/* This file is part of FFTS -- The Fastest Fourier Transform in the South Copyright (c) 2012, Anthony M. Blake Copyright (c) 2012, The University of Waikato All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the organization nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANTHONY M. BLAKE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "ffts_real.h" #include "ffts_internal.h" #ifdef HAVE_NEON #include #endif #ifdef HAVE_SSE #include #endif static void ffts_free_1d_real(ffts_plan_t *p) { if (p->B) { ffts_aligned_free(p->B); } if (p->A) { ffts_aligned_free(p->A); } if (p->buf) { ffts_aligned_free(p->buf); } if (p->plans) { ffts_free(p->plans[0]); free(p->plans); } free(p); } static void ffts_execute_1d_real(ffts_plan_t *p, const void *vin, void *vout) { float *out = (float*) vout; float *buf = (float*) p->buf; float *A = p->A; float *B = p->B; size_t N = p->N; #ifdef __ARM_NEON__ float *p_buf0 = buf; float *p_buf1 = buf + N - 2; float *p_out = out; #endif size_t i; p->plans[0]->transform(p->plans[0], vin, buf); buf[N + 0] = buf[0]; buf[N + 1] = buf[1]; #ifdef __ARM_NEON__ for (i = 0; i < N/2; i += 2) { __asm__ __volatile__ ( "vld1.32 {q8}, [%[pa]]!\n\t" "vld1.32 {q9}, [%[pb]]!\n\t" "vld1.32 {q10}, [%[buf0]]!\n\t" "vld1.32 {q11}, [%[buf1]]\n\t" "sub %[buf1], %[buf1], #16\n\t" "vdup.32 d26, d16[1]\n\t" "vdup.32 d27, d17[1]\n\t" "vdup.32 d24, d16[0]\n\t" "vdup.32 d25, d17[0]\n\t" "vdup.32 d30, d23[1]\n\t" "vdup.32 d31, d22[1]\n\t" "vdup.32 d28, d23[0]\n\t" "vdup.32 d29, d22[0]\n\t" "vmul.f32 q13, q13, q10\n\t" "vmul.f32 q15, q15, q9\n\t" "vmul.f32 q12, q12, q10\n\t" "vmul.f32 q14, q14, q9\n\t" "vrev64.f32 q13, q13\n\t" "vrev64.f32 q15, q15\n\t" "vtrn.32 d26, d27\n\t" "vtrn.32 d30, d31\n\t" "vneg.f32 d26, d26\n\t" "vneg.f32 d31, d31\n\t" "vtrn.32 d26, d27\n\t" "vtrn.32 d30, d31\n\t" "vadd.f32 q12, q12, q14\n\t" "vadd.f32 q13, q13, q15\n\t" "vadd.f32 q12, q12, q13\n\t" "vst1.32 {q12}, [%[pout]]!\n\t" : [pa] "+r" (A), [pb] "+r" (B), [buf0] "+r" (p_buf0), [buf1] "+r" (p_buf1), [pout] "+r" (p_out) : : "memory", "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" ); } #else for (i = 0; i < N/2; i++) { out[2*i + 0] = buf[2*i + 0] * A[2*i] - buf[2*i + 1] * A[2*i + 1] + buf[N - 2*i] * B[2*i + 0] + buf[N - 2*i + 1] * B[2*i + 1]; out[2*i + 1] = buf[2*i + 1] * A[2*i] + buf[2*i + 0] * A[2*i + 1] + buf[N - 2*i] * B[2*i + 1] - buf[N - 2*i + 1] * B[2*i + 0]; /* out[2*N-2*i+0] = out[2*i+0]; out[2*N-2*i+1] = -out[2*i+1]; */ } #endif out[N + 0] = buf[0] - buf[1]; out[N + 1] = 0.0f; } static void ffts_execute_1d_real_inv(ffts_plan_t *p, const void *vin, void *vout) { float *out = (float*) vout; float *in = (float*) vin; float *buf = (float*) p->buf; float *A = p->A; float *B = p->B; size_t N = p->N; #ifdef __ARM_NEON__ float *p_buf0 = in; float *p_buf1 = in + N - 2; float *p_out = buf; #endif size_t i; #ifdef __ARM_NEON__ for (i = 0; i < N/2; i += 2) { __asm__ __volatile__ ( "vld1.32 {q8}, [%[pa]]!\n\t" "vld1.32 {q9}, [%[pb]]!\n\t" "vld1.32 {q10}, [%[buf0]]!\n\t" "vld1.32 {q11}, [%[buf1]]\n\t" "sub %[buf1], %[buf1], #16\n\t" "vdup.32 d26, d16[1]\n\t" "vdup.32 d27, d17[1]\n\t" "vdup.32 d24, d16[0]\n\t" "vdup.32 d25, d17[0]\n\t" "vdup.32 d30, d23[1]\n\t" "vdup.32 d31, d22[1]\n\t" "vdup.32 d28, d23[0]\n\t" "vdup.32 d29, d22[0]\n\t" "vmul.f32 q13, q13, q10\n\t" "vmul.f32 q15, q15, q9\n\t" "vmul.f32 q12, q12, q10\n\t" "vmul.f32 q14, q14, q9\n\t" "vrev64.f32 q13, q13\n\t" "vrev64.f32 q15, q15\n\t" "vtrn.32 d26, d27\n\t" "vtrn.32 d28, d29\n\t" "vneg.f32 d27, d27\n\t" "vneg.f32 d29, d29\n\t" "vtrn.32 d26, d27\n\t" "vtrn.32 d28, d29\n\t" "vadd.f32 q12, q12, q14\n\t" "vsub.f32 q13, q13, q15\n\t" "vadd.f32 q12, q12, q13\n\t" "vst1.32 {q12}, [%[pout]]!\n\t" : [pa] "+r" (A), [pb] "+r" (B), [buf0] "+r" (p_buf0), [buf1] "+r" (p_buf1), [pout] "+r" (p_out) : : "memory", "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15" ); } #else for (i = 0; i < N/2; i++) { buf[2*i + 0] = in[2*i + 0] * A[2*i] + in[2*i + 1] * A[2*i + 1] + in[N - 2*i] * B[2*i + 0] - in[N - 2*i + 1] * B[2*i + 1]; buf[2*i + 1] = in[2*i + 1] * A[2*i] - in[2*i + 0] * A[2*i + 1] - in[N - 2*i] * B[2*i + 1] - in[N - 2*i + 1] * B[2*i + 0]; } #endif p->plans[0]->transform(p->plans[0], buf, out); } ffts_plan_t *ffts_init_1d_real(size_t N, int sign) { ffts_plan_t *p; size_t i; p = (ffts_plan_t*) calloc(1, sizeof(*p)); if (!p) { return NULL; } if (sign < 0) { p->transform = &ffts_execute_1d_real; } else { p->transform = &ffts_execute_1d_real_inv; } p->destroy = &ffts_free_1d_real; p->N = N; p->rank = 1; p->plans = (ffts_plan_t**) malloc(1 * sizeof(*p->plans)); if (!p->plans) { goto cleanup; } p->plans[0] = ffts_init_1d(N/2, sign); if (!p->plans[0]) { goto cleanup; } p->buf = ffts_aligned_malloc(2 * ((N/2) + 1) * sizeof(float)); if (!p->buf) { goto cleanup; } p->A = (float*) ffts_aligned_malloc(N * sizeof(float)); if (!p->A) { goto cleanup; } p->B = (float*) ffts_aligned_malloc(N * sizeof(float)); if (!p->B) { goto cleanup; } if (sign < 0) { for (i = 0; i < N/2; i++) { p->A[2 * i + 0] = 0.5 * ( 1.0 - sin(2.0 * M_PI / (double) N * (double) i)); p->A[2 * i + 1] = 0.5 * (-1.0 * cos(2.0 * M_PI / (double) N * (double) i)); p->B[2 * i + 0] = 0.5 * ( 1.0 + sin(2.0 * M_PI / (double) N * (double) i)); p->B[2 * i + 1] = 0.5 * ( 1.0 * cos(2.0 * M_PI / (double) N * (double) i)); } } else { for (i = 0; i < N/2; i++) { p->A[2 * i + 0] = 1.0 * ( 1.0 - sin(2.0 * M_PI / (double) N * (double) i)); p->A[2 * i + 1] = 1.0 * (-1.0 * cos(2.0 * M_PI / (double) N * (double) i)); p->B[2 * i + 0] = 1.0 * ( 1.0 + sin(2.0 * M_PI / (double) N * (double) i)); p->B[2 * i + 1] = 1.0 * ( 1.0 * cos(2.0 * M_PI / (double) N * (double) i)); } } return p; cleanup: ffts_free_1d_real(p); return NULL; }