/* * Copyright (C) 2006-2011 Michael Niedermayer * 2010 James Darnley * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/avassert.h" #include "libavutil/cpu.h" #include "libavutil/common.h" #include "libavutil/pixdesc.h" #include "libavutil/imgutils.h" #include "avfilter.h" #include "formats.h" #include "internal.h" #include "video.h" #include "yadif.h" typedef struct ThreadData { AVFrame *frame; int plane; int w, h; int parity; int tff; } ThreadData; #define CHECK(j)\ { int score = FFABS(cur[mrefs - 1 + (j)] - cur[prefs - 1 - (j)])\ + FFABS(cur[mrefs +(j)] - cur[prefs -(j)])\ + FFABS(cur[mrefs + 1 + (j)] - cur[prefs + 1 - (j)]);\ if (score < spatial_score) {\ spatial_score= score;\ spatial_pred= (cur[mrefs +(j)] + cur[prefs -(j)])>>1;\ /* The is_not_edge argument here controls when the code will enter a branch * which reads up to and including x-3 and x+3. */ #define FILTER(start, end, is_not_edge) \ for (x = start; x < end; x++) { \ int c = cur[mrefs]; \ int d = (prev2[0] + next2[0])>>1; \ int e = cur[prefs]; \ int temporal_diff0 = FFABS(prev2[0] - next2[0]); \ int temporal_diff1 =(FFABS(prev[mrefs] - c) + FFABS(prev[prefs] - e) )>>1; \ int temporal_diff2 =(FFABS(next[mrefs] - c) + FFABS(next[prefs] - e) )>>1; \ int diff = FFMAX3(temporal_diff0 >> 1, temporal_diff1, temporal_diff2); \ int spatial_pred = (c+e) >> 1; \ \ if (is_not_edge) {\ int spatial_score = FFABS(cur[mrefs - 1] - cur[prefs - 1]) + FFABS(c-e) \ + FFABS(cur[mrefs + 1] - cur[prefs + 1]) - 1; \ CHECK(-1) CHECK(-2) }} }} \ CHECK( 1) CHECK( 2) }} }} \ }\ \ if (!(mode&2)) { \ int b = (prev2[2 * mrefs] + next2[2 * mrefs])>>1; \ int f = (prev2[2 * prefs] + next2[2 * prefs])>>1; \ int max = FFMAX3(d - e, d - c, FFMIN(b - c, f - e)); \ int min = FFMIN3(d - e, d - c, FFMAX(b - c, f - e)); \ \ diff = FFMAX3(diff, min, -max); \ } \ \ if (spatial_pred > d + diff) \ spatial_pred = d + diff; \ else if (spatial_pred < d - diff) \ spatial_pred = d - diff; \ \ dst[0] = spatial_pred; \ \ dst++; \ cur++; \ prev++; \ next++; \ prev2++; \ next2++; \ } static void filter_line_c(void *dst1, void *prev1, void *cur1, void *next1, int w, int prefs, int mrefs, int parity, int mode) { uint8_t *dst = dst1; uint8_t *prev = prev1; uint8_t *cur = cur1; uint8_t *next = next1; int x; uint8_t *prev2 = parity ? prev : cur ; uint8_t *next2 = parity ? cur : next; /* The function is called with the pointers already pointing to data[3] and * with 6 subtracted from the width. This allows the FILTER macro to be * called so that it processes all the pixels normally. A constant value of * true for is_not_edge lets the compiler ignore the if statement. */ FILTER(0, w, 1) } #define MAX_ALIGN 8 static void filter_edges(void *dst1, void *prev1, void *cur1, void *next1, int w, int prefs, int mrefs, int parity, int mode) { uint8_t *dst = dst1; uint8_t *prev = prev1; uint8_t *cur = cur1; uint8_t *next = next1; int x; uint8_t *prev2 = parity ? prev : cur ; uint8_t *next2 = parity ? cur : next; const int edge = MAX_ALIGN - 1; /* Only edge pixels need to be processed here. A constant value of false * for is_not_edge should let the compiler ignore the whole branch. */ FILTER(0, 3, 0) dst = (uint8_t*)dst1 + w - edge; prev = (uint8_t*)prev1 + w - edge; cur = (uint8_t*)cur1 + w - edge; next = (uint8_t*)next1 + w - edge; prev2 = (uint8_t*)(parity ? prev : cur); next2 = (uint8_t*)(parity ? cur : next); FILTER(w - edge, w - 3, 1) FILTER(w - 3, w, 0) } static void filter_line_c_16bit(void *dst1, void *prev1, void *cur1, void *next1, int w, int prefs, int mrefs, int parity, int mode) { uint16_t *dst = dst1; uint16_t *prev = prev1; uint16_t *cur = cur1; uint16_t *next = next1; int x; uint16_t *prev2 = parity ? prev : cur ; uint16_t *next2 = parity ? cur : next; mrefs /= 2; prefs /= 2; FILTER(0, w, 1) } static void filter_edges_16bit(void *dst1, void *prev1, void *cur1, void *next1, int w, int prefs, int mrefs, int parity, int mode) { uint16_t *dst = dst1; uint16_t *prev = prev1; uint16_t *cur = cur1; uint16_t *next = next1; int x; uint16_t *prev2 = parity ? prev : cur ; uint16_t *next2 = parity ? cur : next; const int edge = MAX_ALIGN / 2 - 1; mrefs /= 2; prefs /= 2; FILTER(0, 3, 0) dst = (uint16_t*)dst1 + w - edge; prev = (uint16_t*)prev1 + w - edge; cur = (uint16_t*)cur1 + w - edge; next = (uint16_t*)next1 + w - edge; prev2 = (uint16_t*)(parity ? prev : cur); next2 = (uint16_t*)(parity ? cur : next); FILTER(w - edge, w - 3, 1) FILTER(w - 3, w, 0) } static int filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { YADIFContext *s = ctx->priv; ThreadData *td = arg; int refs = s->cur->linesize[td->plane]; int df = (s->csp->comp[td->plane].depth + 7) / 8; int pix_3 = 3 * df; int slice_start = (td->h * jobnr ) / nb_jobs; int slice_end = (td->h * (jobnr+1)) / nb_jobs; int y; int edge = 3 + MAX_ALIGN / df - 1; /* filtering reads 3 pixels to the left/right; to avoid invalid reads, * we need to call the c variant which avoids this for border pixels */ for (y = slice_start; y < slice_end; y++) { if ((y ^ td->parity) & 1) { uint8_t *prev = &s->prev->data[td->plane][y * refs]; uint8_t *cur = &s->cur ->data[td->plane][y * refs]; uint8_t *next = &s->next->data[td->plane][y * refs]; uint8_t *dst = &td->frame->data[td->plane][y * td->frame->linesize[td->plane]]; int mode = y == 1 || y + 2 == td->h ? 2 : s->mode; s->filter_line(dst + pix_3, prev + pix_3, cur + pix_3, next + pix_3, td->w - edge, y + 1 < td->h ? refs : -refs, y ? -refs : refs, td->parity ^ td->tff, mode); s->filter_edges(dst, prev, cur, next, td->w, y + 1 < td->h ? refs : -refs, y ? -refs : refs, td->parity ^ td->tff, mode); } else { memcpy(&td->frame->data[td->plane][y * td->frame->linesize[td->plane]], &s->cur->data[td->plane][y * refs], td->w * df); } } return 0; } static void filter(AVFilterContext *ctx, AVFrame *dstpic, int parity, int tff) { YADIFContext *yadif = ctx->priv; ThreadData td = { .frame = dstpic, .parity = parity, .tff = tff }; int i; for (i = 0; i < yadif->csp->nb_components; i++) { int w = dstpic->width; int h = dstpic->height; if (i == 1 || i == 2) { w = AV_CEIL_RSHIFT(w, yadif->csp->log2_chroma_w); h = AV_CEIL_RSHIFT(h, yadif->csp->log2_chroma_h); } td.w = w; td.h = h; td.plane = i; ctx->internal->execute(ctx, filter_slice, &td, NULL, FFMIN(h, ff_filter_get_nb_threads(ctx))); } emms_c(); } static av_cold void uninit(AVFilterContext *ctx) { YADIFContext *yadif = ctx->priv; av_frame_free(&yadif->prev); av_frame_free(&yadif->cur ); av_frame_free(&yadif->next); } static int query_formats(AVFilterContext *ctx) { static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_GRAY8, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_GRAY16, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16, AV_PIX_FMT_GBRAP, AV_PIX_FMT_NONE }; AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts); if (!fmts_list) return AVERROR(ENOMEM); return ff_set_common_formats(ctx, fmts_list); } static int config_props(AVFilterLink *link) { AVFilterContext *ctx = link->src; YADIFContext *s = ctx->priv; link->time_base.num = ctx->inputs[0]->time_base.num; link->time_base.den = ctx->inputs[0]->time_base.den * 2; link->w = ctx->inputs[0]->w; link->h = ctx->inputs[0]->h; if(s->mode & 1) link->frame_rate = av_mul_q(ctx->inputs[0]->frame_rate, (AVRational){2, 1}); if (link->w < 3 || link->h < 3) { av_log(ctx, AV_LOG_ERROR, "Video of less than 3 columns or lines is not supported\n"); return AVERROR(EINVAL); } s->csp = av_pix_fmt_desc_get(link->format); s->filter = filter; if (s->csp->comp[0].depth > 8) { s->filter_line = filter_line_c_16bit; s->filter_edges = filter_edges_16bit; } else { s->filter_line = filter_line_c; s->filter_edges = filter_edges; } if (ARCH_X86) ff_yadif_init_x86(s); return 0; } static const AVClass yadif_class = { .class_name = "yadif", .item_name = av_default_item_name, .option = ff_yadif_options, .version = LIBAVUTIL_VERSION_INT, .category = AV_CLASS_CATEGORY_FILTER, }; static const AVFilterPad avfilter_vf_yadif_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .filter_frame = ff_yadif_filter_frame, }, { NULL } }; static const AVFilterPad avfilter_vf_yadif_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .request_frame = ff_yadif_request_frame, .config_props = config_props, }, { NULL } }; AVFilter ff_vf_yadif = { .name = "yadif", .description = NULL_IF_CONFIG_SMALL("Deinterlace the input image."), .priv_size = sizeof(YADIFContext), .priv_class = &yadif_class, .uninit = uninit, .query_formats = query_formats, .inputs = avfilter_vf_yadif_inputs, .outputs = avfilter_vf_yadif_outputs, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS, };