summaryrefslogtreecommitdiffstats
path: root/libavcodec/g723_1.c
blob: 1deff495de5f0aa4f19b67926d8dafe89e1d7b88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
/*
 * G.723.1 compatible decoder
 * Copyright (c) 2006 Benjamin Larsson
 * Copyright (c) 2010 Mohamed Naufal Basheer
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include <stdint.h>

#include "libavutil/common.h"

#include "acelp_vectors.h"
#include "avcodec.h"
#include "celp_math.h"
#include "g723_1.h"

int ff_g723_1_scale_vector(int16_t *dst, const int16_t *vector, int length)
{
    int bits, max = 0;
    int i;

    for (i = 0; i < length; i++)
        max |= FFABS(vector[i]);

    bits= 14 - av_log2_16bit(max);
    bits= FFMAX(bits, 0);

    for (i = 0; i < length; i++)
        dst[i] = (vector[i] * (1 << bits)) >> 3;

    return bits - 3;
}

int ff_g723_1_normalize_bits(int num, int width)
{
    return width - av_log2(num) - 1;
}

int ff_g723_1_dot_product(const int16_t *a, const int16_t *b, int length)
{
    int sum = ff_dot_product(a, b, length);
    return av_sat_add32(sum, sum);
}

void ff_g723_1_get_residual(int16_t *residual, int16_t *prev_excitation,
                            int lag)
{
    int offset = PITCH_MAX - PITCH_ORDER / 2 - lag;
    int i;

    residual[0] = prev_excitation[offset];
    residual[1] = prev_excitation[offset + 1];

    offset += 2;
    for (i = 2; i < SUBFRAME_LEN + PITCH_ORDER - 1; i++)
        residual[i] = prev_excitation[offset + (i - 2) % lag];
}

void ff_g723_1_gen_dirac_train(int16_t *buf, int pitch_lag)
{
    int16_t vector[SUBFRAME_LEN];
    int i, j;

    memcpy(vector, buf, SUBFRAME_LEN * sizeof(*vector));
    for (i = pitch_lag; i < SUBFRAME_LEN; i += pitch_lag) {
        for (j = 0; j < SUBFRAME_LEN - i; j++)
            buf[i + j] += vector[j];
    }
}

void ff_g723_1_gen_acb_excitation(int16_t *vector, int16_t *prev_excitation,
                                  int pitch_lag, G723_1_Subframe *subfrm,
                                  enum Rate cur_rate)
{
    int16_t residual[SUBFRAME_LEN + PITCH_ORDER - 1];
    const int16_t *cb_ptr;
    int lag = pitch_lag + subfrm->ad_cb_lag - 1;

    int i;
    int sum;

    ff_g723_1_get_residual(residual, prev_excitation, lag);

    /* Select quantization table */
    if (cur_rate == RATE_6300 && pitch_lag < SUBFRAME_LEN - 2) {
        cb_ptr = adaptive_cb_gain85;
    } else
        cb_ptr = adaptive_cb_gain170;

    /* Calculate adaptive vector */
    cb_ptr += subfrm->ad_cb_gain * 20;
    for (i = 0; i < SUBFRAME_LEN; i++) {
        sum = ff_dot_product(residual + i, cb_ptr, PITCH_ORDER);
        vector[i] = av_sat_dadd32(1 << 15, av_sat_add32(sum, sum)) >> 16;
    }
}

/**
 * Convert LSP frequencies to LPC coefficients.
 *
 * @param lpc buffer for LPC coefficients
 */
static void lsp2lpc(int16_t *lpc)
{
    int f1[LPC_ORDER / 2 + 1];
    int f2[LPC_ORDER / 2 + 1];
    int i, j;

    /* Calculate negative cosine */
    for (j = 0; j < LPC_ORDER; j++) {
        int index     = (lpc[j] >> 7) & 0x1FF;
        int offset    = lpc[j] & 0x7f;
        int temp1     = cos_tab[index] * (1 << 16);
        int temp2     = (cos_tab[index + 1] - cos_tab[index]) *
                          (((offset << 8) + 0x80) << 1);

        lpc[j] = -(av_sat_dadd32(1 << 15, temp1 + temp2) >> 16);
    }

    /*
     * Compute sum and difference polynomial coefficients
     * (bitexact alternative to lsp2poly() in lsp.c)
     */
    /* Initialize with values in Q28 */
    f1[0] = 1 << 28;
    f1[1] = (lpc[0] + lpc[2]) * (1 << 14);
    f1[2] = lpc[0] * lpc[2] + (2 << 28);

    f2[0] = 1 << 28;
    f2[1] = (lpc[1] + lpc[3]) * (1 << 14);
    f2[2] = lpc[1] * lpc[3] + (2 << 28);

    /*
     * Calculate and scale the coefficients by 1/2 in
     * each iteration for a final scaling factor of Q25
     */
    for (i = 2; i < LPC_ORDER / 2; i++) {
        f1[i + 1] = av_clipl_int32(f1[i - 1] + (int64_t)MULL2(f1[i], lpc[2 * i]));
        f2[i + 1] = av_clipl_int32(f2[i - 1] + (int64_t)MULL2(f2[i], lpc[2 * i + 1]));

        for (j = i; j >= 2; j--) {
            f1[j] = MULL2(f1[j - 1], lpc[2 * i]) +
                    (f1[j] >> 1) + (f1[j - 2] >> 1);
            f2[j] = MULL2(f2[j - 1], lpc[2 * i + 1]) +
                    (f2[j] >> 1) + (f2[j - 2] >> 1);
        }

        f1[0] >>= 1;
        f2[0] >>= 1;
        f1[1] = ((lpc[2 * i]     * 65536 >> i) + f1[1]) >> 1;
        f2[1] = ((lpc[2 * i + 1] * 65536 >> i) + f2[1]) >> 1;
    }

    /* Convert polynomial coefficients to LPC coefficients */
    for (i = 0; i < LPC_ORDER / 2; i++) {
        int64_t ff1 = f1[i + 1] + f1[i];
        int64_t ff2 = f2[i + 1] - f2[i];

        lpc[i] = av_clipl_int32(((ff1 + ff2) * 8) + (1 << 15)) >> 16;
        lpc[LPC_ORDER - i - 1] = av_clipl_int32(((ff1 - ff2) * 8) +
                                                (1 << 15)) >> 16;
    }
}

void ff_g723_1_lsp_interpolate(int16_t *lpc, int16_t *cur_lsp,
                               int16_t *prev_lsp)
{
    int i;
    int16_t *lpc_ptr = lpc;

    /* cur_lsp * 0.25 + prev_lsp * 0.75 */
    ff_acelp_weighted_vector_sum(lpc, cur_lsp, prev_lsp,
                                 4096, 12288, 1 << 13, 14, LPC_ORDER);
    ff_acelp_weighted_vector_sum(lpc + LPC_ORDER, cur_lsp, prev_lsp,
                                 8192, 8192, 1 << 13, 14, LPC_ORDER);
    ff_acelp_weighted_vector_sum(lpc + 2 * LPC_ORDER, cur_lsp, prev_lsp,
                                 12288, 4096, 1 << 13, 14, LPC_ORDER);
    memcpy(lpc + 3 * LPC_ORDER, cur_lsp, LPC_ORDER * sizeof(*lpc));

    for (i = 0; i < SUBFRAMES; i++) {
        lsp2lpc(lpc_ptr);
        lpc_ptr += LPC_ORDER;
    }
}

void ff_g723_1_inverse_quant(int16_t *cur_lsp, int16_t *prev_lsp,
                             uint8_t *lsp_index, int bad_frame)
{
    int min_dist, pred;
    int i, j, temp, stable;

    /* Check for frame erasure */
    if (!bad_frame) {
        min_dist     = 0x100;
        pred         = 12288;
    } else {
        min_dist     = 0x200;
        pred         = 23552;
        lsp_index[0] = lsp_index[1] = lsp_index[2] = 0;
    }

    /* Get the VQ table entry corresponding to the transmitted index */
    cur_lsp[0] = lsp_band0[lsp_index[0]][0];
    cur_lsp[1] = lsp_band0[lsp_index[0]][1];
    cur_lsp[2] = lsp_band0[lsp_index[0]][2];
    cur_lsp[3] = lsp_band1[lsp_index[1]][0];
    cur_lsp[4] = lsp_band1[lsp_index[1]][1];
    cur_lsp[5] = lsp_band1[lsp_index[1]][2];
    cur_lsp[6] = lsp_band2[lsp_index[2]][0];
    cur_lsp[7] = lsp_band2[lsp_index[2]][1];
    cur_lsp[8] = lsp_band2[lsp_index[2]][2];
    cur_lsp[9] = lsp_band2[lsp_index[2]][3];

    /* Add predicted vector & DC component to the previously quantized vector */
    for (i = 0; i < LPC_ORDER; i++) {
        temp        = ((prev_lsp[i] - dc_lsp[i]) * pred + (1 << 14)) >> 15;
        cur_lsp[i] += dc_lsp[i] + temp;
    }

    for (i = 0; i < LPC_ORDER; i++) {
        cur_lsp[0]             = FFMAX(cur_lsp[0],  0x180);
        cur_lsp[LPC_ORDER - 1] = FFMIN(cur_lsp[LPC_ORDER - 1], 0x7e00);

        /* Stability check */
        for (j = 1; j < LPC_ORDER; j++) {
            temp = min_dist + cur_lsp[j - 1] - cur_lsp[j];
            if (temp > 0) {
                temp >>= 1;
                cur_lsp[j - 1] -= temp;
                cur_lsp[j]     += temp;
            }
        }
        stable = 1;
        for (j = 1; j < LPC_ORDER; j++) {
            temp = cur_lsp[j - 1] + min_dist - cur_lsp[j] - 4;
            if (temp > 0) {
                stable = 0;
                break;
            }
        }
        if (stable)
            break;
    }
    if (!stable)
        memcpy(cur_lsp, prev_lsp, LPC_ORDER * sizeof(*cur_lsp));
}
OpenPOWER on IntegriCloud