/* * Copyright (C) 2018 Philip Langdale * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ template __inline__ __device__ T spatial_predictor(T a, T b, T c, T d, T e, T f, T g, T h, T i, T j, T k, T l, T m, T n) { int spatial_pred = (d + k)/2; int spatial_score = abs(c - j) + abs(d - k) + abs(e - l); int score = abs(b - k) + abs(c - l) + abs(d - m); if (score < spatial_score) { spatial_pred = (c + l)/2; spatial_score = score; score = abs(a - l) + abs(b - m) + abs(c - n); if (score < spatial_score) { spatial_pred = (b + m)/2; spatial_score = score; } } score = abs(d - i) + abs(e - j) + abs(f - k); if (score < spatial_score) { spatial_pred = (e + j)/2; spatial_score = score; score = abs(e - h) + abs(f - i) + abs(g - j); if (score < spatial_score) { spatial_pred = (f + i)/2; spatial_score = score; } } return spatial_pred; } __inline__ __device__ int max3(int a, int b, int c) { int x = max(a, b); return max(x, c); } __inline__ __device__ int min3(int a, int b, int c) { int x = min(a, b); return min(x, c); } template __inline__ __device__ T temporal_predictor(T A, T B, T C, T D, T E, T F, T G, T H, T I, T J, T K, T L, T spatial_pred, bool skip_check) { int p0 = (C + H) / 2; int p1 = F; int p2 = (D + I) / 2; int p3 = G; int p4 = (E + J) / 2; int tdiff0 = abs(D - I); int tdiff1 = (abs(A - F) + abs(B - G)) / 2; int tdiff2 = (abs(K - F) + abs(G - L)) / 2; int diff = max3(tdiff0, tdiff1, tdiff2); if (!skip_check) { int maxi = max3(p2 - p3, p2 - p1, min(p0 - p1, p4 - p3)); int mini = min3(p2 - p3, p2 - p1, max(p0 - p1, p4 - p3)); diff = max3(diff, mini, -maxi); } if (spatial_pred > p2 + diff) { spatial_pred = p2 + diff; } if (spatial_pred < p2 - diff) { spatial_pred = p2 - diff; } return spatial_pred; } template __inline__ __device__ void yadif_single(T *dst, cudaTextureObject_t prev, cudaTextureObject_t cur, cudaTextureObject_t next, int dst_width, int dst_height, int dst_pitch, int src_width, int src_height, int parity, int tff, bool skip_spatial_check) { // Identify location int xo = blockIdx.x * blockDim.x + threadIdx.x; int yo = blockIdx.y * blockDim.y + threadIdx.y; if (xo >= dst_width || yo >= dst_height) { return; } // Don't modify the primary field if (yo % 2 == parity) { dst[yo*dst_pitch+xo] = tex2D(cur, xo, yo); return; } // Calculate spatial prediction T a = tex2D(cur, xo - 3, yo - 1); T b = tex2D(cur, xo - 2, yo - 1); T c = tex2D(cur, xo - 1, yo - 1); T d = tex2D(cur, xo - 0, yo - 1); T e = tex2D(cur, xo + 1, yo - 1); T f = tex2D(cur, xo + 2, yo - 1); T g = tex2D(cur, xo + 3, yo - 1); T h = tex2D(cur, xo - 3, yo + 1); T i = tex2D(cur, xo - 2, yo + 1); T j = tex2D(cur, xo - 1, yo + 1); T k = tex2D(cur, xo - 0, yo + 1); T l = tex2D(cur, xo + 1, yo + 1); T m = tex2D(cur, xo + 2, yo + 1); T n = tex2D(cur, xo + 3, yo + 1); T spatial_pred = spatial_predictor(a, b, c, d, e, f, g, h, i, j, k, l, m, n); // Calculate temporal prediction int is_second_field = !(parity ^ tff); cudaTextureObject_t prev2 = prev; cudaTextureObject_t prev1 = is_second_field ? cur : prev; cudaTextureObject_t next1 = is_second_field ? next : cur; cudaTextureObject_t next2 = next; T A = tex2D(prev2, xo, yo - 1); T B = tex2D(prev2, xo, yo + 1); T C = tex2D(prev1, xo, yo - 2); T D = tex2D(prev1, xo, yo + 0); T E = tex2D(prev1, xo, yo + 2); T F = tex2D(cur, xo, yo - 1); T G = tex2D(cur, xo, yo + 1); T H = tex2D(next1, xo, yo - 2); T I = tex2D(next1, xo, yo + 0); T J = tex2D(next1, xo, yo + 2); T K = tex2D(next2, xo, yo - 1); T L = tex2D(next2, xo, yo + 1); spatial_pred = temporal_predictor(A, B, C, D, E, F, G, H, I, J, K, L, spatial_pred, skip_spatial_check); dst[yo*dst_pitch+xo] = spatial_pred; } template __inline__ __device__ void yadif_double(T *dst, cudaTextureObject_t prev, cudaTextureObject_t cur, cudaTextureObject_t next, int dst_width, int dst_height, int dst_pitch, int src_width, int src_height, int parity, int tff, bool skip_spatial_check) { int xo = blockIdx.x * blockDim.x + threadIdx.x; int yo = blockIdx.y * blockDim.y + threadIdx.y; if (xo >= dst_width || yo >= dst_height) { return; } if (yo % 2 == parity) { // Don't modify the primary field dst[yo*dst_pitch+xo] = tex2D(cur, xo, yo); return; } T a = tex2D(cur, xo - 3, yo - 1); T b = tex2D(cur, xo - 2, yo - 1); T c = tex2D(cur, xo - 1, yo - 1); T d = tex2D(cur, xo - 0, yo - 1); T e = tex2D(cur, xo + 1, yo - 1); T f = tex2D(cur, xo + 2, yo - 1); T g = tex2D(cur, xo + 3, yo - 1); T h = tex2D(cur, xo - 3, yo + 1); T i = tex2D(cur, xo - 2, yo + 1); T j = tex2D(cur, xo - 1, yo + 1); T k = tex2D(cur, xo - 0, yo + 1); T l = tex2D(cur, xo + 1, yo + 1); T m = tex2D(cur, xo + 2, yo + 1); T n = tex2D(cur, xo + 3, yo + 1); T spatial_pred; spatial_pred.x = spatial_predictor(a.x, b.x, c.x, d.x, e.x, f.x, g.x, h.x, i.x, j.x, k.x, l.x, m.x, n.x); spatial_pred.y = spatial_predictor(a.y, b.y, c.y, d.y, e.y, f.y, g.y, h.y, i.y, j.y, k.y, l.y, m.y, n.y); // Calculate temporal prediction int is_second_field = !(parity ^ tff); cudaTextureObject_t prev2 = prev; cudaTextureObject_t prev1 = is_second_field ? cur : prev; cudaTextureObject_t next1 = is_second_field ? next : cur; cudaTextureObject_t next2 = next; T A = tex2D(prev2, xo, yo - 1); T B = tex2D(prev2, xo, yo + 1); T C = tex2D(prev1, xo, yo - 2); T D = tex2D(prev1, xo, yo + 0); T E = tex2D(prev1, xo, yo + 2); T F = tex2D(cur, xo, yo - 1); T G = tex2D(cur, xo, yo + 1); T H = tex2D(next1, xo, yo - 2); T I = tex2D(next1, xo, yo + 0); T J = tex2D(next1, xo, yo + 2); T K = tex2D(next2, xo, yo - 1); T L = tex2D(next2, xo, yo + 1); spatial_pred.x = temporal_predictor(A.x, B.x, C.x, D.x, E.x, F.x, G.x, H.x, I.x, J.x, K.x, L.x, spatial_pred.x, skip_spatial_check); spatial_pred.y = temporal_predictor(A.y, B.y, C.y, D.y, E.y, F.y, G.y, H.y, I.y, J.y, K.y, L.y, spatial_pred.y, skip_spatial_check); dst[yo*dst_pitch+xo] = spatial_pred; } extern "C" { __global__ void yadif_uchar(unsigned char *dst, cudaTextureObject_t prev, cudaTextureObject_t cur, cudaTextureObject_t next, int dst_width, int dst_height, int dst_pitch, int src_width, int src_height, int parity, int tff, bool skip_spatial_check) { yadif_single(dst, prev, cur, next, dst_width, dst_height, dst_pitch, src_width, src_height, parity, tff, skip_spatial_check); } __global__ void yadif_ushort(unsigned short *dst, cudaTextureObject_t prev, cudaTextureObject_t cur, cudaTextureObject_t next, int dst_width, int dst_height, int dst_pitch, int src_width, int src_height, int parity, int tff, bool skip_spatial_check) { yadif_single(dst, prev, cur, next, dst_width, dst_height, dst_pitch, src_width, src_height, parity, tff, skip_spatial_check); } __global__ void yadif_uchar2(uchar2 *dst, cudaTextureObject_t prev, cudaTextureObject_t cur, cudaTextureObject_t next, int dst_width, int dst_height, int dst_pitch, int src_width, int src_height, int parity, int tff, bool skip_spatial_check) { yadif_double(dst, prev, cur, next, dst_width, dst_height, dst_pitch, src_width, src_height, parity, tff, skip_spatial_check); } __global__ void yadif_ushort2(ushort2 *dst, cudaTextureObject_t prev, cudaTextureObject_t cur, cudaTextureObject_t next, int dst_width, int dst_height, int dst_pitch, int src_width, int src_height, int parity, int tff, bool skip_spatial_check) { yadif_double(dst, prev, cur, next, dst_width, dst_height, dst_pitch, src_width, src_height, parity, tff, skip_spatial_check); } } /* extern "C" */