/* * Copyright (c) 2012 Justin Ruggles * * This file is part of Libav. * * Libav is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * Libav is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with Libav; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/common.h" #include "libavutil/dict.h" #include "libavutil/error.h" #include "libavutil/log.h" #include "libavutil/mem.h" #include "libavutil/opt.h" #include "avresample.h" #include "internal.h" #include "audio_data.h" #include "audio_convert.h" #include "audio_mix.h" #include "resample.h" int avresample_open(AVAudioResampleContext *avr) { int ret; /* set channel mixing parameters */ avr->in_channels = av_get_channel_layout_nb_channels(avr->in_channel_layout); if (avr->in_channels <= 0 || avr->in_channels > AVRESAMPLE_MAX_CHANNELS) { av_log(avr, AV_LOG_ERROR, "Invalid input channel layout: %"PRIu64"\n", avr->in_channel_layout); return AVERROR(EINVAL); } avr->out_channels = av_get_channel_layout_nb_channels(avr->out_channel_layout); if (avr->out_channels <= 0 || avr->out_channels > AVRESAMPLE_MAX_CHANNELS) { av_log(avr, AV_LOG_ERROR, "Invalid output channel layout: %"PRIu64"\n", avr->out_channel_layout); return AVERROR(EINVAL); } avr->resample_channels = FFMIN(avr->in_channels, avr->out_channels); avr->downmix_needed = avr->in_channels > avr->out_channels; avr->upmix_needed = avr->out_channels > avr->in_channels || (!avr->downmix_needed && (avr->mix_matrix || avr->in_channel_layout != avr->out_channel_layout)); avr->mixing_needed = avr->downmix_needed || avr->upmix_needed; /* set resampling parameters */ avr->resample_needed = avr->in_sample_rate != avr->out_sample_rate || avr->force_resampling; /* select internal sample format if not specified by the user */ if (avr->internal_sample_fmt == AV_SAMPLE_FMT_NONE && (avr->mixing_needed || avr->resample_needed)) { enum AVSampleFormat in_fmt = av_get_planar_sample_fmt(avr->in_sample_fmt); enum AVSampleFormat out_fmt = av_get_planar_sample_fmt(avr->out_sample_fmt); int max_bps = FFMAX(av_get_bytes_per_sample(in_fmt), av_get_bytes_per_sample(out_fmt)); if (max_bps <= 2) { avr->internal_sample_fmt = AV_SAMPLE_FMT_S16P; } else if (avr->mixing_needed) { avr->internal_sample_fmt = AV_SAMPLE_FMT_FLTP; } else { if (max_bps <= 4) { if (in_fmt == AV_SAMPLE_FMT_S32P || out_fmt == AV_SAMPLE_FMT_S32P) { if (in_fmt == AV_SAMPLE_FMT_FLTP || out_fmt == AV_SAMPLE_FMT_FLTP) { /* if one is s32 and the other is flt, use dbl */ avr->internal_sample_fmt = AV_SAMPLE_FMT_DBLP; } else { /* if one is s32 and the other is s32, s16, or u8, use s32 */ avr->internal_sample_fmt = AV_SAMPLE_FMT_S32P; } } else { /* if one is flt and the other is flt, s16 or u8, use flt */ avr->internal_sample_fmt = AV_SAMPLE_FMT_FLTP; } } else { /* if either is dbl, use dbl */ avr->internal_sample_fmt = AV_SAMPLE_FMT_DBLP; } } av_log(avr, AV_LOG_DEBUG, "Using %s as internal sample format\n", av_get_sample_fmt_name(avr->internal_sample_fmt)); } /* set sample format conversion parameters */ if (avr->in_channels == 1) avr->in_sample_fmt = av_get_planar_sample_fmt(avr->in_sample_fmt); if (avr->out_channels == 1) avr->out_sample_fmt = av_get_planar_sample_fmt(avr->out_sample_fmt); avr->in_convert_needed = (avr->resample_needed || avr->mixing_needed) && avr->in_sample_fmt != avr->internal_sample_fmt; if (avr->resample_needed || avr->mixing_needed) avr->out_convert_needed = avr->internal_sample_fmt != avr->out_sample_fmt; else avr->out_convert_needed = avr->in_sample_fmt != avr->out_sample_fmt; /* allocate buffers */ if (avr->mixing_needed || avr->in_convert_needed) { avr->in_buffer = ff_audio_data_alloc(FFMAX(avr->in_channels, avr->out_channels), 0, avr->internal_sample_fmt, "in_buffer"); if (!avr->in_buffer) { ret = AVERROR(EINVAL); goto error; } } if (avr->resample_needed) { avr->resample_out_buffer = ff_audio_data_alloc(avr->out_channels, 0, avr->internal_sample_fmt, "resample_out_buffer"); if (!avr->resample_out_buffer) { ret = AVERROR(EINVAL); goto error; } } if (avr->out_convert_needed) { avr->out_buffer = ff_audio_data_alloc(avr->out_channels, 0, avr->out_sample_fmt, "out_buffer"); if (!avr->out_buffer) { ret = AVERROR(EINVAL); goto error; } } avr->out_fifo = av_audio_fifo_alloc(avr->out_sample_fmt, avr->out_channels, 1024); if (!avr->out_fifo) { ret = AVERROR(ENOMEM); goto error; } /* setup contexts */ if (avr->in_convert_needed) { avr->ac_in = ff_audio_convert_alloc(avr, avr->internal_sample_fmt, avr->in_sample_fmt, avr->in_channels, avr->in_sample_rate); if (!avr->ac_in) { ret = AVERROR(ENOMEM); goto error; } } if (avr->out_convert_needed) { enum AVSampleFormat src_fmt; if (avr->in_convert_needed) src_fmt = avr->internal_sample_fmt; else src_fmt = avr->in_sample_fmt; avr->ac_out = ff_audio_convert_alloc(avr, avr->out_sample_fmt, src_fmt, avr->out_channels, avr->out_sample_rate); if (!avr->ac_out) { ret = AVERROR(ENOMEM); goto error; } } if (avr->resample_needed) { avr->resample = ff_audio_resample_init(avr); if (!avr->resample) { ret = AVERROR(ENOMEM); goto error; } } if (avr->mixing_needed) { avr->am = ff_audio_mix_alloc(avr); if (!avr->am) { ret = AVERROR(ENOMEM); goto error; } } return 0; error: avresample_close(avr); return ret; } void avresample_close(AVAudioResampleContext *avr) { ff_audio_data_free(&avr->in_buffer); ff_audio_data_free(&avr->resample_out_buffer); ff_audio_data_free(&avr->out_buffer); av_audio_fifo_free(avr->out_fifo); avr->out_fifo = NULL; ff_audio_convert_free(&avr->ac_in); ff_audio_convert_free(&avr->ac_out); ff_audio_resample_free(&avr->resample); ff_audio_mix_free(&avr->am); av_freep(&avr->mix_matrix); } void avresample_free(AVAudioResampleContext **avr) { if (!*avr) return; avresample_close(*avr); av_opt_free(*avr); av_freep(avr); } static int handle_buffered_output(AVAudioResampleContext *avr, AudioData *output, AudioData *converted) { int ret; if (!output || av_audio_fifo_size(avr->out_fifo) > 0 || (converted && output->allocated_samples < converted->nb_samples)) { if (converted) { /* if there are any samples in the output FIFO or if the user-supplied output buffer is not large enough for all samples, we add to the output FIFO */ av_dlog(avr, "[FIFO] add %s to out_fifo\n", converted->name); ret = ff_audio_data_add_to_fifo(avr->out_fifo, converted, 0, converted->nb_samples); if (ret < 0) return ret; } /* if the user specified an output buffer, read samples from the output FIFO to the user output */ if (output && output->allocated_samples > 0) { av_dlog(avr, "[FIFO] read from out_fifo to output\n"); av_dlog(avr, "[end conversion]\n"); return ff_audio_data_read_from_fifo(avr->out_fifo, output, output->allocated_samples); } } else if (converted) { /* copy directly to output if it is large enough or there is not any data in the output FIFO */ av_dlog(avr, "[copy] %s to output\n", converted->name); output->nb_samples = 0; ret = ff_audio_data_copy(output, converted); if (ret < 0) return ret; av_dlog(avr, "[end conversion]\n"); return output->nb_samples; } av_dlog(avr, "[end conversion]\n"); return 0; } int attribute_align_arg avresample_convert(AVAudioResampleContext *avr, uint8_t **output, int out_plane_size, int out_samples, uint8_t **input, int in_plane_size, int in_samples) { AudioData input_buffer; AudioData output_buffer; AudioData *current_buffer; int ret, direct_output; /* reset internal buffers */ if (avr->in_buffer) { avr->in_buffer->nb_samples = 0; ff_audio_data_set_channels(avr->in_buffer, avr->in_buffer->allocated_channels); } if (avr->resample_out_buffer) { avr->resample_out_buffer->nb_samples = 0; ff_audio_data_set_channels(avr->resample_out_buffer, avr->resample_out_buffer->allocated_channels); } if (avr->out_buffer) { avr->out_buffer->nb_samples = 0; ff_audio_data_set_channels(avr->out_buffer, avr->out_buffer->allocated_channels); } av_dlog(avr, "[start conversion]\n"); /* initialize output_buffer with output data */ direct_output = output && av_audio_fifo_size(avr->out_fifo) == 0; if (output) { ret = ff_audio_data_init(&output_buffer, output, out_plane_size, avr->out_channels, out_samples, avr->out_sample_fmt, 0, "output"); if (ret < 0) return ret; output_buffer.nb_samples = 0; } if (input) { /* initialize input_buffer with input data */ ret = ff_audio_data_init(&input_buffer, input, in_plane_size, avr->in_channels, in_samples, avr->in_sample_fmt, 1, "input"); if (ret < 0) return ret; current_buffer = &input_buffer; if (avr->upmix_needed && !avr->in_convert_needed && !avr->resample_needed && !avr->out_convert_needed && direct_output && out_samples >= in_samples) { /* in some rare cases we can copy input to output and upmix directly in the output buffer */ av_dlog(avr, "[copy] %s to output\n", current_buffer->name); ret = ff_audio_data_copy(&output_buffer, current_buffer); if (ret < 0) return ret; current_buffer = &output_buffer; } else if (avr->mixing_needed || avr->in_convert_needed) { /* if needed, copy or convert input to in_buffer, and downmix if applicable */ if (avr->in_convert_needed) { ret = ff_audio_data_realloc(avr->in_buffer, current_buffer->nb_samples); if (ret < 0) return ret; av_dlog(avr, "[convert] %s to in_buffer\n", current_buffer->name); ret = ff_audio_convert(avr->ac_in, avr->in_buffer, current_buffer); if (ret < 0) return ret; } else { av_dlog(avr, "[copy] %s to in_buffer\n", current_buffer->name); ret = ff_audio_data_copy(avr->in_buffer, current_buffer); if (ret < 0) return ret; } ff_audio_data_set_channels(avr->in_buffer, avr->in_channels); if (avr->downmix_needed) { av_dlog(avr, "[downmix] in_buffer\n"); ret = ff_audio_mix(avr->am, avr->in_buffer); if (ret < 0) return ret; } current_buffer = avr->in_buffer; } } else { /* flush resampling buffer and/or output FIFO if input is NULL */ if (!avr->resample_needed) return handle_buffered_output(avr, output ? &output_buffer : NULL, NULL); current_buffer = NULL; } if (avr->resample_needed) { AudioData *resample_out; if (!avr->out_convert_needed && direct_output && out_samples > 0) resample_out = &output_buffer; else resample_out = avr->resample_out_buffer; av_dlog(avr, "[resample] %s to %s\n", current_buffer->name, resample_out->name); ret = ff_audio_resample(avr->resample, resample_out, current_buffer); if (ret < 0) return ret; /* if resampling did not produce any samples, just return 0 */ if (resample_out->nb_samples == 0) { av_dlog(avr, "[end conversion]\n"); return 0; } current_buffer = resample_out; } if (avr->upmix_needed) { av_dlog(avr, "[upmix] %s\n", current_buffer->name); ret = ff_audio_mix(avr->am, current_buffer); if (ret < 0) return ret; } /* if we resampled or upmixed directly to output, return here */ if (current_buffer == &output_buffer) { av_dlog(avr, "[end conversion]\n"); return current_buffer->nb_samples; } if (avr->out_convert_needed) { if (direct_output && out_samples >= current_buffer->nb_samples) { /* convert directly to output */ av_dlog(avr, "[convert] %s to output\n", current_buffer->name); ret = ff_audio_convert(avr->ac_out, &output_buffer, current_buffer); if (ret < 0) return ret; av_dlog(avr, "[end conversion]\n"); return output_buffer.nb_samples; } else { ret = ff_audio_data_realloc(avr->out_buffer, current_buffer->nb_samples); if (ret < 0) return ret; av_dlog(avr, "[convert] %s to out_buffer\n", current_buffer->name); ret = ff_audio_convert(avr->ac_out, avr->out_buffer, current_buffer); if (ret < 0) return ret; current_buffer = avr->out_buffer; } } return handle_buffered_output(avr, output ? &output_buffer : NULL, current_buffer); } int avresample_get_matrix(AVAudioResampleContext *avr, double *matrix, int stride) { int in_channels, out_channels, i, o; if (avr->am) return ff_audio_mix_get_matrix(avr->am, matrix, stride); in_channels = av_get_channel_layout_nb_channels(avr->in_channel_layout); out_channels = av_get_channel_layout_nb_channels(avr->out_channel_layout); if ( in_channels <= 0 || in_channels > AVRESAMPLE_MAX_CHANNELS || out_channels <= 0 || out_channels > AVRESAMPLE_MAX_CHANNELS) { av_log(avr, AV_LOG_ERROR, "Invalid channel layouts\n"); return AVERROR(EINVAL); } if (!avr->mix_matrix) { av_log(avr, AV_LOG_ERROR, "matrix is not set\n"); return AVERROR(EINVAL); } for (o = 0; o < out_channels; o++) for (i = 0; i < in_channels; i++) matrix[o * stride + i] = avr->mix_matrix[o * in_channels + i]; return 0; } int avresample_set_matrix(AVAudioResampleContext *avr, const double *matrix, int stride) { int in_channels, out_channels, i, o; if (avr->am) return ff_audio_mix_set_matrix(avr->am, matrix, stride); in_channels = av_get_channel_layout_nb_channels(avr->in_channel_layout); out_channels = av_get_channel_layout_nb_channels(avr->out_channel_layout); if ( in_channels <= 0 || in_channels > AVRESAMPLE_MAX_CHANNELS || out_channels <= 0 || out_channels > AVRESAMPLE_MAX_CHANNELS) { av_log(avr, AV_LOG_ERROR, "Invalid channel layouts\n"); return AVERROR(EINVAL); } if (avr->mix_matrix) av_freep(&avr->mix_matrix); avr->mix_matrix = av_malloc(in_channels * out_channels * sizeof(*avr->mix_matrix)); if (!avr->mix_matrix) return AVERROR(ENOMEM); for (o = 0; o < out_channels; o++) for (i = 0; i < in_channels; i++) avr->mix_matrix[o * in_channels + i] = matrix[o * stride + i]; return 0; } int avresample_available(AVAudioResampleContext *avr) { return av_audio_fifo_size(avr->out_fifo); } int avresample_read(AVAudioResampleContext *avr, uint8_t **output, int nb_samples) { if (!output) return av_audio_fifo_drain(avr->out_fifo, nb_samples); return av_audio_fifo_read(avr->out_fifo, (void**)output, nb_samples); } unsigned avresample_version(void) { return LIBAVRESAMPLE_VERSION_INT; } const char *avresample_license(void) { #define LICENSE_PREFIX "libavresample license: " return LICENSE_PREFIX LIBAV_LICENSE + sizeof(LICENSE_PREFIX) - 1; } const char *avresample_configuration(void) { return LIBAV_CONFIGURATION; }