/* * Copyright (c) 2003-2013 Loren Merritt * Copyright (c) 2015 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /* Computes the Structural Similarity Metric between two video streams. * original algorithm: * Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, * "Image quality assessment: From error visibility to structural similarity," * IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, Apr. 2004. * * To improve speed, this implementation uses the standard approximation of * overlapped 8x8 block sums, rather than the original gaussian weights. */ /* * @file * Caculate the SSIM between two input videos. */ #include "libavutil/avstring.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "avfilter.h" #include "drawutils.h" #include "formats.h" #include "framesync.h" #include "internal.h" #include "ssim.h" #include "video.h" typedef struct SSIMContext { const AVClass *class; FFFrameSync fs; FILE *stats_file; char *stats_file_str; int nb_components; int max; uint64_t nb_frames; double ssim[4], ssim_total; char comps[4]; float coefs[4]; uint8_t rgba_map[4]; int planewidth[4]; int planeheight[4]; int *temp; int is_rgb; float (*ssim_plane)(SSIMDSPContext *dsp, uint8_t *main, int main_stride, uint8_t *ref, int ref_stride, int width, int height, void *temp, int max); SSIMDSPContext dsp; } SSIMContext; #define OFFSET(x) offsetof(SSIMContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM static const AVOption ssim_options[] = { {"stats_file", "Set file where to store per-frame difference information", OFFSET(stats_file_str), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, {"f", "Set file where to store per-frame difference information", OFFSET(stats_file_str), AV_OPT_TYPE_STRING, {.str=NULL}, 0, 0, FLAGS }, { NULL } }; FRAMESYNC_DEFINE_CLASS(ssim, SSIMContext, fs); static void set_meta(AVDictionary **metadata, const char *key, char comp, float d) { char value[128]; snprintf(value, sizeof(value), "%0.2f", d); if (comp) { char key2[128]; snprintf(key2, sizeof(key2), "%s%c", key, comp); av_dict_set(metadata, key2, value, 0); } else { av_dict_set(metadata, key, value, 0); } } static void ssim_4x4xn_16bit(const uint8_t *main8, ptrdiff_t main_stride, const uint8_t *ref8, ptrdiff_t ref_stride, int64_t (*sums)[4], int width) { const uint16_t *main16 = (const uint16_t *)main8; const uint16_t *ref16 = (const uint16_t *)ref8; int x, y, z; main_stride >>= 1; ref_stride >>= 1; for (z = 0; z < width; z++) { uint64_t s1 = 0, s2 = 0, ss = 0, s12 = 0; for (y = 0; y < 4; y++) { for (x = 0; x < 4; x++) { unsigned a = main16[x + y * main_stride]; unsigned b = ref16[x + y * ref_stride]; s1 += a; s2 += b; ss += a*a; ss += b*b; s12 += a*b; } } sums[z][0] = s1; sums[z][1] = s2; sums[z][2] = ss; sums[z][3] = s12; main16 += 4; ref16 += 4; } } static void ssim_4x4xn_8bit(const uint8_t *main, ptrdiff_t main_stride, const uint8_t *ref, ptrdiff_t ref_stride, int (*sums)[4], int width) { int x, y, z; for (z = 0; z < width; z++) { uint32_t s1 = 0, s2 = 0, ss = 0, s12 = 0; for (y = 0; y < 4; y++) { for (x = 0; x < 4; x++) { int a = main[x + y * main_stride]; int b = ref[x + y * ref_stride]; s1 += a; s2 += b; ss += a*a; ss += b*b; s12 += a*b; } } sums[z][0] = s1; sums[z][1] = s2; sums[z][2] = ss; sums[z][3] = s12; main += 4; ref += 4; } } static float ssim_end1x(int64_t s1, int64_t s2, int64_t ss, int64_t s12, int max) { int64_t ssim_c1 = (int64_t)(.01*.01*max*max*64 + .5); int64_t ssim_c2 = (int64_t)(.03*.03*max*max*64*63 + .5); int64_t fs1 = s1; int64_t fs2 = s2; int64_t fss = ss; int64_t fs12 = s12; int64_t vars = fss * 64 - fs1 * fs1 - fs2 * fs2; int64_t covar = fs12 * 64 - fs1 * fs2; return (float)(2 * fs1 * fs2 + ssim_c1) * (float)(2 * covar + ssim_c2) / ((float)(fs1 * fs1 + fs2 * fs2 + ssim_c1) * (float)(vars + ssim_c2)); } static float ssim_end1(int s1, int s2, int ss, int s12) { static const int ssim_c1 = (int)(.01*.01*255*255*64 + .5); static const int ssim_c2 = (int)(.03*.03*255*255*64*63 + .5); int fs1 = s1; int fs2 = s2; int fss = ss; int fs12 = s12; int vars = fss * 64 - fs1 * fs1 - fs2 * fs2; int covar = fs12 * 64 - fs1 * fs2; return (float)(2 * fs1 * fs2 + ssim_c1) * (float)(2 * covar + ssim_c2) / ((float)(fs1 * fs1 + fs2 * fs2 + ssim_c1) * (float)(vars + ssim_c2)); } static float ssim_endn_16bit(const int64_t (*sum0)[4], const int64_t (*sum1)[4], int width, int max) { float ssim = 0.0; int i; for (i = 0; i < width; i++) ssim += ssim_end1x(sum0[i][0] + sum0[i + 1][0] + sum1[i][0] + sum1[i + 1][0], sum0[i][1] + sum0[i + 1][1] + sum1[i][1] + sum1[i + 1][1], sum0[i][2] + sum0[i + 1][2] + sum1[i][2] + sum1[i + 1][2], sum0[i][3] + sum0[i + 1][3] + sum1[i][3] + sum1[i + 1][3], max); return ssim; } static float ssim_endn_8bit(const int (*sum0)[4], const int (*sum1)[4], int width) { float ssim = 0.0; int i; for (i = 0; i < width; i++) ssim += ssim_end1(sum0[i][0] + sum0[i + 1][0] + sum1[i][0] + sum1[i + 1][0], sum0[i][1] + sum0[i + 1][1] + sum1[i][1] + sum1[i + 1][1], sum0[i][2] + sum0[i + 1][2] + sum1[i][2] + sum1[i + 1][2], sum0[i][3] + sum0[i + 1][3] + sum1[i][3] + sum1[i + 1][3]); return ssim; } #define SUM_LEN(w) (((w) >> 2) + 3) static float ssim_plane_16bit(SSIMDSPContext *dsp, uint8_t *main, int main_stride, uint8_t *ref, int ref_stride, int width, int height, void *temp, int max) { int z = 0, y; float ssim = 0.0; int64_t (*sum0)[4] = temp; int64_t (*sum1)[4] = sum0 + SUM_LEN(width); width >>= 2; height >>= 2; for (y = 1; y < height; y++) { for (; z <= y; z++) { FFSWAP(void*, sum0, sum1); ssim_4x4xn_16bit(&main[4 * z * main_stride], main_stride, &ref[4 * z * ref_stride], ref_stride, sum0, width); } ssim += ssim_endn_16bit((const int64_t (*)[4])sum0, (const int64_t (*)[4])sum1, width - 1, max); } return ssim / ((height - 1) * (width - 1)); } static float ssim_plane(SSIMDSPContext *dsp, uint8_t *main, int main_stride, uint8_t *ref, int ref_stride, int width, int height, void *temp, int max) { int z = 0, y; float ssim = 0.0; int (*sum0)[4] = temp; int (*sum1)[4] = sum0 + SUM_LEN(width); width >>= 2; height >>= 2; for (y = 1; y < height; y++) { for (; z <= y; z++) { FFSWAP(void*, sum0, sum1); dsp->ssim_4x4_line(&main[4 * z * main_stride], main_stride, &ref[4 * z * ref_stride], ref_stride, sum0, width); } ssim += dsp->ssim_end_line((const int (*)[4])sum0, (const int (*)[4])sum1, width - 1); } return ssim / ((height - 1) * (width - 1)); } static double ssim_db(double ssim, double weight) { return 10 * log10(weight / (weight - ssim)); } static int do_ssim(FFFrameSync *fs) { AVFilterContext *ctx = fs->parent; SSIMContext *s = ctx->priv; AVFrame *master, *ref; AVDictionary **metadata; float c[4], ssimv = 0.0; int ret, i; ret = ff_framesync_dualinput_get(fs, &master, &ref); if (ret < 0) return ret; if (!ref) return ff_filter_frame(ctx->outputs[0], master); metadata = &master->metadata; s->nb_frames++; for (i = 0; i < s->nb_components; i++) { c[i] = s->ssim_plane(&s->dsp, master->data[i], master->linesize[i], ref->data[i], ref->linesize[i], s->planewidth[i], s->planeheight[i], s->temp, s->max); ssimv += s->coefs[i] * c[i]; s->ssim[i] += c[i]; } for (i = 0; i < s->nb_components; i++) { int cidx = s->is_rgb ? s->rgba_map[i] : i; set_meta(metadata, "lavfi.ssim.", s->comps[i], c[cidx]); } s->ssim_total += ssimv; set_meta(metadata, "lavfi.ssim.All", 0, ssimv); set_meta(metadata, "lavfi.ssim.dB", 0, ssim_db(ssimv, 1.0)); if (s->stats_file) { fprintf(s->stats_file, "n:%"PRId64" ", s->nb_frames); for (i = 0; i < s->nb_components; i++) { int cidx = s->is_rgb ? s->rgba_map[i] : i; fprintf(s->stats_file, "%c:%f ", s->comps[i], c[cidx]); } fprintf(s->stats_file, "All:%f (%f)\n", ssimv, ssim_db(ssimv, 1.0)); } return ff_filter_frame(ctx->outputs[0], master); } static av_cold int init(AVFilterContext *ctx) { SSIMContext *s = ctx->priv; if (s->stats_file_str) { if (!strcmp(s->stats_file_str, "-")) { s->stats_file = stdout; } else { s->stats_file = fopen(s->stats_file_str, "w"); if (!s->stats_file) { int err = AVERROR(errno); char buf[128]; av_strerror(err, buf, sizeof(buf)); av_log(ctx, AV_LOG_ERROR, "Could not open stats file %s: %s\n", s->stats_file_str, buf); return err; } } } s->fs.on_event = do_ssim; return 0; } static int query_formats(AVFilterContext *ctx) { static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_GBRP, #define PF(suf) AV_PIX_FMT_YUV420##suf, AV_PIX_FMT_YUV422##suf, AV_PIX_FMT_YUV444##suf, AV_PIX_FMT_GBR##suf PF(P9), PF(P10), PF(P12), PF(P14), PF(P16), AV_PIX_FMT_NONE }; AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts); if (!fmts_list) return AVERROR(ENOMEM); return ff_set_common_formats(ctx, fmts_list); } static int config_input_ref(AVFilterLink *inlink) { const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); AVFilterContext *ctx = inlink->dst; SSIMContext *s = ctx->priv; int sum = 0, i; s->nb_components = desc->nb_components; if (ctx->inputs[0]->w != ctx->inputs[1]->w || ctx->inputs[0]->h != ctx->inputs[1]->h) { av_log(ctx, AV_LOG_ERROR, "Width and height of input videos must be same.\n"); return AVERROR(EINVAL); } if (ctx->inputs[0]->format != ctx->inputs[1]->format) { av_log(ctx, AV_LOG_ERROR, "Inputs must be of same pixel format.\n"); return AVERROR(EINVAL); } s->is_rgb = ff_fill_rgba_map(s->rgba_map, inlink->format) >= 0; s->comps[0] = s->is_rgb ? 'R' : 'Y'; s->comps[1] = s->is_rgb ? 'G' : 'U'; s->comps[2] = s->is_rgb ? 'B' : 'V'; s->comps[3] = 'A'; s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h); s->planeheight[0] = s->planeheight[3] = inlink->h; s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w); s->planewidth[0] = s->planewidth[3] = inlink->w; for (i = 0; i < s->nb_components; i++) sum += s->planeheight[i] * s->planewidth[i]; for (i = 0; i < s->nb_components; i++) s->coefs[i] = (double) s->planeheight[i] * s->planewidth[i] / sum; s->temp = av_mallocz_array(2 * SUM_LEN(inlink->w), (desc->comp[0].depth > 8) ? sizeof(int64_t[4]) : sizeof(int[4])); if (!s->temp) return AVERROR(ENOMEM); s->max = (1 << desc->comp[0].depth) - 1; s->ssim_plane = desc->comp[0].depth > 8 ? ssim_plane_16bit : ssim_plane; s->dsp.ssim_4x4_line = ssim_4x4xn_8bit; s->dsp.ssim_end_line = ssim_endn_8bit; if (ARCH_X86) ff_ssim_init_x86(&s->dsp); return 0; } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; SSIMContext *s = ctx->priv; AVFilterLink *mainlink = ctx->inputs[0]; int ret; ret = ff_framesync_init_dualinput(&s->fs, ctx); if (ret < 0) return ret; outlink->w = mainlink->w; outlink->h = mainlink->h; outlink->time_base = mainlink->time_base; outlink->sample_aspect_ratio = mainlink->sample_aspect_ratio; outlink->frame_rate = mainlink->frame_rate; if ((ret = ff_framesync_configure(&s->fs)) < 0) return ret; outlink->time_base = s->fs.time_base; if (av_cmp_q(mainlink->time_base, outlink->time_base) && av_cmp_q(ctx->inputs[1]->time_base, outlink->time_base)) av_log(ctx, AV_LOG_WARNING, "not matching timebases found between first input: %d/%d and second input %d/%d, results may be incorrect!\n", mainlink->time_base.num, mainlink->time_base.den, ctx->inputs[1]->time_base.num, ctx->inputs[1]->time_base.den); return 0; } static int activate(AVFilterContext *ctx) { SSIMContext *s = ctx->priv; return ff_framesync_activate(&s->fs); } static av_cold void uninit(AVFilterContext *ctx) { SSIMContext *s = ctx->priv; if (s->nb_frames > 0) { char buf[256]; int i; buf[0] = 0; for (i = 0; i < s->nb_components; i++) { int c = s->is_rgb ? s->rgba_map[i] : i; av_strlcatf(buf, sizeof(buf), " %c:%f (%f)", s->comps[i], s->ssim[c] / s->nb_frames, ssim_db(s->ssim[c], s->nb_frames)); } av_log(ctx, AV_LOG_INFO, "SSIM%s All:%f (%f)\n", buf, s->ssim_total / s->nb_frames, ssim_db(s->ssim_total, s->nb_frames)); } ff_framesync_uninit(&s->fs); if (s->stats_file && s->stats_file != stdout) fclose(s->stats_file); av_freep(&s->temp); } static const AVFilterPad ssim_inputs[] = { { .name = "main", .type = AVMEDIA_TYPE_VIDEO, },{ .name = "reference", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_input_ref, }, { NULL } }; static const AVFilterPad ssim_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_output, }, { NULL } }; AVFilter ff_vf_ssim = { .name = "ssim", .description = NULL_IF_CONFIG_SMALL("Calculate the SSIM between two video streams."), .preinit = ssim_framesync_preinit, .init = init, .uninit = uninit, .query_formats = query_formats, .activate = activate, .priv_size = sizeof(SSIMContext), .priv_class = &ssim_class, .inputs = ssim_inputs, .outputs = ssim_outputs, };