/* This file is part of FFTS -- The Fastest Fourier Transform in the South Copyright (c) 2012, Anthony M. Blake Copyright (c) 2012, The University of Waikato All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the organization nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANTHONY M. BLAKE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "codegen.h" #include "macros.h" #include "ffts.h" #ifdef __APPLE__ #include #endif #include #include #ifdef __ARM_NEON__ #include "codegen_neon.h" // #include "neon_float.h" #include "neon.h" #include "vfp.h" #else #include "codegen_sse.h" #include "sse_float.h" #endif #ifdef __ANDROID__ #include #endif int tree_count(int N, int leafN, int offset) { if(N <= leafN) return 0; int count = 0; count += tree_count(N/4, leafN, offset); count += tree_count(N/8, leafN, offset + N/4); count += tree_count(N/8, leafN, offset + N/4 + N/8); count += tree_count(N/4, leafN, offset + N/2); count += tree_count(N/4, leafN, offset + 3*N/4); return 1 + count; } void elaborate_tree(size_t **p, int N, int leafN, int offset) { if(N <= leafN) return; elaborate_tree(p, N/4, leafN, offset); elaborate_tree(p, N/8, leafN, offset + N/4); elaborate_tree(p, N/8, leafN, offset + N/4 + N/8); elaborate_tree(p, N/4, leafN, offset + N/2); elaborate_tree(p, N/4, leafN, offset + 3*N/4); (*p)[0] = N; (*p)[1] = offset*2; (*p)+=2; } uint32_t LUT_offset(size_t N, size_t leafN) { int i; size_t p_lut_size = 0; size_t lut_size = 0; int hardcoded = 0; size_t n_luts = __builtin_ctzl(N/leafN); int n = leafN*2; //if(N <= 32) { n_luts = __builtin_ctzl(N/4); hardcoded = 1; } for(i=0;iconstants = sse_constants; else p->constants = sse_constants_inv; #endif elaborate_tree(&pps, N, leafN, 0); pps[0] = 0; pps[1] = 0; pps = ps; #ifdef __ARM_NEON__ if(N < 8192) p->transform_size = 8192; else p->transform_size = N; #else if(N < 2048) p->transform_size = 16384; else p->transform_size = 16384 + 2*N/8 * __builtin_ctzl(N); #endif #ifdef __APPLE__ p->transform_base = mmap(NULL, p->transform_size, PROT_WRITE | PROT_READ, MAP_ANON | MAP_SHARED, -1, 0); #else #define MAP_ANONYMOUS 0x20 p->transform_base = mmap(NULL, p->transform_size, PROT_WRITE | PROT_READ, MAP_ANONYMOUS | MAP_SHARED, -1, 0); #endif /* if(p->transform_base == MAP_FAILED) { fprintf(stderr, "MAP FAILED\n"); exit(1); }*/ insns_t *func = p->transform_base;//valloc(8192); insns_t *fp = func; //fprintf(stderr, "Allocating %d bytes \n", p->transform_size); //fprintf(stderr, "Base address = %016p\n", func); if(!func) { fprintf(stderr, "NOMEM\n"); exit(1); } insns_t *x_8_addr = fp; #ifdef __arm__ #ifdef __ARM_NEON__ memcpy(fp, neon_x8, neon_x8_t - neon_x8); if(sign < 0) { fp[31] ^= 0x00200000; fp[32] ^= 0x00200000; fp[33] ^= 0x00200000; fp[34] ^= 0x00200000; fp[65] ^= 0x00200000; fp[66] ^= 0x00200000; fp[70] ^= 0x00200000; fp[74] ^= 0x00200000; fp[97] ^= 0x00200000; fp[98] ^= 0x00200000; fp[102] ^= 0x00200000; fp[104] ^= 0x00200000; } fp += (neon_x8_t - neon_x8) / 4; #else memcpy(fp, vfp_x8, vfp_end - vfp_x8); fp += (vfp_end - vfp_x8) / 4; #endif #else align_mem16(&fp, 0); x_8_addr = fp; align_mem16(&fp, 5); memcpy(fp, x8_soft, x8_hard - x8_soft); fp += (x8_hard - x8_soft); //fprintf(stderr, "X8 start address = %016p\n", x_8_addr); #endif //uint32_t *x_8_t_addr = fp; //memcpy(fp, neon_x8_t, neon_end - neon_x8_t); //fp += (neon_end - neon_x8_t) / 4; insns_t *x_4_addr = fp; #ifdef __arm__ #ifdef __ARM_NEON__ memcpy(fp, neon_x4, neon_x8 - neon_x4); if(sign < 0) { fp[26] ^= 0x00200000; fp[28] ^= 0x00200000; fp[31] ^= 0x00200000; fp[32] ^= 0x00200000; } fp += (neon_x8 - neon_x4) / 4; #else memcpy(fp, vfp_x4, vfp_x8 - vfp_x4); fp += (vfp_x8 - vfp_x4) / 4; #endif #else align_mem16(&fp, 0); x_4_addr = fp; memcpy(fp, x4, x8_soft - x4); fp += (x8_soft - x4); //fprintf(stderr, "X4 start address = %016p\n", x_4_addr); #endif insns_t *start = fp; #ifdef __ARM_NEON__ *fp = PUSH_LR(); fp++; *fp = 0xed2d8b10; fp++; ADDI(&fp, 3, 1, 0); ADDI(&fp, 7, 1, N); ADDI(&fp, 5, 1, 2*N); ADDI(&fp, 10, 7, 2*N); ADDI(&fp, 4, 5, 2*N); ADDI(&fp, 8, 10, 2*N); ADDI(&fp, 6, 4, 2*N); ADDI(&fp, 9, 8, 2*N); *fp = LDRI(12, 0, ((uint32_t)&p->offsets) - ((uint32_t)p)); fp++; // load offsets into r12 // *fp++ = LDRI(1, 0, 4); // load ws into r1 ADDI(&fp, 1, 0, 0); ADDI(&fp, 0, 2, 0), // mov out into r0 #endif #ifdef __arm__ *fp = LDRI(2, 1, ((uint32_t)&p->ee_ws) - ((uint32_t)p)); fp++; #ifdef __ARM_NEON__ MOVI(&fp, 11, p->i0); #else MOVI(&fp, 11, p->i0); #endif #else align_mem16(&fp, 0); start = fp; *fp++ = 0x4c; *fp++ = 0x8b; *fp++ = 0x07; uint32_t lp_cnt = p->i0 * 4; MOVI(&fp, RCX, lp_cnt); //LEA(&fp, R8, RDI, ((uint32_t)&p->offsets) - ((uint32_t)p)); #endif //fp++; #ifdef __arm__ #ifdef __ARM_NEON__ memcpy(fp, neon_ee, neon_oo - neon_ee); if(sign < 0) { fp[33] ^= 0x00200000; fp[37] ^= 0x00200000; fp[38] ^= 0x00200000; fp[39] ^= 0x00200000; fp[40] ^= 0x00200000; fp[41] ^= 0x00200000; fp[44] ^= 0x00200000; fp[45] ^= 0x00200000; fp[46] ^= 0x00200000; fp[47] ^= 0x00200000; fp[48] ^= 0x00200000; fp[57] ^= 0x00200000; } fp += (neon_oo - neon_ee) / 4; #else memcpy(fp, vfp_e, vfp_o - vfp_e); fp += (vfp_o - vfp_e) / 4; #endif #else //fprintf(stderr, "Body start address = %016p\n", start); PUSH(&fp, RBP); PUSH(&fp, RBX); PUSH(&fp, R10); PUSH(&fp, R11); PUSH(&fp, R12); PUSH(&fp, R13); PUSH(&fp, R14); PUSH(&fp, R15); int i; memcpy(fp, leaf_ee_init, leaf_ee - leaf_ee_init); //fprintf(stderr, "Leaf ee init address = %016p\n", leaf_ee_init); //fprintf(stderr, "Constants address = %016p\n", sse_constants); //fprintf(stderr, "Constants address = %016p\n", p->constants); //int32_t val = READ_IMM32(fp + 3); //fprintf(stderr, "diff = 0x%x\n", ((uint32_t)&p->constants) - ((uint32_t)p)); //int64_t v2 = val + (int64_t)((void *)leaf_ee_init - (void *)fp ); //fprintf(stderr, "IMM = 0x%llx\n", v2); //IMM32_NI(fp + 3, ((int64_t) READ_IMM32(fp + 3)) + ((void *)leaf_ee_init - (void *)fp )); fp += (leaf_ee - leaf_ee_init); //fprintf(stderr, "Leaf start address = %016p\n", fp); align_mem16(&fp, 9); memcpy(fp, leaf_ee, leaf_oo - leaf_ee); uint32_t offsets[8] = {0, N, N/2, 3*N/2, N/4, 5*N/4, 7*N/4, 3*N/4}; uint32_t offsets_o[8] = {0, N, N/2, 3*N/2, 7*N/4, 3*N/4, N/4, 5*N/4}; uint32_t offsets_oe[8] = {7*N/4, 3*N/4, N/4, 5*N/4, 0, N, 3*N/2, N/2}; for(i=0;i<8;i++) IMM32_NI(fp + sse_leaf_ee_offsets[i], offsets[i]*4); fp += (leaf_oo - leaf_ee); if(__builtin_ctzl(N) & 1){ if(p->i1) { lp_cnt += p->i1 * 4; MOVI(&fp, RCX, lp_cnt); align_mem16(&fp, 4); memcpy(fp, leaf_oo, leaf_eo - leaf_oo); for(i=0;i<8;i++) IMM32_NI(fp + sse_leaf_oo_offsets[i], offsets_o[i]*4); fp += (leaf_eo - leaf_oo); } memcpy(fp, leaf_oe, leaf_end - leaf_oe); lp_cnt += 4; for(i=0;i<8;i++) IMM32_NI(fp + sse_leaf_oe_offsets[i], offsets_o[i]*4); fp += (leaf_end - leaf_oe); }else{ memcpy(fp, leaf_eo, leaf_oe - leaf_eo); lp_cnt += 4; for(i=0;i<8;i++) IMM32_NI(fp + sse_leaf_eo_offsets[i], offsets[i]*4); fp += (leaf_oe - leaf_eo); if(p->i1) { lp_cnt += p->i1 * 4; MOVI(&fp, RCX, lp_cnt); align_mem16(&fp, 4); memcpy(fp, leaf_oo, leaf_eo - leaf_oo); for(i=0;i<8;i++) IMM32_NI(fp + sse_leaf_oo_offsets[i], offsets_o[i]*4); fp += (leaf_eo - leaf_oo); } } if(p->i1) { lp_cnt += p->i1 * 4; MOVI(&fp, RCX, lp_cnt); align_mem16(&fp, 9); memcpy(fp, leaf_ee, leaf_oo - leaf_ee); for(i=0;i<8;i++) IMM32_NI(fp + sse_leaf_ee_offsets[i], offsets_oe[i]*4); fp += (leaf_oo - leaf_ee); } //fprintf(stderr, "Body start address = %016p\n", fp); //LEA(&fp, R8, RDI, ((uint32_t)&p->ws) - ((uint32_t)p)); memcpy(fp, x_init, x4 - x_init); //IMM32_NI(fp + 3, ((int64_t)READ_IMM32(fp + 3)) + ((void *)x_init - (void *)fp )); fp += (x4 - x_init); int32_t pAddr = 0; int32_t pN = 0; int32_t pLUT = 0; count = 2; while(pps[0]) { if(!pN) { MOVI(&fp, RCX, pps[0] / 4); }else{ if((pps[1]*4)-pAddr) ADDI(&fp, RDX, (pps[1] * 4)- pAddr); if(pps[0] > leafN && pps[0] - pN) { int diff = __builtin_ctzl(pps[0]) - __builtin_ctzl(pN); *fp++ = 0xc1; if(diff > 0) { *fp++ = 0xe1; *fp++ = (diff & 0xff); }else{ *fp++ = 0xe9; *fp++ = ((-diff) & 0xff); } } } if(p->ws_is[__builtin_ctzl(pps[0]/leafN)-1]*8 - pLUT) ADDI(&fp, R8, p->ws_is[__builtin_ctzl(pps[0]/leafN)-1]*8 - pLUT); if(pps[0] == 2*leafN) { // CALL(&fp, x_4_addr); // }else if(!pps[2]){ // //uint32_t *x_8_t_addr = fp; // memcpy(fp, neon_x8_t, neon_ee - neon_x8_t); // fp += (neon_ee - neon_x8_t) / 4; // //*fp++ = BL(fp+2, x_8_t_addr); }else{ // CALL(&fp, x_8_addr); } pAddr = pps[1] * 4; if(pps[0] > leafN) pN = pps[0]; pLUT = p->ws_is[__builtin_ctzl(pps[0]/leafN)-1]*8;//LUT_offset(pps[0], leafN); // fprintf(stderr, "LUT offset for %d is %d\n", pN, pLUT); count += 4; pps += 2; } #endif #ifdef __arm__ #ifdef __ARM_NEON__ if(__builtin_ctzl(N) & 1){ ADDI(&fp, 2, 7, 0); ADDI(&fp, 7, 9, 0); ADDI(&fp, 9, 2, 0); ADDI(&fp, 2, 8, 0); ADDI(&fp, 8, 10, 0); ADDI(&fp, 10, 2, 0); if(p->i1) { MOVI(&fp, 11, p->i1); memcpy(fp, neon_oo, neon_eo - neon_oo); if(sign < 0) { fp[12] ^= 0x00200000; fp[13] ^= 0x00200000; fp[14] ^= 0x00200000; fp[15] ^= 0x00200000; fp[27] ^= 0x00200000; fp[29] ^= 0x00200000; fp[30] ^= 0x00200000; fp[31] ^= 0x00200000; fp[46] ^= 0x00200000; fp[47] ^= 0x00200000; fp[48] ^= 0x00200000; fp[57] ^= 0x00200000; } fp += (neon_eo - neon_oo) / 4; } *fp = LDRI(11, 1, ((uint32_t)&p->oe_ws) - ((uint32_t)p)); fp++; memcpy(fp, neon_oe, neon_end - neon_oe); if(sign < 0) { fp[19] ^= 0x00200000; fp[20] ^= 0x00200000; fp[22] ^= 0x00200000; fp[23] ^= 0x00200000; fp[37] ^= 0x00200000; fp[38] ^= 0x00200000; fp[40] ^= 0x00200000; fp[41] ^= 0x00200000; fp[64] ^= 0x00200000; fp[65] ^= 0x00200000; fp[66] ^= 0x00200000; fp[67] ^= 0x00200000; } fp += (neon_end - neon_oe) / 4; }else{ *fp = LDRI(11, 1, ((uint32_t)&p->eo_ws) - ((uint32_t)p)); fp++; memcpy(fp, neon_eo, neon_oe - neon_eo); if(sign < 0) { fp[10] ^= 0x00200000; fp[11] ^= 0x00200000; fp[13] ^= 0x00200000; fp[14] ^= 0x00200000; fp[31] ^= 0x00200000; fp[33] ^= 0x00200000; fp[34] ^= 0x00200000; fp[35] ^= 0x00200000; fp[59] ^= 0x00200000; fp[60] ^= 0x00200000; fp[61] ^= 0x00200000; fp[62] ^= 0x00200000; } fp += (neon_oe - neon_eo) / 4; ADDI(&fp, 2, 7, 0); ADDI(&fp, 7, 9, 0); ADDI(&fp, 9, 2, 0); ADDI(&fp, 2, 8, 0); ADDI(&fp, 8, 10, 0); ADDI(&fp, 10, 2, 0); if(p->i1) { MOVI(&fp, 11, p->i1); memcpy(fp, neon_oo, neon_eo - neon_oo); if(sign < 0) { fp[12] ^= 0x00200000; fp[13] ^= 0x00200000; fp[14] ^= 0x00200000; fp[15] ^= 0x00200000; fp[27] ^= 0x00200000; fp[29] ^= 0x00200000; fp[30] ^= 0x00200000; fp[31] ^= 0x00200000; fp[46] ^= 0x00200000; fp[47] ^= 0x00200000; fp[48] ^= 0x00200000; fp[57] ^= 0x00200000; } fp += (neon_eo - neon_oo) / 4; } } if(p->i1) { ADDI(&fp, 2, 3, 0); ADDI(&fp, 3, 7, 0); ADDI(&fp, 7, 2, 0); ADDI(&fp, 2, 4, 0); ADDI(&fp, 4, 8, 0); ADDI(&fp, 8, 2, 0); ADDI(&fp, 2, 5, 0); ADDI(&fp, 5, 9, 0); ADDI(&fp, 9, 2, 0); ADDI(&fp, 2, 6, 0); ADDI(&fp, 6, 10, 0); ADDI(&fp, 10, 2, 0); ADDI(&fp, 2, 9, 0); ADDI(&fp, 9, 10, 0); ADDI(&fp, 10, 2, 0); *fp = LDRI(2, 1, ((uint32_t)&p->ee_ws) - ((uint32_t)p)); fp++; MOVI(&fp, 11, p->i1); memcpy(fp, neon_ee, neon_oo - neon_ee); if(sign < 0) { fp[33] ^= 0x00200000; fp[37] ^= 0x00200000; fp[38] ^= 0x00200000; fp[39] ^= 0x00200000; fp[40] ^= 0x00200000; fp[41] ^= 0x00200000; fp[44] ^= 0x00200000; fp[45] ^= 0x00200000; fp[46] ^= 0x00200000; fp[47] ^= 0x00200000; fp[48] ^= 0x00200000; fp[57] ^= 0x00200000; } fp += (neon_oo - neon_ee) / 4; } #else ADDI(&fp, 2, 7, 0); ADDI(&fp, 7, 9, 0); ADDI(&fp, 9, 2, 0); ADDI(&fp, 2, 8, 0); ADDI(&fp, 8, 10, 0); ADDI(&fp, 10, 2, 0); MOVI(&fp, 11, (p->i1>0) ? p->i1 : 1); memcpy(fp, vfp_o, vfp_x4 - vfp_o); fp += (vfp_x4 - vfp_o) / 4; ADDI(&fp, 2, 3, 0); ADDI(&fp, 3, 7, 0); ADDI(&fp, 7, 2, 0); ADDI(&fp, 2, 4, 0); ADDI(&fp, 4, 8, 0); ADDI(&fp, 8, 2, 0); ADDI(&fp, 2, 5, 0); ADDI(&fp, 5, 9, 0); ADDI(&fp, 9, 2, 0); ADDI(&fp, 2, 6, 0); ADDI(&fp, 6, 10, 0); ADDI(&fp, 10, 2, 0); ADDI(&fp, 2, 9, 0); ADDI(&fp, 9, 10, 0); ADDI(&fp, 10, 2, 0); *fp = LDRI(2, 1, ((uint32_t)&p->ee_ws) - ((uint32_t)p)); fp++; MOVI(&fp, 11, (p->i2>0) ? p->i2 : 1); memcpy(fp, vfp_e, vfp_o - vfp_e); fp += (vfp_o - vfp_e) / 4; #endif *fp = LDRI(2, 1, ((uint32_t)&p->ws) - ((uint32_t)p)); fp++; // load offsets into r12 //ADDI(&fp, 2, 1, 0); MOVI(&fp, 1, 0); // args: r0 - out // r1 - N // r2 - ws // ADDI(&fp, 3, 1, 0); // put N into r3 for counter int32_t pAddr = 0; int32_t pN = 0; int32_t pLUT = 0; count = 2; while(pps[0]) { // fprintf(stderr, "size %zu at %zu - diff %zu\n", pps[0], pps[1]*4, (pps[1]*4) - pAddr); if(!pN) { MOVI(&fp, 1, pps[0]); }else{ if((pps[1]*4)-pAddr) ADDI(&fp, 0, 0, (pps[1] * 4)- pAddr); if(pps[0] - pN) ADDI(&fp, 1, 1, pps[0] - pN); } if(p->ws_is[__builtin_ctzl(pps[0]/leafN)-1]*8 - pLUT) ADDI(&fp, 2, 2, p->ws_is[__builtin_ctzl(pps[0]/leafN)-1]*8 - pLUT); if(pps[0] == 2*leafN) { *fp = BL(fp+2, x_4_addr); fp++; }else if(!pps[2]){ //uint32_t *x_8_t_addr = fp; #ifdef __ARM_NEON__ memcpy(fp, neon_x8_t, neon_ee - neon_x8_t); if(sign < 0) { fp[31] ^= 0x00200000; fp[32] ^= 0x00200000; fp[33] ^= 0x00200000; fp[34] ^= 0x00200000; fp[65] ^= 0x00200000; fp[66] ^= 0x00200000; fp[70] ^= 0x00200000; fp[74] ^= 0x00200000; fp[97] ^= 0x00200000; fp[98] ^= 0x00200000; fp[102] ^= 0x00200000; fp[104] ^= 0x00200000; } fp += (neon_ee - neon_x8_t) / 4; //*fp++ = BL(fp+2, x_8_t_addr); #else *fp = BL(fp+2, x_8_addr); fp++; #endif }else{ *fp = BL(fp+2, x_8_addr); fp++; } pAddr = pps[1] * 4; pN = pps[0]; pLUT = p->ws_is[__builtin_ctzl(pps[0]/leafN)-1]*8;//LUT_offset(pps[0], leafN); // fprintf(stderr, "LUT offset for %d is %d\n", pN, pLUT); count += 4; pps += 2; } *fp++ = 0xecbd8b10; *fp++ = POP_LR(); count++; #else POP(&fp, R15); POP(&fp, R14); POP(&fp, R13); POP(&fp, R12); POP(&fp, R11); POP(&fp, R10); POP(&fp, RBX); POP(&fp, RBP); RET(&fp); //uint8_t *pp = func; //int counter = 0; //do{ // printf("%02x ", *pp); // if(counter++ % 16 == 15) printf("\n"); //} while(++pp < fp); //printf("\n"); #endif // *fp++ = B(14); count++; //for(int i=0;i<(neon_x8 - neon_x4)/4;i++) // fprintf(stderr, "%08x\n", x_4_addr[i]); //fprintf(stderr, "\n"); //for(int i=0;itransform_size, PROT_READ | PROT_EXEC)) { perror("Couldn't mprotect"); exit(1); } #ifdef __APPLE__ sys_icache_invalidate(func, p->transform_size); #elif __ANDROID__ cacheflush((long)(func), (long)(func) + p->transform_size, 0); #elif __linux__ #ifdef __GNUC__ __clear_cache((long)(func), (long)(func) + p->transform_size); #endif #endif //fprintf(stderr, "size of transform %zu = %d\n", N, (fp-func)*4); p->transform = (void *) (start); }