summaryrefslogtreecommitdiffstats
path: root/libavcodec/opus_silk.c
blob: 2fcbf3b9d3ce6533aa73d98d252309fdb12f0a77 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
/*
 * Copyright (c) 2012 Andrew D'Addesio
 * Copyright (c) 2013-2014 Mozilla Corporation
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * Opus SILK decoder
 */

#include <stdint.h>

#include "opus.h"
#include "opustab.h"

typedef struct SilkFrame {
    int coded;
    int log_gain;
    int16_t nlsf[16];
    float    lpc[16];

    float output     [2 * SILK_HISTORY];
    float lpc_history[2 * SILK_HISTORY];
    int primarylag;

    int prev_voiced;
} SilkFrame;

struct SilkContext {
    AVCodecContext *avctx;
    int output_channels;

    int midonly;
    int subframes;
    int sflength;
    int flength;
    int nlsf_interp_factor;

    enum OpusBandwidth bandwidth;
    int wb;

    SilkFrame frame[2];
    float prev_stereo_weights[2];
    float stereo_weights[2];

    int prev_coded_channels;
};

static inline void silk_stabilize_lsf(int16_t nlsf[16], int order, const uint16_t min_delta[17])
{
    int pass, i;
    for (pass = 0; pass < 20; pass++) {
        int k, min_diff = 0;
        for (i = 0; i < order+1; i++) {
            int low  = i != 0     ? nlsf[i-1] : 0;
            int high = i != order ? nlsf[i]   : 32768;
            int diff = (high - low) - (min_delta[i]);

            if (diff < min_diff) {
                min_diff = diff;
                k = i;

                if (pass == 20)
                    break;
            }
        }
        if (min_diff == 0) /* no issues; stabilized */
            return;

        /* wiggle one or two LSFs */
        if (k == 0) {
            /* repel away from lower bound */
            nlsf[0] = min_delta[0];
        } else if (k == order) {
            /* repel away from higher bound */
            nlsf[order-1] = 32768 - min_delta[order];
        } else {
            /* repel away from current position */
            int min_center = 0, max_center = 32768, center_val;

            /* lower extent */
            for (i = 0; i < k; i++)
                min_center += min_delta[i];
            min_center += min_delta[k] >> 1;

            /* upper extent */
            for (i = order; i > k; i--)
                max_center -= min_delta[i];
            max_center -= min_delta[k] >> 1;

            /* move apart */
            center_val = nlsf[k - 1] + nlsf[k];
            center_val = (center_val >> 1) + (center_val & 1); // rounded divide by 2
            center_val = FFMIN(max_center, FFMAX(min_center, center_val));

            nlsf[k - 1] = center_val - (min_delta[k] >> 1);
            nlsf[k]     = nlsf[k - 1] + min_delta[k];
        }
    }

    /* resort to the fall-back method, the standard method for LSF stabilization */

    /* sort; as the LSFs should be nearly sorted, use insertion sort */
    for (i = 1; i < order; i++) {
        int j, value = nlsf[i];
        for (j = i - 1; j >= 0 && nlsf[j] > value; j--)
            nlsf[j + 1] = nlsf[j];
        nlsf[j + 1] = value;
    }

    /* push forwards to increase distance */
    if (nlsf[0] < min_delta[0])
        nlsf[0] = min_delta[0];
    for (i = 1; i < order; i++)
        nlsf[i] = FFMAX(nlsf[i], FFMIN(nlsf[i - 1] + min_delta[i], 32767));

    /* push backwards to increase distance */
    if (nlsf[order-1] > 32768 - min_delta[order])
        nlsf[order-1] = 32768 - min_delta[order];
    for (i = order-2; i >= 0; i--)
        if (nlsf[i] > nlsf[i + 1] - min_delta[i+1])
            nlsf[i] = nlsf[i + 1] - min_delta[i+1];

    return;
}

static inline int silk_is_lpc_stable(const int16_t lpc[16], int order)
{
    int k, j, DC_resp = 0;
    int32_t lpc32[2][16];       // Q24
    int totalinvgain = 1 << 30; // 1.0 in Q30
    int32_t *row = lpc32[0], *prevrow;

    /* initialize the first row for the Levinson recursion */
    for (k = 0; k < order; k++) {
        DC_resp += lpc[k];
        row[k] = lpc[k] * 4096;
    }

    if (DC_resp >= 4096)
        return 0;

    /* check if prediction gain pushes any coefficients too far */
    for (k = order - 1; 1; k--) {
        int rc;      // Q31; reflection coefficient
        int gaindiv; // Q30; inverse of the gain (the divisor)
        int gain;    // gain for this reflection coefficient
        int fbits;   // fractional bits used for the gain
        int error;   // Q29; estimate of the error of our partial estimate of 1/gaindiv

        if (FFABS(row[k]) > 16773022)
            return 0;

        rc      = -(row[k] * 128);
        gaindiv = (1 << 30) - MULH(rc, rc);

        totalinvgain = MULH(totalinvgain, gaindiv) << 2;
        if (k == 0)
            return (totalinvgain >= 107374);

        /* approximate 1.0/gaindiv */
        fbits = opus_ilog(gaindiv);
        gain  = ((1 << 29) - 1) / (gaindiv >> (fbits + 1 - 16)); // Q<fbits-16>
        error = (1 << 29) - MULL(gaindiv << (15 + 16 - fbits), gain, 16);
        gain  = ((gain << 16) + (error * gain >> 13));

        /* switch to the next row of the LPC coefficients */
        prevrow = row;
        row = lpc32[k & 1];

        for (j = 0; j < k; j++) {
            int x = av_sat_sub32(prevrow[j], ROUND_MULL(prevrow[k - j - 1], rc, 31));
            int64_t tmp = ROUND_MULL(x, gain, fbits);

            /* per RFC 8251 section 6, if this calculation overflows, the filter
               is considered unstable. */
            if (tmp < INT32_MIN || tmp > INT32_MAX)
                return 0;

            row[j] = (int32_t)tmp;
        }
    }
}

static void silk_lsp2poly(const int32_t lsp[16], int32_t pol[16], int half_order)
{
    int i, j;

    pol[0] = 65536; // 1.0 in Q16
    pol[1] = -lsp[0];

    for (i = 1; i < half_order; i++) {
        pol[i + 1] = pol[i - 1] * 2 - ROUND_MULL(lsp[2 * i], pol[i], 16);
        for (j = i; j > 1; j--)
            pol[j] += pol[j - 2] - ROUND_MULL(lsp[2 * i], pol[j - 1], 16);

        pol[1] -= lsp[2 * i];
    }
}

static void silk_lsf2lpc(const int16_t nlsf[16], float lpcf[16], int order)
{
    int i, k;
    int32_t lsp[16];     // Q17; 2*cos(LSF)
    int32_t p[9], q[9];  // Q16
    int32_t lpc32[16];   // Q17
    int16_t lpc[16];     // Q12

    /* convert the LSFs to LSPs, i.e. 2*cos(LSF) */
    for (k = 0; k < order; k++) {
        int index = nlsf[k] >> 8;
        int offset = nlsf[k] & 255;
        int k2 = (order == 10) ? ff_silk_lsf_ordering_nbmb[k] : ff_silk_lsf_ordering_wb[k];

        /* interpolate and round */
        lsp[k2]  = ff_silk_cosine[index] * 256;
        lsp[k2] += (ff_silk_cosine[index + 1] - ff_silk_cosine[index]) * offset;
        lsp[k2]  = (lsp[k2] + 4) >> 3;
    }

    silk_lsp2poly(lsp    , p, order >> 1);
    silk_lsp2poly(lsp + 1, q, order >> 1);

    /* reconstruct A(z) */
    for (k = 0; k < order>>1; k++) {
        int32_t p_tmp = p[k + 1] + p[k];
        int32_t q_tmp = q[k + 1] - q[k];
        lpc32[k]         = -q_tmp - p_tmp;
        lpc32[order-k-1] =  q_tmp - p_tmp;
    }

    /* limit the range of the LPC coefficients to each fit within an int16_t */
    for (i = 0; i < 10; i++) {
        int j;
        unsigned int maxabs = 0;
        for (j = 0, k = 0; j < order; j++) {
            unsigned int x = FFABS(lpc32[k]);
            if (x > maxabs) {
                maxabs = x; // Q17
                k      = j;
            }
        }

        maxabs = (maxabs + 16) >> 5; // convert to Q12

        if (maxabs > 32767) {
            /* perform bandwidth expansion */
            unsigned int chirp, chirp_base; // Q16
            maxabs = FFMIN(maxabs, 163838); // anything above this overflows chirp's numerator
            chirp_base = chirp = 65470 - ((maxabs - 32767) << 14) / ((maxabs * (k+1)) >> 2);

            for (k = 0; k < order; k++) {
                lpc32[k] = ROUND_MULL(lpc32[k], chirp, 16);
                chirp    = (chirp_base * chirp + 32768) >> 16;
            }
        } else break;
    }

    if (i == 10) {
        /* time's up: just clamp */
        for (k = 0; k < order; k++) {
            int x = (lpc32[k] + 16) >> 5;
            lpc[k] = av_clip_int16(x);
            lpc32[k] = lpc[k] << 5; // shortcut mandated by the spec; drops lower 5 bits
        }
    } else {
        for (k = 0; k < order; k++)
            lpc[k] = (lpc32[k] + 16) >> 5;
    }

    /* if the prediction gain causes the LPC filter to become unstable,
       apply further bandwidth expansion on the Q17 coefficients */
    for (i = 1; i <= 16 && !silk_is_lpc_stable(lpc, order); i++) {
        unsigned int chirp, chirp_base;
        chirp_base = chirp = 65536 - (1 << i);

        for (k = 0; k < order; k++) {
            lpc32[k] = ROUND_MULL(lpc32[k], chirp, 16);
            lpc[k]   = (lpc32[k] + 16) >> 5;
            chirp    = (chirp_base * chirp + 32768) >> 16;
        }
    }

    for (i = 0; i < order; i++)
        lpcf[i] = lpc[i] / 4096.0f;
}

static inline void silk_decode_lpc(SilkContext *s, SilkFrame *frame,
                                   OpusRangeCoder *rc,
                                   float lpc_leadin[16], float lpc[16],
                                   int *lpc_order, int *has_lpc_leadin, int voiced)
{
    int i;
    int order;                   // order of the LP polynomial; 10 for NB/MB and 16 for WB
    int8_t  lsf_i1, lsf_i2[16];  // stage-1 and stage-2 codebook indices
    int16_t lsf_res[16];         // residual as a Q10 value
    int16_t nlsf[16];            // Q15

    *lpc_order = order = s->wb ? 16 : 10;

    /* obtain LSF stage-1 and stage-2 indices */
    lsf_i1 = ff_opus_rc_dec_cdf(rc, ff_silk_model_lsf_s1[s->wb][voiced]);
    for (i = 0; i < order; i++) {
        int index = s->wb ? ff_silk_lsf_s2_model_sel_wb  [lsf_i1][i] :
                            ff_silk_lsf_s2_model_sel_nbmb[lsf_i1][i];
        lsf_i2[i] = ff_opus_rc_dec_cdf(rc, ff_silk_model_lsf_s2[index]) - 4;
        if (lsf_i2[i] == -4)
            lsf_i2[i] -= ff_opus_rc_dec_cdf(rc, ff_silk_model_lsf_s2_ext);
        else if (lsf_i2[i] == 4)
            lsf_i2[i] += ff_opus_rc_dec_cdf(rc, ff_silk_model_lsf_s2_ext);
    }

    /* reverse the backwards-prediction step */
    for (i = order - 1; i >= 0; i--) {
        int qstep = s->wb ? 9830 : 11796;

        lsf_res[i] = lsf_i2[i] * 1024;
        if (lsf_i2[i] < 0)      lsf_res[i] += 102;
        else if (lsf_i2[i] > 0) lsf_res[i] -= 102;
        lsf_res[i] = (lsf_res[i] * qstep) >> 16;

        if (i + 1 < order) {
            int weight = s->wb ? ff_silk_lsf_pred_weights_wb  [ff_silk_lsf_weight_sel_wb  [lsf_i1][i]][i] :
                                 ff_silk_lsf_pred_weights_nbmb[ff_silk_lsf_weight_sel_nbmb[lsf_i1][i]][i];
            lsf_res[i] += (lsf_res[i+1] * weight) >> 8;
        }
    }

    /* reconstruct the NLSF coefficients from the supplied indices */
    for (i = 0; i < order; i++) {
        const uint8_t * codebook = s->wb ? ff_silk_lsf_codebook_wb  [lsf_i1] :
                                           ff_silk_lsf_codebook_nbmb[lsf_i1];
        int cur, prev, next, weight_sq, weight, ipart, fpart, y, value;

        /* find the weight of the residual */
        /* TODO: precompute */
        cur = codebook[i];
        prev = i ? codebook[i - 1] : 0;
        next = i + 1 < order ? codebook[i + 1] : 256;
        weight_sq = (1024 / (cur - prev) + 1024 / (next - cur)) << 16;

        /* approximate square-root with mandated fixed-point arithmetic */
        ipart = opus_ilog(weight_sq);
        fpart = (weight_sq >> (ipart-8)) & 127;
        y = ((ipart & 1) ? 32768 : 46214) >> ((32 - ipart)>>1);
        weight = y + ((213 * fpart * y) >> 16);

        value = cur * 128 + (lsf_res[i] * 16384) / weight;
        nlsf[i] = av_clip_uintp2(value, 15);
    }

    /* stabilize the NLSF coefficients */
    silk_stabilize_lsf(nlsf, order, s->wb ? ff_silk_lsf_min_spacing_wb :
                                            ff_silk_lsf_min_spacing_nbmb);

    /* produce an interpolation for the first 2 subframes, */
    /* and then convert both sets of NLSFs to LPC coefficients */
    *has_lpc_leadin = 0;
    if (s->subframes == 4) {
        int offset = ff_opus_rc_dec_cdf(rc, ff_silk_model_lsf_interpolation_offset);
        if (offset != 4 && frame->coded) {
            *has_lpc_leadin = 1;
            if (offset != 0) {
                int16_t nlsf_leadin[16];
                for (i = 0; i < order; i++)
                    nlsf_leadin[i] = frame->nlsf[i] +
                        ((nlsf[i] - frame->nlsf[i]) * offset >> 2);
                silk_lsf2lpc(nlsf_leadin, lpc_leadin, order);
            } else  /* avoid re-computation for a (roughly) 1-in-4 occurrence */
                memcpy(lpc_leadin, frame->lpc, 16 * sizeof(float));
        } else
            offset = 4;
        s->nlsf_interp_factor = offset;

        silk_lsf2lpc(nlsf, lpc, order);
    } else {
        s->nlsf_interp_factor = 4;
        silk_lsf2lpc(nlsf, lpc, order);
    }

    memcpy(frame->nlsf, nlsf, order * sizeof(nlsf[0]));
    memcpy(frame->lpc,  lpc,  order * sizeof(lpc[0]));
}

static inline void silk_count_children(OpusRangeCoder *rc, int model, int32_t total,
                                       int32_t child[2])
{
    if (total != 0) {
        child[0] = ff_opus_rc_dec_cdf(rc,
                       ff_silk_model_pulse_location[model] + (((total - 1 + 5) * (total - 1)) >> 1));
        child[1] = total - child[0];
    } else {
        child[0] = 0;
        child[1] = 0;
    }
}

static inline void silk_decode_excitation(SilkContext *s, OpusRangeCoder *rc,
                                          float* excitationf,
                                          int qoffset_high, int active, int voiced)
{
    int i;
    uint32_t seed;
    int shellblocks;
    int ratelevel;
    uint8_t pulsecount[20];     // total pulses in each shell block
    uint8_t lsbcount[20] = {0}; // raw lsbits defined for each pulse in each shell block
    int32_t excitation[320];    // Q23

    /* excitation parameters */
    seed = ff_opus_rc_dec_cdf(rc, ff_silk_model_lcg_seed);
    shellblocks = ff_silk_shell_blocks[s->bandwidth][s->subframes >> 2];
    ratelevel = ff_opus_rc_dec_cdf(rc, ff_silk_model_exc_rate[voiced]);

    for (i = 0; i < shellblocks; i++) {
        pulsecount[i] = ff_opus_rc_dec_cdf(rc, ff_silk_model_pulse_count[ratelevel]);
        if (pulsecount[i] == 17) {
            while (pulsecount[i] == 17 && ++lsbcount[i] != 10)
                pulsecount[i] = ff_opus_rc_dec_cdf(rc, ff_silk_model_pulse_count[9]);
            if (lsbcount[i] == 10)
                pulsecount[i] = ff_opus_rc_dec_cdf(rc, ff_silk_model_pulse_count[10]);
        }
    }

    /* decode pulse locations using PVQ */
    for (i = 0; i < shellblocks; i++) {
        if (pulsecount[i] != 0) {
            int a, b, c, d;
            int32_t * location = excitation + 16*i;
            int32_t branch[4][2];
            branch[0][0] = pulsecount[i];

            /* unrolled tail recursion */
            for (a = 0; a < 1; a++) {
                silk_count_children(rc, 0, branch[0][a], branch[1]);
                for (b = 0; b < 2; b++) {
                    silk_count_children(rc, 1, branch[1][b], branch[2]);
                    for (c = 0; c < 2; c++) {
                        silk_count_children(rc, 2, branch[2][c], branch[3]);
                        for (d = 0; d < 2; d++) {
                            silk_count_children(rc, 3, branch[3][d], location);
                            location += 2;
                        }
                    }
                }
            }
        } else
            memset(excitation + 16*i, 0, 16*sizeof(int32_t));
    }

    /* decode least significant bits */
    for (i = 0; i < shellblocks << 4; i++) {
        int bit;
        for (bit = 0; bit < lsbcount[i >> 4]; bit++)
            excitation[i] = (excitation[i] << 1) |
                            ff_opus_rc_dec_cdf(rc, ff_silk_model_excitation_lsb);
    }

    /* decode signs */
    for (i = 0; i < shellblocks << 4; i++) {
        if (excitation[i] != 0) {
            int sign = ff_opus_rc_dec_cdf(rc, ff_silk_model_excitation_sign[active +
                                         voiced][qoffset_high][FFMIN(pulsecount[i >> 4], 6)]);
            if (sign == 0)
                excitation[i] *= -1;
        }
    }

    /* assemble the excitation */
    for (i = 0; i < shellblocks << 4; i++) {
        int value = excitation[i];
        excitation[i] = value * 256 | ff_silk_quant_offset[voiced][qoffset_high];
        if (value < 0)      excitation[i] += 20;
        else if (value > 0) excitation[i] -= 20;

        /* invert samples pseudorandomly */
        seed = 196314165 * seed + 907633515;
        if (seed & 0x80000000)
            excitation[i] *= -1;
        seed += value;

        excitationf[i] = excitation[i] / 8388608.0f;
    }
}

/** Maximum residual history according to 4.2.7.6.1 */
#define SILK_MAX_LAG  (288 + LTP_ORDER / 2)

/** Order of the LTP filter */
#define LTP_ORDER 5

static void silk_decode_frame(SilkContext *s, OpusRangeCoder *rc,
                              int frame_num, int channel, int coded_channels, int active, int active1)
{
    /* per frame */
    int voiced;       // combines with active to indicate inactive, active, or active+voiced
    int qoffset_high;
    int order;                             // order of the LPC coefficients
    float lpc_leadin[16], lpc_body[16], residual[SILK_MAX_LAG + SILK_HISTORY];
    int has_lpc_leadin;
    float ltpscale;

    /* per subframe */
    struct {
        float gain;
        int pitchlag;
        float ltptaps[5];
    } sf[4];

    SilkFrame * const frame = s->frame + channel;

    int i;

    /* obtain stereo weights */
    if (coded_channels == 2 && channel == 0) {
        int n, wi[2], ws[2], w[2];
        n     = ff_opus_rc_dec_cdf(rc, ff_silk_model_stereo_s1);
        wi[0] = ff_opus_rc_dec_cdf(rc, ff_silk_model_stereo_s2) + 3 * (n / 5);
        ws[0] = ff_opus_rc_dec_cdf(rc, ff_silk_model_stereo_s3);
        wi[1] = ff_opus_rc_dec_cdf(rc, ff_silk_model_stereo_s2) + 3 * (n % 5);
        ws[1] = ff_opus_rc_dec_cdf(rc, ff_silk_model_stereo_s3);

        for (i = 0; i < 2; i++)
            w[i] = ff_silk_stereo_weights[wi[i]] +
                   (((ff_silk_stereo_weights[wi[i] + 1] - ff_silk_stereo_weights[wi[i]]) * 6554) >> 16)
                    * (ws[i]*2 + 1);

        s->stereo_weights[0] = (w[0] - w[1]) / 8192.0;
        s->stereo_weights[1] = w[1]          / 8192.0;

        /* and read the mid-only flag */
        s->midonly = active1 ? 0 : ff_opus_rc_dec_cdf(rc, ff_silk_model_mid_only);
    }

    /* obtain frame type */
    if (!active) {
        qoffset_high = ff_opus_rc_dec_cdf(rc, ff_silk_model_frame_type_inactive);
        voiced = 0;
    } else {
        int type = ff_opus_rc_dec_cdf(rc, ff_silk_model_frame_type_active);
        qoffset_high = type & 1;
        voiced = type >> 1;
    }

    /* obtain subframe quantization gains */
    for (i = 0; i < s->subframes; i++) {
        int log_gain;     //Q7
        int ipart, fpart, lingain;

        if (i == 0 && (frame_num == 0 || !frame->coded)) {
            /* gain is coded absolute */
            int x = ff_opus_rc_dec_cdf(rc, ff_silk_model_gain_highbits[active + voiced]);
            log_gain = (x<<3) | ff_opus_rc_dec_cdf(rc, ff_silk_model_gain_lowbits);

            if (frame->coded)
                log_gain = FFMAX(log_gain, frame->log_gain - 16);
        } else {
            /* gain is coded relative */
            int delta_gain = ff_opus_rc_dec_cdf(rc, ff_silk_model_gain_delta);
            log_gain = av_clip_uintp2(FFMAX((delta_gain<<1) - 16,
                                     frame->log_gain + delta_gain - 4), 6);
        }

        frame->log_gain = log_gain;

        /* approximate 2**(x/128) with a Q7 (i.e. non-integer) input */
        log_gain = (log_gain * 0x1D1C71 >> 16) + 2090;
        ipart = log_gain >> 7;
        fpart = log_gain & 127;
        lingain = (1 << ipart) + ((-174 * fpart * (128-fpart) >>16) + fpart) * ((1<<ipart) >> 7);
        sf[i].gain = lingain / 65536.0f;
    }

    /* obtain LPC filter coefficients */
    silk_decode_lpc(s, frame, rc, lpc_leadin, lpc_body, &order, &has_lpc_leadin, voiced);

    /* obtain pitch lags, if this is a voiced frame */
    if (voiced) {
        int lag_absolute = (!frame_num || !frame->prev_voiced);
        int primarylag;         // primary pitch lag for the entire SILK frame
        int ltpfilter;
        const int8_t * offsets;

        if (!lag_absolute) {
            int delta = ff_opus_rc_dec_cdf(rc, ff_silk_model_pitch_delta);
            if (delta)
                primarylag = frame->primarylag + delta - 9;
            else
                lag_absolute = 1;
        }

        if (lag_absolute) {
            /* primary lag is coded absolute */
            int highbits, lowbits;
            static const uint16_t * const model[] = {
                ff_silk_model_pitch_lowbits_nb, ff_silk_model_pitch_lowbits_mb,
                ff_silk_model_pitch_lowbits_wb
            };
            highbits = ff_opus_rc_dec_cdf(rc, ff_silk_model_pitch_highbits);
            lowbits  = ff_opus_rc_dec_cdf(rc, model[s->bandwidth]);

            primarylag = ff_silk_pitch_min_lag[s->bandwidth] +
                         highbits*ff_silk_pitch_scale[s->bandwidth] + lowbits;
        }
        frame->primarylag = primarylag;

        if (s->subframes == 2)
            offsets = (s->bandwidth == OPUS_BANDWIDTH_NARROWBAND)
                     ? ff_silk_pitch_offset_nb10ms[ff_opus_rc_dec_cdf(rc,
                                                ff_silk_model_pitch_contour_nb10ms)]
                     : ff_silk_pitch_offset_mbwb10ms[ff_opus_rc_dec_cdf(rc,
                                                ff_silk_model_pitch_contour_mbwb10ms)];
        else
            offsets = (s->bandwidth == OPUS_BANDWIDTH_NARROWBAND)
                     ? ff_silk_pitch_offset_nb20ms[ff_opus_rc_dec_cdf(rc,
                                                ff_silk_model_pitch_contour_nb20ms)]
                     : ff_silk_pitch_offset_mbwb20ms[ff_opus_rc_dec_cdf(rc,
                                                ff_silk_model_pitch_contour_mbwb20ms)];

        for (i = 0; i < s->subframes; i++)
            sf[i].pitchlag = av_clip(primarylag + offsets[i],
                                     ff_silk_pitch_min_lag[s->bandwidth],
                                     ff_silk_pitch_max_lag[s->bandwidth]);

        /* obtain LTP filter coefficients */
        ltpfilter = ff_opus_rc_dec_cdf(rc, ff_silk_model_ltp_filter);
        for (i = 0; i < s->subframes; i++) {
            int index, j;
            static const uint16_t * const filter_sel[] = {
                ff_silk_model_ltp_filter0_sel, ff_silk_model_ltp_filter1_sel,
                ff_silk_model_ltp_filter2_sel
            };
            static const int8_t (* const filter_taps[])[5] = {
                ff_silk_ltp_filter0_taps, ff_silk_ltp_filter1_taps, ff_silk_ltp_filter2_taps
            };
            index = ff_opus_rc_dec_cdf(rc, filter_sel[ltpfilter]);
            for (j = 0; j < 5; j++)
                sf[i].ltptaps[j] = filter_taps[ltpfilter][index][j] / 128.0f;
        }
    }

    /* obtain LTP scale factor */
    if (voiced && frame_num == 0)
        ltpscale = ff_silk_ltp_scale_factor[ff_opus_rc_dec_cdf(rc,
                                         ff_silk_model_ltp_scale_index)] / 16384.0f;
    else ltpscale = 15565.0f/16384.0f;

    /* generate the excitation signal for the entire frame */
    silk_decode_excitation(s, rc, residual + SILK_MAX_LAG, qoffset_high,
                           active, voiced);

    /* skip synthesising the side channel if we want mono-only */
    if (s->output_channels == channel)
        return;

    /* generate the output signal */
    for (i = 0; i < s->subframes; i++) {
        const float * lpc_coeff = (i < 2 && has_lpc_leadin) ? lpc_leadin : lpc_body;
        float *dst    = frame->output      + SILK_HISTORY + i * s->sflength;
        float *resptr = residual           + SILK_MAX_LAG + i * s->sflength;
        float *lpc    = frame->lpc_history + SILK_HISTORY + i * s->sflength;
        float sum;
        int j, k;

        if (voiced) {
            int out_end;
            float scale;

            if (i < 2 || s->nlsf_interp_factor == 4) {
                out_end = -i * s->sflength;
                scale   = ltpscale;
            } else {
                out_end = -(i - 2) * s->sflength;
                scale   = 1.0f;
            }

            /* when the LPC coefficients change, a re-whitening filter is used */
            /* to produce a residual that accounts for the change */
            for (j = - sf[i].pitchlag - LTP_ORDER/2; j < out_end; j++) {
                sum = dst[j];
                for (k = 0; k < order; k++)
                    sum -= lpc_coeff[k] * dst[j - k - 1];
                resptr[j] = av_clipf(sum, -1.0f, 1.0f) * scale / sf[i].gain;
            }

            if (out_end) {
                float rescale = sf[i-1].gain / sf[i].gain;
                for (j = out_end; j < 0; j++)
                    resptr[j] *= rescale;
            }

            /* LTP synthesis */
            for (j = 0; j < s->sflength; j++) {
                sum = resptr[j];
                for (k = 0; k < LTP_ORDER; k++)
                    sum += sf[i].ltptaps[k] * resptr[j - sf[i].pitchlag + LTP_ORDER/2 - k];
                resptr[j] = sum;
            }
        }

        /* LPC synthesis */
        for (j = 0; j < s->sflength; j++) {
            sum = resptr[j] * sf[i].gain;
            for (k = 1; k <= order; k++)
                sum += lpc_coeff[k - 1] * lpc[j - k];

            lpc[j] = sum;
            dst[j] = av_clipf(sum, -1.0f, 1.0f);
        }
    }

    frame->prev_voiced = voiced;
    memmove(frame->lpc_history, frame->lpc_history + s->flength, SILK_HISTORY * sizeof(float));
    memmove(frame->output,      frame->output      + s->flength, SILK_HISTORY * sizeof(float));

    frame->coded = 1;
}

static void silk_unmix_ms(SilkContext *s, float *l, float *r)
{
    float *mid    = s->frame[0].output + SILK_HISTORY - s->flength;
    float *side   = s->frame[1].output + SILK_HISTORY - s->flength;
    float w0_prev = s->prev_stereo_weights[0];
    float w1_prev = s->prev_stereo_weights[1];
    float w0      = s->stereo_weights[0];
    float w1      = s->stereo_weights[1];
    int n1        = ff_silk_stereo_interp_len[s->bandwidth];
    int i;

    for (i = 0; i < n1; i++) {
        float interp0 = w0_prev + i * (w0 - w0_prev) / n1;
        float interp1 = w1_prev + i * (w1 - w1_prev) / n1;
        float p0      = 0.25 * (mid[i - 2] + 2 * mid[i - 1] + mid[i]);

        l[i] = av_clipf((1 + interp1) * mid[i - 1] + side[i - 1] + interp0 * p0, -1.0, 1.0);
        r[i] = av_clipf((1 - interp1) * mid[i - 1] - side[i - 1] - interp0 * p0, -1.0, 1.0);
    }

    for (; i < s->flength; i++) {
        float p0 = 0.25 * (mid[i - 2] + 2 * mid[i - 1] + mid[i]);

        l[i] = av_clipf((1 + w1) * mid[i - 1] + side[i - 1] + w0 * p0, -1.0, 1.0);
        r[i] = av_clipf((1 - w1) * mid[i - 1] - side[i - 1] - w0 * p0, -1.0, 1.0);
    }

    memcpy(s->prev_stereo_weights, s->stereo_weights, sizeof(s->stereo_weights));
}

static void silk_flush_frame(SilkFrame *frame)
{
    if (!frame->coded)
        return;

    memset(frame->output,      0, sizeof(frame->output));
    memset(frame->lpc_history, 0, sizeof(frame->lpc_history));

    memset(frame->lpc,  0, sizeof(frame->lpc));
    memset(frame->nlsf, 0, sizeof(frame->nlsf));

    frame->log_gain = 0;

    frame->primarylag  = 0;
    frame->prev_voiced = 0;
    frame->coded       = 0;
}

int ff_silk_decode_superframe(SilkContext *s, OpusRangeCoder *rc,
                              float *output[2],
                              enum OpusBandwidth bandwidth,
                              int coded_channels,
                              int duration_ms)
{
    int active[2][6], redundancy[2];
    int nb_frames, i, j;

    if (bandwidth > OPUS_BANDWIDTH_WIDEBAND ||
        coded_channels > 2 || duration_ms > 60) {
        av_log(s->avctx, AV_LOG_ERROR, "Invalid parameters passed "
               "to the SILK decoder.\n");
        return AVERROR(EINVAL);
    }

    nb_frames = 1 + (duration_ms > 20) + (duration_ms > 40);
    s->subframes = duration_ms / nb_frames / 5;         // 5ms subframes
    s->sflength  = 20 * (bandwidth + 2);
    s->flength   = s->sflength * s->subframes;
    s->bandwidth = bandwidth;
    s->wb        = bandwidth == OPUS_BANDWIDTH_WIDEBAND;

    /* make sure to flush the side channel when switching from mono to stereo */
    if (coded_channels > s->prev_coded_channels)
        silk_flush_frame(&s->frame[1]);
    s->prev_coded_channels = coded_channels;

    /* read the LP-layer header bits */
    for (i = 0; i < coded_channels; i++) {
        for (j = 0; j < nb_frames; j++)
            active[i][j] = ff_opus_rc_dec_log(rc, 1);

        redundancy[i] = ff_opus_rc_dec_log(rc, 1);
        if (redundancy[i]) {
            avpriv_report_missing_feature(s->avctx, "LBRR frames");
            return AVERROR_PATCHWELCOME;
        }
    }

    for (i = 0; i < nb_frames; i++) {
        for (j = 0; j < coded_channels && !s->midonly; j++)
            silk_decode_frame(s, rc, i, j, coded_channels, active[j][i], active[1][i]);

        /* reset the side channel if it is not coded */
        if (s->midonly && s->frame[1].coded)
            silk_flush_frame(&s->frame[1]);

        if (coded_channels == 1 || s->output_channels == 1) {
            for (j = 0; j < s->output_channels; j++) {
                memcpy(output[j] + i * s->flength,
                       s->frame[0].output + SILK_HISTORY - s->flength - 2,
                       s->flength * sizeof(float));
            }
        } else {
            silk_unmix_ms(s, output[0] + i * s->flength, output[1] + i * s->flength);
        }

        s->midonly        = 0;
    }

    return nb_frames * s->flength;
}

void ff_silk_free(SilkContext **ps)
{
    av_freep(ps);
}

void ff_silk_flush(SilkContext *s)
{
    silk_flush_frame(&s->frame[0]);
    silk_flush_frame(&s->frame[1]);

    memset(s->prev_stereo_weights, 0, sizeof(s->prev_stereo_weights));
}

int ff_silk_init(AVCodecContext *avctx, SilkContext **ps, int output_channels)
{
    SilkContext *s;

    if (output_channels != 1 && output_channels != 2) {
        av_log(avctx, AV_LOG_ERROR, "Invalid number of output channels: %d\n",
               output_channels);
        return AVERROR(EINVAL);
    }

    s = av_mallocz(sizeof(*s));
    if (!s)
        return AVERROR(ENOMEM);

    s->avctx           = avctx;
    s->output_channels = output_channels;

    ff_silk_flush(s);

    *ps = s;

    return 0;
}
OpenPOWER on IntegriCloud