/* * Copyright (c) 2017 Ronald S. Bultje * Copyright (c) 2017 Ashish Pratap Singh * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Calculate VMAF Motion score. */ #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "avfilter.h" #include "formats.h" #include "internal.h" #include "vmaf_motion.h" #define BIT_SHIFT 15 static const float FILTER_5[5] = { 0.054488685, 0.244201342, 0.402619947, 0.244201342, 0.054488685 }; typedef struct VMAFMotionContext { const AVClass *class; VMAFMotionData data; FILE *stats_file; char *stats_file_str; } VMAFMotionContext; #define OFFSET(x) offsetof(VMAFMotionContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM static const AVOption vmafmotion_options[] = { {"stats_file", "Set file where to store per-frame difference information", OFFSET(stats_file_str), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(vmafmotion); static uint64_t image_sad(const uint16_t *img1, const uint16_t *img2, int w, int h, ptrdiff_t _img1_stride, ptrdiff_t _img2_stride) { ptrdiff_t img1_stride = _img1_stride / sizeof(*img1); ptrdiff_t img2_stride = _img2_stride / sizeof(*img2); uint64_t sum = 0; int i, j; for (i = 0; i < h; i++) { for (j = 0; j < w; j++) { sum += abs(img1[j] - img2[j]); } img1 += img1_stride; img2 += img2_stride; } return sum; } static void convolution_x(const uint16_t *filter, int filt_w, const uint16_t *src, uint16_t *dst, int w, int h, ptrdiff_t _src_stride, ptrdiff_t _dst_stride) { ptrdiff_t src_stride = _src_stride / sizeof(*src); ptrdiff_t dst_stride = _dst_stride / sizeof(*dst); int radius = filt_w / 2; int borders_left = radius; int borders_right = w - (filt_w - radius); int i, j, k; int sum = 0; for (i = 0; i < h; i++) { for (j = 0; j < borders_left; j++) { sum = 0; for (k = 0; k < filt_w; k++) { int j_tap = FFABS(j - radius + k); if (j_tap >= w) { j_tap = w - (j_tap - w + 1); } sum += filter[k] * src[i * src_stride + j_tap]; } dst[i * dst_stride + j] = sum >> BIT_SHIFT; } for (j = borders_left; j < borders_right; j++) { int sum = 0; for (k = 0; k < filt_w; k++) { sum += filter[k] * src[i * src_stride + j - radius + k]; } dst[i * dst_stride + j] = sum >> BIT_SHIFT; } for (j = borders_right; j < w; j++) { sum = 0; for (k = 0; k < filt_w; k++) { int j_tap = FFABS(j - radius + k); if (j_tap >= w) { j_tap = w - (j_tap - w + 1); } sum += filter[k] * src[i * src_stride + j_tap]; } dst[i * dst_stride + j] = sum >> BIT_SHIFT; } } } #define conv_y_fn(type, bits) \ static void convolution_y_##bits##bit(const uint16_t *filter, int filt_w, \ const uint8_t *_src, uint16_t *dst, \ int w, int h, ptrdiff_t _src_stride, \ ptrdiff_t _dst_stride) \ { \ const type *src = (const type *) _src; \ ptrdiff_t src_stride = _src_stride / sizeof(*src); \ ptrdiff_t dst_stride = _dst_stride / sizeof(*dst); \ int radius = filt_w / 2; \ int borders_top = radius; \ int borders_bottom = h - (filt_w - radius); \ int i, j, k; \ int sum = 0; \ \ for (i = 0; i < borders_top; i++) { \ for (j = 0; j < w; j++) { \ sum = 0; \ for (k = 0; k < filt_w; k++) { \ int i_tap = FFABS(i - radius + k); \ if (i_tap >= h) { \ i_tap = h - (i_tap - h + 1); \ } \ sum += filter[k] * src[i_tap * src_stride + j]; \ } \ dst[i * dst_stride + j] = sum >> bits; \ } \ } \ for (i = borders_top; i < borders_bottom; i++) { \ for (j = 0; j < w; j++) { \ sum = 0; \ for (k = 0; k < filt_w; k++) { \ sum += filter[k] * src[(i - radius + k) * src_stride + j]; \ } \ dst[i * dst_stride + j] = sum >> bits; \ } \ } \ for (i = borders_bottom; i < h; i++) { \ for (j = 0; j < w; j++) { \ sum = 0; \ for (k = 0; k < filt_w; k++) { \ int i_tap = FFABS(i - radius + k); \ if (i_tap >= h) { \ i_tap = h - (i_tap - h + 1); \ } \ sum += filter[k] * src[i_tap * src_stride + j]; \ } \ dst[i * dst_stride + j] = sum >> bits; \ } \ } \ } conv_y_fn(uint8_t, 8) conv_y_fn(uint16_t, 10) static void vmafmotiondsp_init(VMAFMotionDSPContext *dsp, int bpp) { dsp->convolution_x = convolution_x; dsp->convolution_y = bpp == 10 ? convolution_y_10bit : convolution_y_8bit; dsp->sad = image_sad; } double ff_vmafmotion_process(VMAFMotionData *s, AVFrame *ref) { double score; s->vmafdsp.convolution_y(s->filter, 5, ref->data[0], s->temp_data, s->width, s->height, ref->linesize[0], s->stride); s->vmafdsp.convolution_x(s->filter, 5, s->temp_data, s->blur_data[0], s->width, s->height, s->stride, s->stride); if (!s->nb_frames) { score = 0.0; } else { uint64_t sad = s->vmafdsp.sad(s->blur_data[1], s->blur_data[0], s->width, s->height, s->stride, s->stride); // the output score is always normalized to 8 bits score = (double) (sad * 1.0 / (s->width * s->height << (BIT_SHIFT - 8))); } FFSWAP(uint16_t *, s->blur_data[0], s->blur_data[1]); s->nb_frames++; s->motion_sum += score; return score; } static void set_meta(AVDictionary **metadata, const char *key, float d) { char value[128]; snprintf(value, sizeof(value), "%0.2f", d); av_dict_set(metadata, key, value, 0); } static void do_vmafmotion(AVFilterContext *ctx, AVFrame *ref) { VMAFMotionContext *s = ctx->priv; double score; score = ff_vmafmotion_process(&s->data, ref); set_meta(&ref->metadata, "lavfi.vmafmotion.score", score); if (s->stats_file) { fprintf(s->stats_file, "n:%"PRId64" motion:%0.2lf\n", s->data.nb_frames, score); } } int ff_vmafmotion_init(VMAFMotionData *s, int w, int h, enum AVPixelFormat fmt) { size_t data_sz; int i; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(fmt); s->width = w; s->height = h; s->stride = FFALIGN(w * sizeof(uint16_t), 32); data_sz = (size_t) s->stride * h; if (!(s->blur_data[0] = av_malloc(data_sz)) || !(s->blur_data[1] = av_malloc(data_sz)) || !(s->temp_data = av_malloc(data_sz))) { return AVERROR(ENOMEM); } for (i = 0; i < 5; i++) { s->filter[i] = lrint(FILTER_5[i] * (1 << BIT_SHIFT)); } vmafmotiondsp_init(&s->vmafdsp, desc->comp[0].depth); return 0; } static int query_formats(AVFilterContext *ctx) { AVFilterFormats *fmts_list = NULL; int format, ret; for (format = 0; av_pix_fmt_desc_get(format); format++) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(format); if (!(desc->flags & (AV_PIX_FMT_FLAG_RGB | AV_PIX_FMT_FLAG_HWACCEL | AV_PIX_FMT_FLAG_BITSTREAM | AV_PIX_FMT_FLAG_PAL)) && (desc->flags & AV_PIX_FMT_FLAG_PLANAR || desc->nb_components == 1) && (!(desc->flags & AV_PIX_FMT_FLAG_BE) == !HAVE_BIGENDIAN || desc->comp[0].depth == 8) && (desc->comp[0].depth == 8 || desc->comp[0].depth == 10) && (ret = ff_add_format(&fmts_list, format)) < 0) return ret; } return ff_set_common_formats(ctx, fmts_list); } static int config_input_ref(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; VMAFMotionContext *s = ctx->priv; return ff_vmafmotion_init(&s->data, ctx->inputs[0]->w, ctx->inputs[0]->h, ctx->inputs[0]->format); } double ff_vmafmotion_uninit(VMAFMotionData *s) { av_free(s->blur_data[0]); av_free(s->blur_data[1]); av_free(s->temp_data); return s->nb_frames > 0 ? s->motion_sum / s->nb_frames : 0.0; } static int filter_frame(AVFilterLink *inlink, AVFrame *ref) { AVFilterContext *ctx = inlink->dst; do_vmafmotion(ctx, ref); return ff_filter_frame(ctx->outputs[0], ref); } static av_cold int init(AVFilterContext *ctx) { VMAFMotionContext *s = ctx->priv; if (s->stats_file_str) { if (!strcmp(s->stats_file_str, "-")) { s->stats_file = stdout; } else { s->stats_file = fopen(s->stats_file_str, "w"); if (!s->stats_file) { int err = AVERROR(errno); char buf[128]; av_strerror(err, buf, sizeof(buf)); av_log(ctx, AV_LOG_ERROR, "Could not open stats file %s: %s\n", s->stats_file_str, buf); return err; } } } return 0; } static av_cold void uninit(AVFilterContext *ctx) { VMAFMotionContext *s = ctx->priv; double avg_motion = ff_vmafmotion_uninit(&s->data); if (s->data.nb_frames > 0) { av_log(ctx, AV_LOG_INFO, "VMAF Motion avg: %.3f\n", avg_motion); } if (s->stats_file && s->stats_file != stdout) fclose(s->stats_file); } static const AVFilterPad vmafmotion_inputs[] = { { .name = "reference", .type = AVMEDIA_TYPE_VIDEO, .filter_frame = filter_frame, .config_props = config_input_ref, }, { NULL } }; static const AVFilterPad vmafmotion_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, }, { NULL } }; AVFilter ff_vf_vmafmotion = { .name = "vmafmotion", .description = NULL_IF_CONFIG_SMALL("Calculate the VMAF Motion score."), .init = init, .uninit = uninit, .query_formats = query_formats, .priv_size = sizeof(VMAFMotionContext), .priv_class = &vmafmotion_class, .inputs = vmafmotion_inputs, .outputs = vmafmotion_outputs, };