/* This file is part of FFTS -- The Fastest Fourier Transform in the South Copyright (c) 2012, Anthony M. Blake Copyright (c) 2012, The University of Waikato All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the organization nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANTHONY M. BLAKE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "codegen.h" #include "macros.h" #ifdef __arm__ typedef uint32_t insns_t; #else typedef uint8_t insns_t; #endif #ifdef HAVE_NEON #include "codegen_arm.h" #include "neon.h" #elif HAVE_VFP #include "codegen_arm.h" #include "vfp.h" #else #include "codegen_sse.h" #include "macros-sse.h" #endif #include #include #include /* #include */ #include #include #ifdef __ANDROID__ #include #endif static int ffts_tree_count(int N, int leaf_N, int offset) { int count; if (N <= leaf_N) { return 0; } count = ffts_tree_count(N/4, leaf_N, offset); count += ffts_tree_count(N/8, leaf_N, offset + N/4); count += ffts_tree_count(N/8, leaf_N, offset + N/4 + N/8); count += ffts_tree_count(N/4, leaf_N, offset + N/2); count += ffts_tree_count(N/4, leaf_N, offset + 3*N/4); return 1 + count; } static void ffts_elaborate_tree(size_t **p, int N, int leaf_N, int offset) { if (N <= leaf_N) { return; } ffts_elaborate_tree(p, N/4, leaf_N, offset); ffts_elaborate_tree(p, N/8, leaf_N, offset + N/4); ffts_elaborate_tree(p, N/8, leaf_N, offset + N/4 + N/8); ffts_elaborate_tree(p, N/4, leaf_N, offset + N/2); ffts_elaborate_tree(p, N/4, leaf_N, offset + 3*N/4); (*p)[0] = N; (*p)[1] = 2 * offset; (*p) += 2; } transform_func_t ffts_generate_func_code(ffts_plan_t *p, size_t N, size_t leaf_N, int sign) { uint32_t offsets[8] = {0, 4*N, 2*N, 6*N, N, 5*N, 7*N, 3*N}; uint32_t offsets_o[8] = {0, 4*N, 2*N, 6*N, 7*N, 3*N, N, 5*N}; int32_t pAddr = 0; int32_t pN = 0; int32_t pLUT = 0; insns_t *fp; insns_t *start; insns_t *x_4_addr; insns_t *x_8_addr; uint32_t loop_count; int count; int i; ptrdiff_t len; size_t *ps; size_t *pps; count = ffts_tree_count(N, leaf_N, 0) + 1; ps = pps = malloc(2 * count * sizeof(*ps)); if (!ps) { return NULL; } ffts_elaborate_tree(&pps, N, leaf_N, 0); pps[0] = 0; pps[1] = 0; pps = ps; #ifdef __x86_64__ if (sign < 0) { p->constants = sse_constants; } else { p->constants = sse_constants_inv; } #endif fp = (insns_t*) p->transform_base; /* generate base cases */ x_4_addr = generate_size4_base_case(&fp, sign); x_8_addr = generate_size8_base_case(&fp, sign); #ifdef __arm__ start = generate_prologue(&fp, p); #ifdef HAVE_NEON memcpy(fp, neon_ee, neon_oo - neon_ee); if (sign < 0) { fp[33] ^= 0x00200000; fp[37] ^= 0x00200000; fp[38] ^= 0x00200000; fp[39] ^= 0x00200000; fp[40] ^= 0x00200000; fp[41] ^= 0x00200000; fp[44] ^= 0x00200000; fp[45] ^= 0x00200000; fp[46] ^= 0x00200000; fp[47] ^= 0x00200000; fp[48] ^= 0x00200000; fp[57] ^= 0x00200000; } fp += (neon_oo - neon_ee) / 4; #else memcpy(fp, vfp_e, vfp_o - vfp_e); if (sign > 0) { fp[64] ^= 0x00000040; fp[65] ^= 0x00000040; fp[68] ^= 0x00000040; fp[75] ^= 0x00000040; fp[76] ^= 0x00000040; fp[79] ^= 0x00000040; fp[80] ^= 0x00000040; fp[83] ^= 0x00000040; fp[84] ^= 0x00000040; fp[87] ^= 0x00000040; fp[91] ^= 0x00000040; fp[93] ^= 0x00000040; } fp += (vfp_o - vfp_e) / 4; #endif #else /* generate functions */ start = generate_prologue(&fp, p); loop_count = 4 * p->i0; generate_leaf_init(&fp, loop_count); if (ffts_ctzl(N) & 1) { generate_leaf_ee(&fp, offsets, p->i1 ? 6 : 0); if (p->i1) { loop_count += 4 * p->i1; generate_leaf_oo(&fp, loop_count, offsets_o, 7); } loop_count += 4; generate_leaf_oe(&fp, offsets_o); } else { generate_leaf_ee(&fp, offsets, N >= 256 ? 2 : 8); loop_count += 4; generate_leaf_eo(&fp, offsets); if (p->i1) { loop_count += 4 * p->i1; generate_leaf_oo(&fp, loop_count, offsets_o, N >= 256 ? 4 : 7); } } if (p->i1) { uint32_t offsets_oe[8] = {7*N, 3*N, N, 5*N, 0, 4*N, 6*N, 2*N}; loop_count += 4 * p->i1; /* align loop/jump destination */ #ifdef _M_X64 x86_mov_reg_imm(fp, X86_EBX, loop_count); #else x86_mov_reg_imm(fp, X86_ECX, loop_count); ffts_align_mem16(&fp, 9); #endif generate_leaf_ee(&fp, offsets_oe, 0); } generate_transform_init(&fp); /* generate subtransform calls */ count = 2; while (pps[0]) { size_t ws_is; if (!pN) { #ifdef _M_X64 x86_mov_reg_imm(fp, X86_EBX, pps[0]); #else x86_mov_reg_imm(fp, X86_ECX, pps[0] / 4); #endif } else { int offset = (4 * pps[1]) - pAddr; if (offset) { #ifdef _M_X64 x64_alu_reg_imm_size(fp, X86_ADD, X64_R8, offset, 8); #else x64_alu_reg_imm_size(fp, X86_ADD, X64_RDX, offset, 8); #endif } if (pps[0] > leaf_N && pps[0] - pN) { int factor = ffts_ctzl(pps[0]) - ffts_ctzl(pN); #ifdef _M_X64 if (factor > 0) { x86_shift_reg_imm(fp, X86_SHL, X86_EBX, factor); } else { x86_shift_reg_imm(fp, X86_SHR, X86_EBX, -factor); } #else if (factor > 0) { x86_shift_reg_imm(fp, X86_SHL, X86_ECX, factor); } else { x86_shift_reg_imm(fp, X86_SHR, X86_ECX, -factor); } #endif } } ws_is = 8 * p->ws_is[ffts_ctzl(pps[0] / leaf_N) - 1]; if (ws_is != pLUT) { int offset = (int) (ws_is - pLUT); #ifdef _M_X64 x64_alu_reg_imm_size(fp, X86_ADD, X64_R9, offset, 8); #else x64_alu_reg_imm_size(fp, X86_ADD, X64_R8, offset, 8); #endif } if (pps[0] == 2 * leaf_N) { x64_call_code(fp, x_4_addr); } else { x64_call_code(fp, x_8_addr); } pAddr = 4 * pps[1]; if (pps[0] > leaf_N) { pN = pps[0]; } pLUT = ws_is;//LUT_offset(pps[0], leafN); //fprintf(stderr, "LUT offset for %d is %d\n", pN, pLUT); count += 4; pps += 2; } #endif #ifdef __arm__ #ifdef HAVE_NEON if(__builtin_ctzl(N) & 1) { ADDI(&fp, 2, 7, 0); ADDI(&fp, 7, 9, 0); ADDI(&fp, 9, 2, 0); ADDI(&fp, 2, 8, 0); ADDI(&fp, 8, 10, 0); ADDI(&fp, 10, 2, 0); if(p->i1) { MOVI(&fp, 11, p->i1); memcpy(fp, neon_oo, neon_eo - neon_oo); if(sign < 0) { fp[12] ^= 0x00200000; fp[13] ^= 0x00200000; fp[14] ^= 0x00200000; fp[15] ^= 0x00200000; fp[27] ^= 0x00200000; fp[29] ^= 0x00200000; fp[30] ^= 0x00200000; fp[31] ^= 0x00200000; fp[46] ^= 0x00200000; fp[47] ^= 0x00200000; fp[48] ^= 0x00200000; fp[57] ^= 0x00200000; } fp += (neon_eo - neon_oo) / 4; } *fp = LDRI(11, 1, ((uint32_t)&p->oe_ws) - ((uint32_t)p)); fp++; memcpy(fp, neon_oe, neon_end - neon_oe); if(sign < 0) { fp[19] ^= 0x00200000; fp[20] ^= 0x00200000; fp[22] ^= 0x00200000; fp[23] ^= 0x00200000; fp[37] ^= 0x00200000; fp[38] ^= 0x00200000; fp[40] ^= 0x00200000; fp[41] ^= 0x00200000; fp[64] ^= 0x00200000; fp[65] ^= 0x00200000; fp[66] ^= 0x00200000; fp[67] ^= 0x00200000; } fp += (neon_end - neon_oe) / 4; } else { *fp = LDRI(11, 1, ((uint32_t)&p->eo_ws) - ((uint32_t)p)); fp++; memcpy(fp, neon_eo, neon_oe - neon_eo); if(sign < 0) { fp[10] ^= 0x00200000; fp[11] ^= 0x00200000; fp[13] ^= 0x00200000; fp[14] ^= 0x00200000; fp[31] ^= 0x00200000; fp[33] ^= 0x00200000; fp[34] ^= 0x00200000; fp[35] ^= 0x00200000; fp[59] ^= 0x00200000; fp[60] ^= 0x00200000; fp[61] ^= 0x00200000; fp[62] ^= 0x00200000; } fp += (neon_oe - neon_eo) / 4; ADDI(&fp, 2, 7, 0); ADDI(&fp, 7, 9, 0); ADDI(&fp, 9, 2, 0); ADDI(&fp, 2, 8, 0); ADDI(&fp, 8, 10, 0); ADDI(&fp, 10, 2, 0); if(p->i1) { MOVI(&fp, 11, p->i1); memcpy(fp, neon_oo, neon_eo - neon_oo); if(sign < 0) { fp[12] ^= 0x00200000; fp[13] ^= 0x00200000; fp[14] ^= 0x00200000; fp[15] ^= 0x00200000; fp[27] ^= 0x00200000; fp[29] ^= 0x00200000; fp[30] ^= 0x00200000; fp[31] ^= 0x00200000; fp[46] ^= 0x00200000; fp[47] ^= 0x00200000; fp[48] ^= 0x00200000; fp[57] ^= 0x00200000; } fp += (neon_eo - neon_oo) / 4; } } if(p->i1) { ADDI(&fp, 2, 3, 0); ADDI(&fp, 3, 7, 0); ADDI(&fp, 7, 2, 0); ADDI(&fp, 2, 4, 0); ADDI(&fp, 4, 8, 0); ADDI(&fp, 8, 2, 0); ADDI(&fp, 2, 5, 0); ADDI(&fp, 5, 9, 0); ADDI(&fp, 9, 2, 0); ADDI(&fp, 2, 6, 0); ADDI(&fp, 6, 10, 0); ADDI(&fp, 10, 2, 0); ADDI(&fp, 2, 9, 0); ADDI(&fp, 9, 10, 0); ADDI(&fp, 10, 2, 0); *fp = LDRI(2, 1, ((uint32_t)&p->ee_ws) - ((uint32_t)p)); fp++; MOVI(&fp, 11, p->i1); memcpy(fp, neon_ee, neon_oo - neon_ee); if(sign < 0) { fp[33] ^= 0x00200000; fp[37] ^= 0x00200000; fp[38] ^= 0x00200000; fp[39] ^= 0x00200000; fp[40] ^= 0x00200000; fp[41] ^= 0x00200000; fp[44] ^= 0x00200000; fp[45] ^= 0x00200000; fp[46] ^= 0x00200000; fp[47] ^= 0x00200000; fp[48] ^= 0x00200000; fp[57] ^= 0x00200000; } fp += (neon_oo - neon_ee) / 4; } #else ADDI(&fp, 2, 7, 0); ADDI(&fp, 7, 9, 0); ADDI(&fp, 9, 2, 0); ADDI(&fp, 2, 8, 0); ADDI(&fp, 8, 10, 0); ADDI(&fp, 10, 2, 0); MOVI(&fp, 11, (p->i1>0) ? p->i1 : 1); memcpy(fp, vfp_o, vfp_x4 - vfp_o); if(sign > 0) { fp[22] ^= 0x00000040; fp[24] ^= 0x00000040; fp[25] ^= 0x00000040; fp[26] ^= 0x00000040; fp[62] ^= 0x00000040; fp[64] ^= 0x00000040; fp[65] ^= 0x00000040; fp[66] ^= 0x00000040; } fp += (vfp_x4 - vfp_o) / 4; ADDI(&fp, 2, 3, 0); ADDI(&fp, 3, 7, 0); ADDI(&fp, 7, 2, 0); ADDI(&fp, 2, 4, 0); ADDI(&fp, 4, 8, 0); ADDI(&fp, 8, 2, 0); ADDI(&fp, 2, 5, 0); ADDI(&fp, 5, 9, 0); ADDI(&fp, 9, 2, 0); ADDI(&fp, 2, 6, 0); ADDI(&fp, 6, 10, 0); ADDI(&fp, 10, 2, 0); ADDI(&fp, 2, 9, 0); ADDI(&fp, 9, 10, 0); ADDI(&fp, 10, 2, 0); *fp = LDRI(2, 1, ((uint32_t)&p->ee_ws) - ((uint32_t)p)); fp++; MOVI(&fp, 11, (p->i2>0) ? p->i2 : 1); memcpy(fp, vfp_e, vfp_o - vfp_e); if(sign > 0) { fp[64] ^= 0x00000040; fp[65] ^= 0x00000040; fp[68] ^= 0x00000040; fp[75] ^= 0x00000040; fp[76] ^= 0x00000040; fp[79] ^= 0x00000040; fp[80] ^= 0x00000040; fp[83] ^= 0x00000040; fp[84] ^= 0x00000040; fp[87] ^= 0x00000040; fp[91] ^= 0x00000040; fp[93] ^= 0x00000040; } fp += (vfp_o - vfp_e) / 4; #endif *fp = LDRI(2, 1, ((uint32_t)&p->ws) - ((uint32_t)p)); fp++; // load offsets into r12 //ADDI(&fp, 2, 1, 0); MOVI(&fp, 1, 0); // args: r0 - out // r1 - N // r2 - ws // ADDI(&fp, 3, 1, 0); // put N into r3 for counter int32_t pAddr = 0; int32_t pN = 0; int32_t pLUT = 0; count = 2; while(pps[0]) { // fprintf(stderr, "size %zu at %zu - diff %zu\n", pps[0], pps[1]*4, (pps[1]*4) - pAddr); if(!pN) { MOVI(&fp, 1, pps[0]); } else { if((pps[1]*4)-pAddr) ADDI(&fp, 0, 0, (pps[1] * 4)- pAddr); if(pps[0] - pN) ADDI(&fp, 1, 1, pps[0] - pN); } if(p->ws_is[__builtin_ctzl(pps[0]/leafN)-1]*8 - pLUT) ADDI(&fp, 2, 2, p->ws_is[__builtin_ctzl(pps[0]/leafN)-1]*8 - pLUT); if(pps[0] == 2*leafN) { *fp = BL(fp+2, x_4_addr); fp++; } else if(!pps[2]) { //uint32_t *x_8_t_addr = fp; #ifdef HAVE_NEON memcpy(fp, neon_x8_t, neon_ee - neon_x8_t); if(sign < 0) { fp[31] ^= 0x00200000; fp[32] ^= 0x00200000; fp[33] ^= 0x00200000; fp[34] ^= 0x00200000; fp[65] ^= 0x00200000; fp[66] ^= 0x00200000; fp[70] ^= 0x00200000; fp[74] ^= 0x00200000; fp[97] ^= 0x00200000; fp[98] ^= 0x00200000; fp[102] ^= 0x00200000; fp[104] ^= 0x00200000; } fp += (neon_ee - neon_x8_t) / 4; //*fp++ = BL(fp+2, x_8_t_addr); #else *fp = BL(fp+2, x_8_addr); fp++; #endif } else { *fp = BL(fp+2, x_8_addr); fp++; } pAddr = pps[1] * 4; pN = pps[0]; pLUT = p->ws_is[__builtin_ctzl(pps[0]/leafN)-1]*8;//LUT_offset(pps[0], leafN); // fprintf(stderr, "LUT offset for %d is %d\n", pN, pLUT); count += 4; pps += 2; } *fp++ = 0xecbd8b10; *fp++ = POP_LR(); count++; #else generate_epilogue(&fp); #endif // *fp++ = B(14); count++; //for(int i=0;i<(neon_x8 - neon_x4)/4;i++) // fprintf(stderr, "%08x\n", x_4_addr[i]); //fprintf(stderr, "\n"); //for(int i=0;i