/* This file is part of FFTS -- The Fastest Fourier Transform in the South Copyright (c) 2012, Anthony M. Blake Copyright (c) 2012, The University of Waikato All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the organization nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANTHONY M. BLAKE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "ffts.h" #include "ffts_internal.h" #include "ffts_static.h" #include "ffts_trig.h" #include "macros.h" #include "patterns.h" #ifndef DYNAMIC_DISABLED #include "codegen.h" #endif #if _WIN32 #include #else #if __APPLE__ #include #endif #if HAVE_SYS_MMAN_H #include #endif #endif #if defined(HAVE_NEON) static const FFTS_ALIGN(64) float w_data[16] = { 0.70710678118654757273731092936941f, 0.70710678118654746171500846685376f, -0.70710678118654757273731092936941f, -0.70710678118654746171500846685376f, 1.0f, 0.70710678118654757273731092936941f, -0.0f, -0.70710678118654746171500846685376f, 0.70710678118654757273731092936941f, 0.70710678118654746171500846685376f, 0.70710678118654757273731092936941f, 0.70710678118654746171500846685376f, 1.0f, 0.70710678118654757273731092936941f, 0.0f, 0.70710678118654746171500846685376f }; #endif static FFTS_INLINE int ffts_allow_execute(void *start, size_t len) { int result; #ifdef _WIN32 DWORD old_protect; result = !VirtualProtect(start, len, PAGE_EXECUTE_READ, &old_protect); #else result = mprotect(start, len, PROT_READ | PROT_EXEC); #endif return result; } static FFTS_INLINE int ffts_deny_execute(void *start, size_t len) { int result; #ifdef _WIN32 DWORD old_protect; result = (int) VirtualProtect(start, len, PAGE_READWRITE, &old_protect); #else result = mprotect(start, len, PROT_READ | PROT_WRITE); #endif return result; } static FFTS_INLINE int ffts_flush_instruction_cache(void *start, size_t length) { #ifdef _WIN32 return !FlushInstructionCache(GetCurrentProcess(), start, length); #else #ifdef __APPLE__ sys_icache_invalidate(start, length); #elif __ANDROID__ cacheflush((long) start, (long) start + length, 0); #elif __linux__ #if GCC_VERSION_AT_LEAST(4,3) __builtin___clear_cache(start, (char*) start + length); #elif __GNUC__ __clear_cache((long) start, (long) start + length); #endif #endif return 0; #endif } static FFTS_INLINE void *ffts_vmem_alloc(size_t length) { #if __APPLE__ return mmap(NULL, length, PROT_READ | PROT_WRITE, MAP_ANON | MAP_SHARED, -1, 0); #elif _WIN32 return VirtualAlloc(NULL, length, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); #else #ifndef MAP_ANONYMOUS #define MAP_ANONYMOUS 0x20 #endif return mmap(NULL, length, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_SHARED, -1, 0); #endif } static FFTS_INLINE void ffts_vmem_free(void *addr, size_t length) { #ifdef _WIN32 (void) length; VirtualFree(addr, 0, MEM_RELEASE); #else munmap(addr, length); #endif } FFTS_API void ffts_execute(ffts_plan_t *p, const void *in, void *out) { /* TODO: Define NEEDS_ALIGNED properly instead */ #if defined(HAVE_SSE) || defined(HAVE_NEON) if (((uintptr_t) in % 16) != 0) { LOG("ffts_execute: input buffer needs to be aligned to a 128bit boundary\n"); } if (((uintptr_t) out % 16) != 0) { LOG("ffts_execute: output buffer needs to be aligned to a 128bit boundary\n"); } #endif p->transform(p, (const float*) in, (float*) out); } FFTS_API void ffts_free(ffts_plan_t *p) { if (p) { p->destroy(p); } } void ffts_free_1d(ffts_plan_t *p) { #if !defined(DYNAMIC_DISABLED) if (p->transform_base) { ffts_deny_execute(p->transform_base, p->transform_size); ffts_vmem_free(p->transform_base, p->transform_size); } #endif if (p->ws_is) { free(p->ws_is); } if (p->ws) { FFTS_FREE(p->ws); } if (p->is) { free(p->is); } if (p->offsets) { free(p->offsets); } free(p); } static int ffts_generate_luts(ffts_plan_t *p, size_t N, size_t leaf_N, int sign) { V4SF MULI_SIGN; size_t n_luts; ffts_cpx_32f *w; ffts_cpx_32f *tmp; size_t i, j, m, n; int stride; if (sign < 0) { MULI_SIGN = V4SF_LIT4(-0.0f, 0.0f, -0.0f, 0.0f); } else { MULI_SIGN = V4SF_LIT4(0.0f, -0.0f, 0.0f, -0.0f); } /* LUTS */ n_luts = ffts_ctzl(N / leaf_N); if (n_luts >= 32) { n_luts = 0; } if (n_luts) { size_t lut_size; #if defined(__arm__) && !defined(HAVE_NEON) lut_size = leaf_N * (((1 << n_luts) - 2) * 3 + 1) * sizeof(ffts_cpx_32f) / 2; #else lut_size = leaf_N * (((1 << n_luts) - 2) * 3 + 1) * sizeof(ffts_cpx_32f); #endif p->ws = FFTS_MALLOC(lut_size, 32); if (!p->ws) { goto cleanup; } p->ws_is = (size_t*) malloc(n_luts * sizeof(*p->ws_is)); if (!p->ws_is) { goto cleanup; } } w = p->ws; n = leaf_N * 2; #ifdef HAVE_NEON V4SF neg = (sign < 0) ? V4SF_LIT4(0.0f, 0.0f, 0.0f, 0.0f) : V4SF_LIT4(-0.0f, -0.0f, -0.0f, -0.0f); #endif /* calculate factors */ m = leaf_N << (n_luts - 2); tmp = FFTS_MALLOC(m * sizeof(ffts_cpx_32f), 32); ffts_generate_cosine_sine_pow2_32f(tmp, m); /* generate lookup tables */ stride = 1 << (n_luts - 1); for (i = 0; i < n_luts; i++) { p->ws_is[i] = w - (ffts_cpx_32f*) p->ws; if (!i) { ffts_cpx_32f *w0 = FFTS_MALLOC(n/4 * sizeof(ffts_cpx_32f), 32); float *fw0 = (float*) w0; float *fw = (float*) w; for (j = 0; j < n/4; j++) { w0[j][0] = tmp[j * stride][0]; w0[j][1] = tmp[j * stride][1]; } #if defined(__arm__) #ifdef HAVE_NEON for (j = 0; j < n/4; j += 4) { V4SF2 temp0 = V4SF2_LD(fw0 + j*2); temp0.val[1] = V4SF_XOR(temp0.val[1], neg); V4SF2_STORE_SPR(fw + j*2, temp0); } #else for (j = 0; j < n/4; j++) { fw[j*2+0] = fw0[j*2+0]; fw[j*2+1] = (sign < 0) ? fw0[j*2+1] : -fw0[j*2+1]; } #endif w += n/4; #else for (j = 0; j < n/4; j += 2) { V4SF re, im, temp0; temp0 = V4SF_LD(fw0 + j*2); re = V4SF_DUPLICATE_RE(temp0); im = V4SF_DUPLICATE_IM(temp0); im = V4SF_XOR(im, MULI_SIGN); V4SF_ST(fw + j*4 + 0, re); V4SF_ST(fw + j*4 + 4, im); } w += n/4 * 2; #endif FFTS_FREE(w0); } else { ffts_cpx_32f *w0 = (ffts_cpx_32f*) FFTS_MALLOC(n/8 * sizeof(ffts_cpx_32f), 32); ffts_cpx_32f *w1 = (ffts_cpx_32f*) FFTS_MALLOC(n/8 * sizeof(ffts_cpx_32f), 32); ffts_cpx_32f *w2 = (ffts_cpx_32f*) FFTS_MALLOC(n/8 * sizeof(ffts_cpx_32f), 32); float *fw0 = (float*) w0; float *fw1 = (float*) w1; float *fw2 = (float*) w2; float *fw = (float *)w; for (j = 0; j < n/8; j++) { w0[j][0] = tmp[2 * j * stride][0]; w0[j][1] = tmp[2 * j * stride][1]; w1[j][0] = tmp[j * stride][0]; w1[j][1] = tmp[j * stride][1]; w2[j][0] = tmp[(j + (n/8)) * stride][0]; w2[j][1] = tmp[(j + (n/8)) * stride][1]; } #if defined(__arm__) #ifdef HAVE_NEON for (j = 0; j < n/8; j += 4) { V4SF2 temp0, temp1, temp2; temp0 = V4SF2_LD(fw0 + j*2); temp0.val[1] = V4SF_XOR(temp0.val[1], neg); V4SF2_STORE_SPR(fw + j*2*3, temp0); temp1 = V4SF2_LD(fw1 + j*2); temp1.val[1] = V4SF_XOR(temp1.val[1], neg); V4SF2_STORE_SPR(fw + j*2*3 + 8, temp1); temp2 = V4SF2_LD(fw2 + j*2); temp2.val[1] = V4SF_XOR(temp2.val[1], neg); V4SF2_STORE_SPR(fw + j*2*3 + 16, temp2); } #else for (j = 0; j < n/8; j++) { fw[j*6+0] = fw0[j*2+0]; fw[j*6+1] = (sign < 0) ? fw0[j*2+1] : -fw0[j*2+1]; fw[j*6+2] = fw1[j*2+0]; fw[j*6+3] = (sign < 0) ? fw1[j*2+1] : -fw1[j*2+1]; fw[j*6+4] = fw2[j*2+0]; fw[j*6+5] = (sign < 0) ? fw2[j*2+1] : -fw2[j*2+1]; } #endif w += n/8 * 3; #else for (j = 0; j < n/8; j += 2) { V4SF temp0, temp1, temp2, re, im; temp0 = V4SF_LD(fw0 + j*2); re = V4SF_DUPLICATE_RE(temp0); im = V4SF_DUPLICATE_IM(temp0); im = V4SF_XOR(im, MULI_SIGN); V4SF_ST(fw + j*2*6+0, re); V4SF_ST(fw + j*2*6+4, im); temp1 = V4SF_LD(fw1 + j*2); re = V4SF_DUPLICATE_RE(temp1); im = V4SF_DUPLICATE_IM(temp1); im = V4SF_XOR(im, MULI_SIGN); V4SF_ST(fw + j*2*6+8 , re); V4SF_ST(fw + j*2*6+12, im); temp2 = V4SF_LD(fw2 + j*2); re = V4SF_DUPLICATE_RE(temp2); im = V4SF_DUPLICATE_IM(temp2); im = V4SF_XOR(im, MULI_SIGN); V4SF_ST(fw + j*2*6+16, re); V4SF_ST(fw + j*2*6+20, im); } w += n/8 * 3 * 2; #endif FFTS_FREE(w0); FFTS_FREE(w1); FFTS_FREE(w2); } n *= 2; stride >>= 1; } #if defined(HAVE_NEON) if (sign < 0) { p->oe_ws = (void*)(w_data + 4); p->ee_ws = (void*)(w_data); p->eo_ws = (void*)(w_data + 4); } else { p->oe_ws = (void*)(w_data + 12); p->ee_ws = (void*)(w_data + 8); p->eo_ws = (void*)(w_data + 12); } #endif FFTS_FREE(tmp); p->lastlut = w; p->n_luts = n_luts; return 0; cleanup: return -1; } FFTS_API ffts_plan_t* ffts_init_1d(size_t N, int sign) { const size_t leaf_N = 8; ffts_plan_t *p; if (N < 2 || (N & (N - 1)) != 0) { LOG("FFT size must be a power of two\n"); return NULL; } p = calloc(1, sizeof(*p)); if (!p) { return NULL; } p->destroy = ffts_free_1d; p->N = N; if (N >= 32) { /* generate lookup tables */ if (ffts_generate_luts(p, N, leaf_N, sign)) { goto cleanup; } p->offsets = ffts_init_offsets(N, leaf_N); if (!p->offsets) { goto cleanup; } p->is = ffts_init_is(N, leaf_N, 1); if (!p->is) { goto cleanup; } p->i0 = N/leaf_N/3 + 1; p->i1 = p->i2 = N/leaf_N/3; if ((N/leaf_N) % 3 > 1) { p->i1++; } #if !defined(HAVE_VFP) || defined(DYNAMIC_DISABLED) p->i0 /= 2; p->i1 /= 2; #endif #ifdef DYNAMIC_DISABLED if (sign < 0) { p->transform = ffts_static_transform_f_32f; } else { p->transform = ffts_static_transform_i_32f; } #else /* determinate transform size */ #if defined(__arm__) if (N < 8192) { p->transform_size = 8192; } else { p->transform_size = N; } #else if (N < 2048) { p->transform_size = 16384; } else { p->transform_size = 16384 + 2*N/8 * ffts_ctzl(N); } #endif /* allocate code/function buffer */ p->transform_base = ffts_vmem_alloc(p->transform_size); if (!p->transform_base) { goto cleanup; } /* generate code */ p->transform = ffts_generate_func_code(p, N, leaf_N, sign); if (!p->transform) { goto cleanup; } /* enable execution with read access for the block */ if (ffts_allow_execute(p->transform_base, p->transform_size)) { goto cleanup; } /* flush from the instruction cache */ if (ffts_flush_instruction_cache(p->transform_base, p->transform_size)) { goto cleanup; } #endif } else { switch (N) { case 2: p->transform = &ffts_small_2_32f; break; case 4: if (sign == -1) { p->transform = &ffts_small_forward4_32f; } else if (sign == 1) { p->transform = &ffts_small_backward4_32f; } break; case 8: if (sign == -1) { p->transform = &ffts_small_forward8_32f; } else if (sign == 1) { p->transform = &ffts_small_backward8_32f; } break; case 16: default: if (sign == -1) { p->transform = &ffts_small_forward16_32f; } else { p->transform = &ffts_small_backward16_32f; } break; } } return p; cleanup: ffts_free_1d(p); return NULL; }