/* * Copyright (c) 2003 LeFunGus, lefungus@altern.org * * This file is part of FFmpeg * * FFmpeg is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with FFmpeg; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #include #include "libavutil/imgutils.h" #include "libavutil/attributes.h" #include "libavutil/common.h" #include "libavutil/pixdesc.h" #include "libavutil/intreadwrite.h" #include "libavutil/opt.h" #include "avfilter.h" #include "formats.h" #include "internal.h" #include "video.h" typedef struct VagueDenoiserContext { const AVClass *class; float threshold; float percent; int method; int nsteps; int planes; int depth; int bpc; int peak; int nb_planes; int planeheight[4]; int planewidth[4]; float *block; float *in; float *out; float *tmp; int hlowsize[4][32]; int hhighsize[4][32]; int vlowsize[4][32]; int vhighsize[4][32]; void (*thresholding)(float *block, const int width, const int height, const int stride, const float threshold, const float percent, const int nsteps); } VagueDenoiserContext; #define OFFSET(x) offsetof(VagueDenoiserContext, x) #define FLAGS AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_FILTERING_PARAM static const AVOption vaguedenoiser_options[] = { { "threshold", "set filtering strength", OFFSET(threshold), AV_OPT_TYPE_FLOAT, {.dbl=2.}, 0,DBL_MAX, FLAGS }, { "method", "set filtering method", OFFSET(method), AV_OPT_TYPE_INT, {.i64=2 }, 0, 2, FLAGS, "method" }, { "hard", "hard thresholding", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "method" }, { "soft", "soft thresholding", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "method" }, { "garrote", "garotte thresholding", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, FLAGS, "method" }, { "nsteps", "set number of steps", OFFSET(nsteps), AV_OPT_TYPE_INT, {.i64=6 }, 1, 32, FLAGS }, { "percent", "set percent of full denoising", OFFSET(percent),AV_OPT_TYPE_FLOAT, {.dbl=85}, 0,100, FLAGS }, { "planes", "set planes to filter", OFFSET(planes), AV_OPT_TYPE_INT, {.i64=15 }, 0, 15, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(vaguedenoiser); #define NPAD 10 static const float analysis_low[9] = { 0.037828455506995f, -0.023849465019380f, -0.110624404418423f, 0.377402855612654f, 0.852698679009403f, 0.377402855612654f, -0.110624404418423f, -0.023849465019380f, 0.037828455506995f }; static const float analysis_high[7] = { -0.064538882628938f, 0.040689417609558f, 0.418092273222212f, -0.788485616405664f, 0.418092273222212f, 0.040689417609558f, -0.064538882628938f }; static const float synthesis_low[7] = { -0.064538882628938f, -0.040689417609558f, 0.418092273222212f, 0.788485616405664f, 0.418092273222212f, -0.040689417609558f, -0.064538882628938f }; static const float synthesis_high[9] = { -0.037828455506995f, -0.023849465019380f, 0.110624404418423f, 0.377402855612654f, -0.852698679009403f, 0.377402855612654f, 0.110624404418423f, -0.023849465019380f, -0.037828455506995f }; static int query_formats(AVFilterContext *ctx) { static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV440P10, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV440P12, AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16, AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16, AV_PIX_FMT_NONE }; AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts); if (!fmts_list) return AVERROR(ENOMEM); return ff_set_common_formats(ctx, fmts_list); } static int config_input(AVFilterLink *inlink) { VagueDenoiserContext *s = inlink->dst->priv; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); int p, i, nsteps_width, nsteps_height, nsteps_max; s->depth = desc->comp[0].depth; s->bpc = (s->depth + 7) / 8; s->nb_planes = desc->nb_components; s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h); s->planeheight[0] = s->planeheight[3] = inlink->h; s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w); s->planewidth[0] = s->planewidth[3] = inlink->w; s->block = av_malloc_array(inlink->w * inlink->h, sizeof(*s->block)); s->in = av_malloc_array(32 + FFMAX(inlink->w, inlink->h), sizeof(*s->in)); s->out = av_malloc_array(32 + FFMAX(inlink->w, inlink->h), sizeof(*s->out)); s->tmp = av_malloc_array(32 + FFMAX(inlink->w, inlink->h), sizeof(*s->tmp)); if (!s->block || !s->in || !s->out || !s->tmp) return AVERROR(ENOMEM); s->threshold *= 1 << (s->depth - 8); s->peak = (1 << s->depth) - 1; nsteps_width = ((s->planes & 2 || s->planes & 4) && s->nb_planes > 1) ? s->planewidth[1] : s->planewidth[0]; nsteps_height = ((s->planes & 2 || s->planes & 4) && s->nb_planes > 1) ? s->planeheight[1] : s->planeheight[0]; for (nsteps_max = 1; nsteps_max < 15; nsteps_max++) { if (pow(2, nsteps_max) >= nsteps_width || pow(2, nsteps_max) >= nsteps_height) break; } s->nsteps = FFMIN(s->nsteps, nsteps_max - 2); for (p = 0; p < 4; p++) { s->hlowsize[p][0] = (s->planewidth[p] + 1) >> 1; s->hhighsize[p][0] = s->planewidth[p] >> 1; s->vlowsize[p][0] = (s->planeheight[p] + 1) >> 1; s->vhighsize[p][0] = s->planeheight[p] >> 1; for (i = 1; i < s->nsteps; i++) { s->hlowsize[p][i] = (s->hlowsize[p][i - 1] + 1) >> 1; s->hhighsize[p][i] = s->hlowsize[p][i - 1] >> 1; s->vlowsize[p][i] = (s->vlowsize[p][i - 1] + 1) >> 1; s->vhighsize[p][i] = s->vlowsize[p][i - 1] >> 1; } } return 0; } static inline void copy(const float *p1, float *p2, const int length) { memcpy(p2, p1, length * sizeof(float)); } static inline void copyv(const float *p1, const int stride1, float *p2, const int length) { int i; for (i = 0; i < length; i++) { p2[i] = *p1; p1 += stride1; } } static inline void copyh(const float *p1, float *p2, const int stride2, const int length) { int i; for (i = 0; i < length; i++) { *p2 = p1[i]; p2 += stride2; } } // Do symmetric extension of data using prescribed symmetries // Original values are in output[npad] through output[npad+size-1] // New values will be placed in output[0] through output[npad] and in output[npad+size] through output[2*npad+size-1] (note: end values may not be filled in) // extension at left bdry is ... 3 2 1 0 | 0 1 2 3 ... // same for right boundary // if right_ext=1 then ... 3 2 1 0 | 1 2 3 static void symmetric_extension(float *output, const int size, const int left_ext, const int right_ext) { int first = NPAD; int last = NPAD - 1 + size; const int originalLast = last; int i, nextend, idx; if (left_ext == 2) output[--first] = output[NPAD]; if (right_ext == 2) output[++last] = output[originalLast]; // extend left end nextend = first; for (i = 0; i < nextend; i++) output[--first] = output[NPAD + 1 + i]; idx = NPAD + NPAD - 1 + size; // extend right end nextend = idx - last; for (i = 0; i < nextend; i++) output[++last] = output[originalLast - 1 - i]; } static void transform_step(float *input, float *output, const int size, const int low_size, VagueDenoiserContext *s) { int i; symmetric_extension(input, size, 1, 1); for (i = NPAD; i < NPAD + low_size; i++) { const float a = input[2 * i - 14] * analysis_low[0]; const float b = input[2 * i - 13] * analysis_low[1]; const float c = input[2 * i - 12] * analysis_low[2]; const float d = input[2 * i - 11] * analysis_low[3]; const float e = input[2 * i - 10] * analysis_low[4]; const float f = input[2 * i - 9] * analysis_low[3]; const float g = input[2 * i - 8] * analysis_low[2]; const float h = input[2 * i - 7] * analysis_low[1]; const float k = input[2 * i - 6] * analysis_low[0]; output[i] = a + b + c + d + e + f + g + h + k; } for (i = NPAD; i < NPAD + low_size; i++) { const float a = input[2 * i - 12] * analysis_high[0]; const float b = input[2 * i - 11] * analysis_high[1]; const float c = input[2 * i - 10] * analysis_high[2]; const float d = input[2 * i - 9] * analysis_high[3]; const float e = input[2 * i - 8] * analysis_high[2]; const float f = input[2 * i - 7] * analysis_high[1]; const float g = input[2 * i - 6] * analysis_high[0]; output[i + low_size] = a + b + c + d + e + f + g; } } static void invert_step(const float *input, float *output, float *temp, const int size, VagueDenoiserContext *s) { const int low_size = (size + 1) >> 1; const int high_size = size >> 1; int left_ext = 1, right_ext, i; int findex; memcpy(temp + NPAD, input + NPAD, low_size * sizeof(float)); right_ext = (size % 2 == 0) ? 2 : 1; symmetric_extension(temp, low_size, left_ext, right_ext); memset(output, 0, (NPAD + NPAD + size) * sizeof(float)); findex = (size + 2) >> 1; for (i = 9; i < findex + 11; i++) { const float a = temp[i] * synthesis_low[0]; const float b = temp[i] * synthesis_low[1]; const float c = temp[i] * synthesis_low[2]; const float d = temp[i] * synthesis_low[3]; output[2 * i - 13] += a; output[2 * i - 12] += b; output[2 * i - 11] += c; output[2 * i - 10] += d; output[2 * i - 9] += c; output[2 * i - 8] += b; output[2 * i - 7] += a; } memcpy(temp + NPAD, input + NPAD + low_size, high_size * sizeof(float)); left_ext = 2; right_ext = (size % 2 == 0) ? 1 : 2; symmetric_extension(temp, high_size, left_ext, right_ext); for (i = 8; i < findex + 11; i++) { const float a = temp[i] * synthesis_high[0]; const float b = temp[i] * synthesis_high[1]; const float c = temp[i] * synthesis_high[2]; const float d = temp[i] * synthesis_high[3]; const float e = temp[i] * synthesis_high[4]; output[2 * i - 13] += a; output[2 * i - 12] += b; output[2 * i - 11] += c; output[2 * i - 10] += d; output[2 * i - 9] += e; output[2 * i - 8] += d; output[2 * i - 7] += c; output[2 * i - 6] += b; output[2 * i - 5] += a; } } static void hard_thresholding(float *block, const int width, const int height, const int stride, const float threshold, const float percent, const int unused) { const float frac = 1.f - percent * 0.01f; int y, x; for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { if (FFABS(block[x]) <= threshold) block[x] *= frac; } block += stride; } } static void soft_thresholding(float *block, const int width, const int height, const int stride, const float threshold, const float percent, const int nsteps) { const float frac = 1.f - percent * 0.01f; const float shift = threshold * 0.01f * percent; int w = width; int h = height; int y, x, l; for (l = 0; l < nsteps; l++) { w = (w + 1) >> 1; h = (h + 1) >> 1; } for (y = 0; y < height; y++) { const int x0 = (y < h) ? w : 0; for (x = x0; x < width; x++) { const float temp = FFABS(block[x]); if (temp <= threshold) block[x] *= frac; else block[x] = (block[x] < 0.f ? -1.f : (block[x] > 0.f ? 1.f : 0.f)) * (temp - shift); } block += stride; } } static void qian_thresholding(float *block, const int width, const int height, const int stride, const float threshold, const float percent, const int unused) { const float percent01 = percent * 0.01f; const float tr2 = threshold * threshold * percent01; const float frac = 1.f - percent01; int y, x; for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { const float temp = FFABS(block[x]); if (temp <= threshold) { block[x] *= frac; } else { const float tp2 = temp * temp; block[x] *= (tp2 - tr2) / tp2; } } block += stride; } } static void filter(VagueDenoiserContext *s, AVFrame *in, AVFrame *out) { int p, y, x, i, j; for (p = 0; p < s->nb_planes; p++) { const int height = s->planeheight[p]; const int width = s->planewidth[p]; const uint8_t *srcp8 = in->data[p]; const uint16_t *srcp16 = (const uint16_t *)in->data[p]; uint8_t *dstp8 = out->data[p]; uint16_t *dstp16 = (uint16_t *)out->data[p]; float *output = s->block; int h_low_size0 = width; int v_low_size0 = height; int nsteps_transform = s->nsteps; int nsteps_invert = s->nsteps; const float *input = s->block; if (!((1 << p) & s->planes)) { av_image_copy_plane(out->data[p], out->linesize[p], in->data[p], in->linesize[p], s->planewidth[p] * s->bpc, s->planeheight[p]); continue; } if (s->depth <= 8) { for (y = 0; y < height; y++) { for (x = 0; x < width; x++) output[x] = srcp8[x]; srcp8 += in->linesize[p]; output += width; } } else { for (y = 0; y < height; y++) { for (x = 0; x < width; x++) output[x] = srcp16[x]; srcp16 += in->linesize[p] / 2; output += width; } } while (nsteps_transform--) { int low_size = (h_low_size0 + 1) >> 1; float *input = s->block; for (j = 0; j < v_low_size0; j++) { copy(input, s->in + NPAD, h_low_size0); transform_step(s->in, s->out, h_low_size0, low_size, s); copy(s->out + NPAD, input, h_low_size0); input += width; } low_size = (v_low_size0 + 1) >> 1; input = s->block; for (j = 0; j < h_low_size0; j++) { copyv(input, width, s->in + NPAD, v_low_size0); transform_step(s->in, s->out, v_low_size0, low_size, s); copyh(s->out + NPAD, input, width, v_low_size0); input++; } h_low_size0 = (h_low_size0 + 1) >> 1; v_low_size0 = (v_low_size0 + 1) >> 1; } s->thresholding(s->block, width, height, width, s->threshold, s->percent, s->nsteps); while (nsteps_invert--) { const int idx = s->vlowsize[p][nsteps_invert] + s->vhighsize[p][nsteps_invert]; const int idx2 = s->hlowsize[p][nsteps_invert] + s->hhighsize[p][nsteps_invert]; float * idx3 = s->block; for (i = 0; i < idx2; i++) { copyv(idx3, width, s->in + NPAD, idx); invert_step(s->in, s->out, s->tmp, idx, s); copyh(s->out + NPAD, idx3, width, idx); idx3++; } idx3 = s->block; for (i = 0; i < idx; i++) { copy(idx3, s->in + NPAD, idx2); invert_step(s->in, s->out, s->tmp, idx2, s); copy(s->out + NPAD, idx3, idx2); idx3 += width; } } if (s->depth <= 8) { for (y = 0; y < height; y++) { for (x = 0; x < width; x++) dstp8[x] = av_clip_uint8(input[x] + 0.5f); input += width; dstp8 += out->linesize[p]; } } else { for (y = 0; y < height; y++) { for (x = 0; x < width; x++) dstp16[x] = av_clip(input[x] + 0.5f, 0, s->peak); input += width; dstp16 += out->linesize[p] / 2; } } } } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; VagueDenoiserContext *s = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; AVFrame *out; int direct = av_frame_is_writable(in); if (direct) { out = in; } else { out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } av_frame_copy_props(out, in); } filter(s, in, out); if (!direct) av_frame_free(&in); return ff_filter_frame(outlink, out); } static av_cold int init(AVFilterContext *ctx) { VagueDenoiserContext *s = ctx->priv; switch (s->method) { case 0: s->thresholding = hard_thresholding; break; case 1: s->thresholding = soft_thresholding; break; case 2: s->thresholding = qian_thresholding; break; } return 0; } static av_cold void uninit(AVFilterContext *ctx) { VagueDenoiserContext *s = ctx->priv; av_freep(&s->block); av_freep(&s->in); av_freep(&s->out); av_freep(&s->tmp); } static const AVFilterPad vaguedenoiser_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_input, .filter_frame = filter_frame, }, { NULL } }; static const AVFilterPad vaguedenoiser_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO }, { NULL } }; AVFilter ff_vf_vaguedenoiser = { .name = "vaguedenoiser", .description = NULL_IF_CONFIG_SMALL("Apply a Wavelet based Denoiser."), .priv_size = sizeof(VagueDenoiserContext), .priv_class = &vaguedenoiser_class, .init = init, .uninit = uninit, .query_formats = query_formats, .inputs = vaguedenoiser_inputs, .outputs = vaguedenoiser_outputs, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, };