPUState *cpu) +{ +} +#endif /* !CONFIG_LINUX */ + +#ifndef _WIN32 +static void dummy_signal(int sig) +{ +} + +static void qemu_kvm_init_cpu_signals(CPUState *cpu) +{ + int r; + sigset_t set; + struct sigaction sigact; + + memset(&sigact, 0, sizeof(sigact)); + sigact.sa_handler = dummy_signal; + sigaction(SIG_IPI, &sigact, NULL); + + pthread_sigmask(SIG_BLOCK, NULL, &set); + sigdelset(&set, SIG_IPI); + sigdelset(&set, SIGBUS); + r = kvm_set_signal_mask(cpu, &set); + if (r) { + fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r)); + exit(1); + } +} + +#else /* _WIN32 */ +static void qemu_kvm_init_cpu_signals(CPUState *cpu) +{ + abort(); +} +#endif /* _WIN32 */ + +static QemuMutex qemu_global_mutex; +static QemuCond qemu_io_proceeded_cond; +static unsigned iothread_requesting_mutex; + +static QemuThread io_thread; + +/* cpu creation */ +static QemuCond qemu_cpu_cond; +/* system init */ +static QemuCond qemu_pause_cond; +static QemuCond qemu_work_cond; + +void qemu_init_cpu_loop(void) +{ + qemu_init_sigbus(); + qemu_cond_init(&qemu_cpu_cond); + qemu_cond_init(&qemu_pause_cond); + qemu_cond_init(&qemu_work_cond); + qemu_cond_init(&qemu_io_proceeded_cond); + qemu_mutex_init(&qemu_global_mutex); + + qemu_thread_get_self(&io_thread); +} + +void qemu_end_cpu_loop(void) +{ + CPUState *cpu; + + CPU_FOREACH(cpu) + optimization_finalize(cpu->env_ptr); + +#if defined(CONFIG_LLVM) + llvm_finalize(); +#endif +} + +void run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data) +{ + struct qemu_work_item wi; + + if (qemu_cpu_is_self(cpu)) { + func(data); + return; + } + + wi.func = func; + wi.data = data; + wi.free = false; + + qemu_mutex_lock(&cpu->work_mutex); + if (cpu->queued_work_first == NULL) { + cpu->queued_work_first = &wi; + } else { + cpu->queued_work_last->next = &wi; + } + cpu->queued_work_last = &wi; + wi.next = NULL; + wi.done = false; + qemu_mutex_unlock(&cpu->work_mutex); + + qemu_cpu_kick(cpu); + while (!atomic_mb_read(&wi.done)) { + CPUState *self_cpu = current_cpu; + + qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex); + current_cpu = self_cpu; + } +} + +void async_run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data) +{ + struct qemu_work_item *wi; + + if (qemu_cpu_is_self(cpu)) { + func(data); + return; + } + + wi = g_malloc0(sizeof(struct qemu_work_item)); + wi->func = func; + wi->data = data; + wi->free = true; + + qemu_mutex_lock(&cpu->work_mutex); + if (cpu->queued_work_first == NULL) { + cpu->queued_work_first = wi; + } else { + cpu->queued_work_last->next = wi; + } + cpu->queued_work_last = wi; + wi->next = NULL; + wi->done = false; + qemu_mutex_unlock(&cpu->work_mutex); + + qemu_cpu_kick(cpu); +} + +static void flush_queued_work(CPUState *cpu) +{ + struct qemu_work_item *wi; + + if (cpu->queued_work_first == NULL) { + return; + } + + qemu_mutex_lock(&cpu->work_mutex); + while (cpu->queued_work_first != NULL) { + wi = cpu->queued_work_first; + cpu->queued_work_first = wi->next; + if (!cpu->queued_work_first) { + cpu->queued_work_last = NULL; + } + qemu_mutex_unlock(&cpu->work_mutex); + wi->func(wi->data); + qemu_mutex_lock(&cpu->work_mutex); + if (wi->free) { + g_free(wi); + } else { + atomic_mb_set(&wi->done, true); + } + } + qemu_mutex_unlock(&cpu->work_mutex); + qemu_cond_broadcast(&qemu_work_cond); +} + +static void qemu_wait_io_event_common(CPUState *cpu) +{ + if (cpu->stop) { + cpu->stop = false; + cpu->stopped = true; + qemu_cond_broadcast(&qemu_pause_cond); + } + flush_queued_work(cpu); + cpu->thread_kicked = false; +} + +static void qemu_tcg_wait_io_event(CPUState *cpu) +{ + while (all_cpu_threads_idle()) { + /* Start accounting real time to the virtual clock if the CPUs + are idle. */ + qemu_clock_warp(QEMU_CLOCK_VIRTUAL); + qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex); + } + + while (iothread_requesting_mutex) { + qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex); + } + + CPU_FOREACH(cpu) { + qemu_wait_io_event_common(cpu); + } +} + +static void qemu_kvm_wait_io_event(CPUState *cpu) +{ + while (cpu_thread_is_idle(cpu)) { + qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex); + } + + qemu_kvm_eat_signals(cpu); + qemu_wait_io_event_common(cpu); +} + +static void *qemu_kvm_cpu_thread_fn(void *arg) +{ + CPUState *cpu = arg; + int r; + + rcu_register_thread(); + + qemu_mutex_lock_iothread(); + qemu_thread_get_self(cpu->thread); + cpu->thread_id = qemu_get_thread_id(); + cpu->can_do_io = 1; + current_cpu = cpu; + + r = kvm_init_vcpu(cpu); + if (r < 0) { + fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r)); + exit(1); + } + + qemu_kvm_init_cpu_signals(cpu); + + /* signal CPU creation */ + cpu->created = true; + qemu_cond_signal(&qemu_cpu_cond); + + while (1) { + if (cpu_can_run(cpu)) { + r = kvm_cpu_exec(cpu); + if (r == EXCP_DEBUG) { + cpu_handle_guest_debug(cpu); + } + } + qemu_kvm_wait_io_event(cpu); + } + + return NULL; +} + +static void *qemu_dummy_cpu_thread_fn(void *arg) +{ +#ifdef _WIN32 + fprintf(stderr, "qtest is not supported under Windows\n"); + exit(1); +#else + CPUState *cpu = arg; + sigset_t waitset; + int r; + + rcu_register_thread(); + + qemu_mutex_lock_iothread(); + qemu_thread_get_self(cpu->thread); + cpu->thread_id = qemu_get_thread_id(); + cpu->can_do_io = 1; + + sigemptyset(&waitset); + sigaddset(&waitset, SIG_IPI); + + /* signal CPU creation */ + cpu->created = true; + qemu_cond_signal(&qemu_cpu_cond); + + current_cpu = cpu; + while (1) { + current_cpu = NULL; + qemu_mutex_unlock_iothread(); + do { + int sig; + r = sigwait(&waitset, &sig); + } while (r == -1 && (errno == EAGAIN || errno == EINTR)); + if (r == -1) { + perror("sigwait"); + exit(1); + } + qemu_mutex_lock_iothread(); + current_cpu = cpu; + qemu_wait_io_event_common(cpu); + } + + return NULL; +#endif +} + +static void tcg_exec_all(void); + +static void *qemu_tcg_cpu_thread_fn(void *arg) +{ + CPUState *cpu = arg; + + rcu_register_thread(); + + qemu_mutex_lock_iothread(); + qemu_thread_get_self(cpu->thread); + + CPU_FOREACH(cpu) { + cpu->thread_id = qemu_get_thread_id(); + cpu->created = true; + cpu->can_do_io = 1; + } + qemu_cond_signal(&qemu_cpu_cond); + + /* wait for initial kick-off after machine start */ + while (first_cpu->stopped) { + qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex); + + /* process any pending work */ + CPU_FOREACH(cpu) { + qemu_wait_io_event_common(cpu); + } + } + + /* process any pending work */ + atomic_mb_set(&exit_request, 1); + +#if defined(CONFIG_LLVM) + llvm_init(); +#endif + /* we can safely initialize optimization resources after + * the setup of CPUArchState is completed. */ + CPU_FOREACH(cpu) { + copy_tcg_context(); + optimization_init(cpu->env_ptr); + } + + while (1) { + tcg_exec_all(); + + if (use_icount) { + int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); + + if (deadline == 0) { + qemu_clock_notify(QEMU_CLOCK_VIRTUAL); + } + } + qemu_tcg_wait_io_event(QTAILQ_FIRST(&cpus)); + } + + return NULL; +} + +static void qemu_cpu_kick_thread(CPUState *cpu) +{ +#ifndef _WIN32 + int err; + + if (cpu->thread_kicked) { + return; + } + cpu->thread_kicked = true; + err = pthread_kill(cpu->thread->thread, SIG_IPI); + if (err) { + fprintf(stderr, "qemu:%s: %s", __func__, strerror(err)); + exit(1); + } +#else /* _WIN32 */ + abort(); +#endif +} + +static void qemu_cpu_kick_no_halt(void) +{ + CPUState *cpu; + /* Ensure whatever caused the exit has reached the CPU threads before + * writing exit_request. + */ + atomic_mb_set(&exit_request, 1); + cpu = atomic_mb_read(&tcg_current_cpu); + if (cpu) { + cpu_exit(cpu); + } +} + +void qemu_cpu_kick(CPUState *cpu) +{ + qemu_cond_broadcast(cpu->halt_cond); + if (tcg_enabled()) { + qemu_cpu_kick_no_halt(); + } else { + qemu_cpu_kick_thread(cpu); + } +} + +void qemu_cpu_kick_self(void) +{ + assert(current_cpu); + qemu_cpu_kick_thread(current_cpu); +} + +bool qemu_cpu_is_self(CPUState *cpu) +{ + return qemu_thread_is_self(cpu->thread); +} + +bool qemu_in_vcpu_thread(void) +{ + return current_cpu && qemu_cpu_is_self(current_cpu); +} + +static __thread bool iothread_locked = false; + +bool qemu_mutex_iothread_locked(void) +{ + return iothread_locked; +} + +void qemu_mutex_lock_iothread(void) +{ + atomic_inc(&iothread_requesting_mutex); + /* In the simple case there is no need to bump the VCPU thread out of + * TCG code execution. + */ + if (!tcg_enabled() || qemu_in_vcpu_thread() || + !first_cpu || !first_cpu->created) { + qemu_mutex_lock(&qemu_global_mutex); + atomic_dec(&iothread_requesting_mutex); + } else { + if (qemu_mutex_trylock(&qemu_global_mutex)) { + qemu_cpu_kick_no_halt(); + qemu_mutex_lock(&qemu_global_mutex); + } + atomic_dec(&iothread_requesting_mutex); + qemu_cond_broadcast(&qemu_io_proceeded_cond); + } + iothread_locked = true; +} + +void qemu_mutex_unlock_iothread(void) +{ + iothread_locked = false; + qemu_mutex_unlock(&qemu_global_mutex); +} + +static int all_vcpus_paused(void) +{ + CPUState *cpu; + + CPU_FOREACH(cpu) { + if (!cpu->stopped) { + return 0; + } + } + + return 1; +} + +void pause_all_vcpus(void) +{ + CPUState *cpu; + + qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false); + CPU_FOREACH(cpu) { + cpu->stop = true; + qemu_cpu_kick(cpu); + } + + if (qemu_in_vcpu_thread()) { + cpu_stop_current(); + if (!kvm_enabled()) { + CPU_FOREACH(cpu) { + cpu->stop = false; + cpu->stopped = true; + } + return; + } + } + + while (!all_vcpus_paused()) { + qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex); + CPU_FOREACH(cpu) { + qemu_cpu_kick(cpu); + } + } +} + +void cpu_resume(CPUState *cpu) +{ + cpu->stop = false; + cpu->stopped = false; + qemu_cpu_kick(cpu); +} + +void resume_all_vcpus(void) +{ + CPUState *cpu; + + qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true); + CPU_FOREACH(cpu) { + cpu_resume(cpu); + } +} + +/* For temporary buffers for forming a name */ +#define VCPU_THREAD_NAME_SIZE 16 + +static void qemu_tcg_init_vcpu(CPUState *cpu) +{ + char thread_name[VCPU_THREAD_NAME_SIZE]; + static QemuCond *tcg_halt_cond; + static QemuThread *tcg_cpu_thread; + + tcg_cpu_address_space_init(cpu, cpu->as); + + /* share a single thread for all cpus with TCG */ + if (!tcg_cpu_thread) { + cpu->thread = g_malloc0(sizeof(QemuThread)); + cpu->halt_cond = g_malloc0(sizeof(QemuCond)); + qemu_cond_init(cpu->halt_cond); + tcg_halt_cond = cpu->halt_cond; + snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG", + cpu->cpu_index); + qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn, + cpu, QEMU_THREAD_JOINABLE); +#ifdef _WIN32 + cpu->hThread = qemu_thread_get_handle(cpu->thread); +#endif + while (!cpu->created) { + qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); + } + tcg_cpu_thread = cpu->thread; + } else { + cpu->thread = tcg_cpu_thread; + cpu->halt_cond = tcg_halt_cond; + } +} + +static void qemu_kvm_start_vcpu(CPUState *cpu) +{ + char thread_name[VCPU_THREAD_NAME_SIZE]; + + cpu->thread = g_malloc0(sizeof(QemuThread)); + cpu->halt_cond = g_malloc0(sizeof(QemuCond)); + qemu_cond_init(cpu->halt_cond); + snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM", + cpu->cpu_index); + qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn, + cpu, QEMU_THREAD_JOINABLE); + while (!cpu->created) { + qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); + } +} + +static void qemu_dummy_start_vcpu(CPUState *cpu) +{ + char thread_name[VCPU_THREAD_NAME_SIZE]; + + cpu->thread = g_malloc0(sizeof(QemuThread)); + cpu->halt_cond = g_malloc0(sizeof(QemuCond)); + qemu_cond_init(cpu->halt_cond); + snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY", + cpu->cpu_index); + qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu, + QEMU_THREAD_JOINABLE); + while (!cpu->created) { + qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex); + } +} + +void qemu_init_vcpu(CPUState *cpu) +{ + cpu->nr_cores = smp_cores; + cpu->nr_threads = smp_threads; + cpu->stopped = true; + if (kvm_enabled()) { + qemu_kvm_start_vcpu(cpu); + } else if (tcg_enabled()) { + qemu_tcg_init_vcpu(cpu); + } else { + qemu_dummy_start_vcpu(cpu); + } +} + +void cpu_stop_current(void) +{ + if (current_cpu) { + current_cpu->stop = false; + current_cpu->stopped = true; + cpu_exit(current_cpu); + qemu_cond_broadcast(&qemu_pause_cond); + } +} + +int vm_stop(RunState state) +{ + if (qemu_in_vcpu_thread()) { + qemu_system_vmstop_request_prepare(); + qemu_system_vmstop_request(state); + /* + * FIXME: should not return to device code in case + * vm_stop() has been requested. + */ + cpu_stop_current(); + return 0; + } + + return do_vm_stop(state); +} + +/* does a state transition even if the VM is already stopped, + current state is forgotten forever */ +int vm_stop_force_state(RunState state) +{ + if (runstate_is_running()) { + return vm_stop(state); + } else { + runstate_set(state); + + bdrv_drain_all(); + /* Make sure to return an error if the flush in a previous vm_stop() + * failed. */ + return bdrv_flush_all(); + } +} + +static int64_t tcg_get_icount_limit(void) +{ + int64_t deadline; + + if (replay_mode != REPLAY_MODE_PLAY) { + deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL); + + /* Maintain prior (possibly buggy) behaviour where if no deadline + * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than + * INT32_MAX nanoseconds ahead, we still use INT32_MAX + * nanoseconds. + */ + if ((deadline < 0) || (deadline > INT32_MAX)) { + deadline = INT32_MAX; + } + + return qemu_icount_round(deadline); + } else { + return replay_get_instructions(); + } +} + +static int tcg_cpu_exec(CPUState *cpu) +{ + int ret; +#ifdef CONFIG_PROFILER + int64_t ti; +#endif + +#ifdef CONFIG_PROFILER + ti = profile_getclock(); +#endif + if (use_icount) { + int64_t count; + int decr; + timers_state.qemu_icount -= (cpu->icount_decr.u16.low + + cpu->icount_extra); + cpu->icount_decr.u16.low = 0; + cpu->icount_extra = 0; + count = tcg_get_icount_limit(); + timers_state.qemu_icount += count; + decr = (count > 0xffff) ? 0xffff : count; + count -= decr; + cpu->icount_decr.u16.low = decr; + cpu->icount_extra = count; + } + ret = cpu_exec(cpu); +#ifdef CONFIG_PROFILER + tcg_time += profile_getclock() - ti; +#endif + if (use_icount) { + /* Fold pending instructions back into the + instruction counter, and clear the interrupt flag. */ + timers_state.qemu_icount -= (cpu->icount_decr.u16.low + + cpu->icount_extra); + cpu->icount_decr.u32 = 0; + cpu->icount_extra = 0; + replay_account_executed_instructions(); + } + return ret; +} + +static void tcg_exec_all(void) +{ + int r; + + /* Account partial waits to QEMU_CLOCK_VIRTUAL. */ + qemu_clock_warp(QEMU_CLOCK_VIRTUAL); + + if (next_cpu == NULL) { + next_cpu = first_cpu; + } + for (; next_cpu != NULL && !exit_request; next_cpu = CPU_NEXT(next_cpu)) { + CPUState *cpu = next_cpu; + + qemu_clock_enable(QEMU_CLOCK_VIRTUAL, + (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0); + + if (cpu_can_run(cpu)) { + r = tcg_cpu_exec(cpu); + if (r == EXCP_DEBUG) { + cpu_handle_guest_debug(cpu); + break; + } + } else if (cpu->stop || cpu->stopped) { + break; + } + } + + /* Pairs with smp_wmb in qemu_cpu_kick. */ + atomic_mb_set(&exit_request, 0); +} + +void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg) +{ + /* XXX: implement xxx_cpu_list for targets that still miss it */ +#if defined(cpu_list) + cpu_list(f, cpu_fprintf); +#endif +} + +CpuInfoList *qmp_query_cpus(Error **errp) +{ + CpuInfoList *head = NULL, *cur_item = NULL; + CPUState *cpu; + + CPU_FOREACH(cpu) { + CpuInfoList *info; +#if defined(TARGET_I386) + X86CPU *x86_cpu = X86_CPU(cpu); + CPUX86State *env = &x86_cpu->env; +#elif defined(TARGET_PPC) + PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu); + CPUPPCState *env = &ppc_cpu->env; +#elif defined(TARGET_SPARC) + SPARCCPU *sparc_cpu = SPARC_CPU(cpu); + CPUSPARCState *env = &sparc_cpu->env; +#elif defined(TARGET_MIPS) + MIPSCPU *mips_cpu = MIPS_CPU(cpu); + CPUMIPSState *env = &mips_cpu->env; +#elif defined(TARGET_TRICORE) + TriCoreCPU *tricore_cpu = TRICORE_CPU(cpu); + CPUTriCoreState *env = &tricore_cpu->env; +#endif + + cpu_synchronize_state(cpu); + + info = g_malloc0(sizeof(*info)); + info->value = g_malloc0(sizeof(*info->value)); + info->value->CPU = cpu->cpu_index; + info->value->current = (cpu == first_cpu); + info->value->halted = cpu->halted; + info->value->qom_path = object_get_canonical_path(OBJECT(cpu)); + info->value->thread_id = cpu->thread_id; +#if defined(TARGET_I386) + info->value->has_pc = true; + info->value->pc = env->eip + env->segs[R_CS].base; +#elif defined(TARGET_PPC) + info->value->has_nip = true; + info->value->nip = env->nip; +#elif defined(TARGET_SPARC) + info->value->has_pc = true; + info->value->pc = env->pc; + info->value->has_npc = true; + info->value->npc = env->npc; +#elif defined(TARGET_MIPS) + info->value->has_PC = true; + info->value->PC = env->active_tc.PC; +#elif defined(TARGET_TRICORE) + info->value->has_PC = true; + info->value->PC = env->PC; +#endif + + /* XXX: waiting for the qapi to support GSList */ + if (!cur_item) { + head = cur_item = info; + } else { + cur_item->next = info; + cur_item = info; + } + } + + return head; +} + +void qmp_memsave(int64_t addr, int64_t size, const char *filename, + bool has_cpu, int64_t cpu_index, Error **errp) +{ + FILE *f; + uint32_t l; + CPUState *cpu; + uint8_t buf[1024]; + int64_t orig_addr = addr, orig_size = size; + + if (!has_cpu) { + cpu_index = 0; + } + + cpu = qemu_get_cpu(cpu_index); + if (cpu == NULL) { + error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index", + "a CPU number"); + return; + } + + f = fopen(filename, "wb"); + if (!f) { + error_setg_file_open(errp, errno, filename); + return; + } + + while (size != 0) { + l = sizeof(buf); + if (l > size) + l = size; + if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) { + error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64 + " specified", orig_addr, orig_size); + goto exit; + } + if (fwrite(buf, 1, l, f) != l) { + error_setg(errp, QERR_IO_ERROR); + goto exit; + } + addr += l; + size -= l; + } + +exit: + fclose(f); +} + +void qmp_pmemsave(int64_t addr, int64_t size, const char *filename, + Error **errp) +{ + FILE *f; + uint32_t l; + uint8_t buf[1024]; + + f = fopen(filename, "wb"); + if (!f) { + error_setg_file_open(errp, errno, filename); + return; + } + + while (size != 0) { + l = sizeof(buf); + if (l > size) + l = size; + cpu_physical_memory_read(addr, buf, l); + if (fwrite(buf, 1, l, f) != l) { + error_setg(errp, QERR_IO_ERROR); + goto exit; + } + addr += l; + size -= l; + } + +exit: + fclose(f); +} + +void qmp_inject_nmi(Error **errp) +{ +#if defined(TARGET_I386) + CPUState *cs; + + CPU_FOREACH(cs) { + X86CPU *cpu = X86_CPU(cs); + + if (!cpu->apic_state) { + cpu_interrupt(cs, CPU_INTERRUPT_NMI); + } else { + apic_deliver_nmi(cpu->apic_state); + } + } +#else + nmi_monitor_handle(monitor_get_cpu_index(), errp); +#endif +} + +void dump_drift_info(FILE *f, fprintf_function cpu_fprintf) +{ + if (!use_icount) { + return; + } + + cpu_fprintf(f, "Host - Guest clock %"PRIi64" ms\n", + (cpu_get_clock() - cpu_get_icount())/SCALE_MS); + if (icount_align_option) { + cpu_fprintf(f, "Max guest delay %"PRIi64" ms\n", -max_delay/SCALE_MS); + cpu_fprintf(f, "Max guest advance %"PRIi64" ms\n", max_advance/SCALE_MS); + } else { + cpu_fprintf(f, "Max guest delay NA\n"); + cpu_fprintf(f, "Max guest advance NA\n"); + } +} |