/* * Copyright (c) 2016 Floris Sluiter * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Pixel remap filter * This filter copies pixel by pixel a source frame to a target frame. * It remaps the pixels to a new x,y destination based on two files ymap/xmap. * Map files are passed as a parameter and are in PGM format (P2 or P5), * where the values are y(rows)/x(cols) coordinates of the source_frame. * The *target* frame dimension is based on mapfile dimensions: specified in the * header of the mapfile and reflected in the number of datavalues. * Dimensions of ymap and xmap must be equal. Datavalues must be positive or zero. * Any datavalue in the ymap or xmap which value is higher * then the *source* frame height or width is silently ignored, leaving a * blank/chromakey pixel. This can safely be used as a feature to create overlays. * * Algorithm digest: * Target_frame[y][x] = Source_frame[ ymap[y][x] ][ [xmap[y][x] ]; */ #include "libavutil/imgutils.h" #include "libavutil/pixdesc.h" #include "libavutil/opt.h" #include "avfilter.h" #include "formats.h" #include "framesync.h" #include "internal.h" #include "video.h" typedef struct RemapContext { const AVClass *class; int format; int nb_planes; int nb_components; int step; FFFrameSync fs; int (*remap_slice)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs); } RemapContext; #define OFFSET(x) offsetof(RemapContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM static const AVOption remap_options[] = { { "format", "set output format", OFFSET(format), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "format" }, { "color", "", 0, AV_OPT_TYPE_CONST, {.i64=0}, .flags = FLAGS, .unit = "format" }, { "gray", "", 0, AV_OPT_TYPE_CONST, {.i64=1}, .flags = FLAGS, .unit = "format" }, { NULL } }; AVFILTER_DEFINE_CLASS(remap); typedef struct ThreadData { AVFrame *in, *xin, *yin, *out; int nb_planes; int nb_components; int step; } ThreadData; static int query_formats(AVFilterContext *ctx) { RemapContext *s = ctx->priv; static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24, AV_PIX_FMT_ARGB, AV_PIX_FMT_ABGR, AV_PIX_FMT_RGBA, AV_PIX_FMT_BGRA, AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV444P16, AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA444P16, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16, AV_PIX_FMT_RGB48, AV_PIX_FMT_BGR48, AV_PIX_FMT_RGBA64, AV_PIX_FMT_BGRA64, AV_PIX_FMT_NONE }; static const enum AVPixelFormat gray_pix_fmts[] = { AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16, AV_PIX_FMT_NONE }; static const enum AVPixelFormat map_fmts[] = { AV_PIX_FMT_GRAY16, AV_PIX_FMT_NONE }; AVFilterFormats *pix_formats = NULL, *map_formats = NULL; int ret; if (!(pix_formats = ff_make_format_list(s->format ? gray_pix_fmts : pix_fmts)) || !(map_formats = ff_make_format_list(map_fmts))) { ret = AVERROR(ENOMEM); goto fail; } if ((ret = ff_formats_ref(pix_formats, &ctx->inputs[0]->out_formats)) < 0 || (ret = ff_formats_ref(map_formats, &ctx->inputs[1]->out_formats)) < 0 || (ret = ff_formats_ref(map_formats, &ctx->inputs[2]->out_formats)) < 0 || (ret = ff_formats_ref(pix_formats, &ctx->outputs[0]->in_formats)) < 0) goto fail; return 0; fail: if (pix_formats) av_freep(&pix_formats->formats); av_freep(&pix_formats); if (map_formats) av_freep(&map_formats->formats); av_freep(&map_formats); return ret; } /** * remap_planar algorithm expects planes of same size * pixels are copied from source to target using : * Target_frame[y][x] = Source_frame[ ymap[y][x] ][ [xmap[y][x] ]; */ #define DEFINE_REMAP_PLANAR_FUNC(name, bits, div) \ static int remap_planar##bits##_##name##_slice(AVFilterContext *ctx, void *arg, \ int jobnr, int nb_jobs) \ { \ const ThreadData *td = arg; \ const AVFrame *in = td->in; \ const AVFrame *xin = td->xin; \ const AVFrame *yin = td->yin; \ const AVFrame *out = td->out; \ const int slice_start = (out->height * jobnr ) / nb_jobs; \ const int slice_end = (out->height * (jobnr+1)) / nb_jobs; \ const int xlinesize = xin->linesize[0] / 2; \ const int ylinesize = yin->linesize[0] / 2; \ int x , y, plane; \ \ for (plane = 0; plane < td->nb_planes ; plane++) { \ const int dlinesize = out->linesize[plane] / div; \ const uint##bits##_t *src = (const uint##bits##_t *)in->data[plane]; \ uint##bits##_t *dst = (uint##bits##_t *)out->data[plane] + slice_start * dlinesize; \ const int slinesize = in->linesize[plane] / div; \ const uint16_t *xmap = (const uint16_t *)xin->data[0] + slice_start * xlinesize; \ const uint16_t *ymap = (const uint16_t *)yin->data[0] + slice_start * ylinesize; \ \ for (y = slice_start; y < slice_end; y++) { \ for (x = 0; x < out->width; x++) { \ if (ymap[x] < in->height && xmap[x] < in->width) { \ dst[x] = src[ymap[x] * slinesize + xmap[x]]; \ } else { \ dst[x] = 0; \ } \ } \ dst += dlinesize; \ xmap += xlinesize; \ ymap += ylinesize; \ } \ } \ \ return 0; \ } DEFINE_REMAP_PLANAR_FUNC(nearest, 8, 1) DEFINE_REMAP_PLANAR_FUNC(nearest, 16, 2) /** * remap_packed algorithm expects pixels with both padded bits (step) and * number of components correctly set. * pixels are copied from source to target using : * Target_frame[y][x] = Source_frame[ ymap[y][x] ][ [xmap[y][x] ]; */ #define DEFINE_REMAP_PACKED_FUNC(name, bits, div) \ static int remap_packed##bits##_##name##_slice(AVFilterContext *ctx, void *arg, \ int jobnr, int nb_jobs) \ { \ const ThreadData *td = arg; \ const AVFrame *in = td->in; \ const AVFrame *xin = td->xin; \ const AVFrame *yin = td->yin; \ const AVFrame *out = td->out; \ const int slice_start = (out->height * jobnr ) / nb_jobs; \ const int slice_end = (out->height * (jobnr+1)) / nb_jobs; \ const int dlinesize = out->linesize[0] / div; \ const int slinesize = in->linesize[0] / div; \ const int xlinesize = xin->linesize[0] / 2; \ const int ylinesize = yin->linesize[0] / 2; \ const uint##bits##_t *src = (const uint##bits##_t *)in->data[0]; \ uint##bits##_t *dst = (uint##bits##_t *)out->data[0] + slice_start * dlinesize; \ const uint16_t *xmap = (const uint16_t *)xin->data[0] + slice_start * xlinesize; \ const uint16_t *ymap = (const uint16_t *)yin->data[0] + slice_start * ylinesize; \ const int step = td->step / div; \ int c, x, y; \ \ for (y = slice_start; y < slice_end; y++) { \ for (x = 0; x < out->width; x++) { \ for (c = 0; c < td->nb_components; c++) { \ if (ymap[x] < in->height && xmap[x] < in->width) { \ dst[x * step + c] = src[ymap[x] * slinesize + xmap[x] * step + c]; \ } else { \ dst[x * step + c] = 0; \ } \ } \ } \ dst += dlinesize; \ xmap += xlinesize; \ ymap += ylinesize; \ } \ \ return 0; \ } DEFINE_REMAP_PACKED_FUNC(nearest, 8, 1) DEFINE_REMAP_PACKED_FUNC(nearest, 16, 2) static int config_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; RemapContext *s = ctx->priv; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); s->nb_planes = av_pix_fmt_count_planes(inlink->format); s->nb_components = desc->nb_components; if (desc->comp[0].depth == 8) { if (s->nb_planes > 1 || s->nb_components == 1) { s->remap_slice = remap_planar8_nearest_slice; } else { s->remap_slice = remap_packed8_nearest_slice; } } else { if (s->nb_planes > 1 || s->nb_components == 1) { s->remap_slice = remap_planar16_nearest_slice; } else { s->remap_slice = remap_packed16_nearest_slice; } } s->step = av_get_padded_bits_per_pixel(desc) >> 3; return 0; } static int process_frame(FFFrameSync *fs) { AVFilterContext *ctx = fs->parent; RemapContext *s = fs->opaque; AVFilterLink *outlink = ctx->outputs[0]; AVFrame *out, *in, *xpic, *ypic; int ret; if ((ret = ff_framesync_get_frame(&s->fs, 0, &in, 0)) < 0 || (ret = ff_framesync_get_frame(&s->fs, 1, &xpic, 0)) < 0 || (ret = ff_framesync_get_frame(&s->fs, 2, &ypic, 0)) < 0) return ret; if (ctx->is_disabled) { out = av_frame_clone(in); if (!out) return AVERROR(ENOMEM); } else { ThreadData td; out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) return AVERROR(ENOMEM); av_frame_copy_props(out, in); td.in = in; td.xin = xpic; td.yin = ypic; td.out = out; td.nb_planes = s->nb_planes; td.nb_components = s->nb_components; td.step = s->step; ctx->internal->execute(ctx, s->remap_slice, &td, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx))); } out->pts = av_rescale_q(s->fs.pts, s->fs.time_base, outlink->time_base); return ff_filter_frame(outlink, out); } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; RemapContext *s = ctx->priv; AVFilterLink *srclink = ctx->inputs[0]; AVFilterLink *xlink = ctx->inputs[1]; AVFilterLink *ylink = ctx->inputs[2]; FFFrameSyncIn *in; int ret; if (xlink->w != ylink->w || xlink->h != ylink->h) { av_log(ctx, AV_LOG_ERROR, "Second input link %s parameters " "(size %dx%d) do not match the corresponding " "third input link %s parameters (%dx%d)\n", ctx->input_pads[1].name, xlink->w, xlink->h, ctx->input_pads[2].name, ylink->w, ylink->h); return AVERROR(EINVAL); } outlink->w = xlink->w; outlink->h = xlink->h; outlink->sample_aspect_ratio = srclink->sample_aspect_ratio; outlink->frame_rate = srclink->frame_rate; ret = ff_framesync_init(&s->fs, ctx, 3); if (ret < 0) return ret; in = s->fs.in; in[0].time_base = srclink->time_base; in[1].time_base = xlink->time_base; in[2].time_base = ylink->time_base; in[0].sync = 2; in[0].before = EXT_STOP; in[0].after = EXT_STOP; in[1].sync = 1; in[1].before = EXT_NULL; in[1].after = EXT_INFINITY; in[2].sync = 1; in[2].before = EXT_NULL; in[2].after = EXT_INFINITY; s->fs.opaque = s; s->fs.on_event = process_frame; ret = ff_framesync_configure(&s->fs); outlink->time_base = s->fs.time_base; return ret; } static int activate(AVFilterContext *ctx) { RemapContext *s = ctx->priv; return ff_framesync_activate(&s->fs); } static av_cold void uninit(AVFilterContext *ctx) { RemapContext *s = ctx->priv; ff_framesync_uninit(&s->fs); } static const AVFilterPad remap_inputs[] = { { .name = "source", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_input, }, { .name = "xmap", .type = AVMEDIA_TYPE_VIDEO, }, { .name = "ymap", .type = AVMEDIA_TYPE_VIDEO, }, { NULL } }; static const AVFilterPad remap_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_output, }, { NULL } }; AVFilter ff_vf_remap = { .name = "remap", .description = NULL_IF_CONFIG_SMALL("Remap pixels."), .priv_size = sizeof(RemapContext), .uninit = uninit, .query_formats = query_formats, .activate = activate, .inputs = remap_inputs, .outputs = remap_outputs, .priv_class = &remap_class, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, };