/* * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include "libavutil/avassert.h" #include "libavutil/common.h" #include "libavutil/imgutils.h" #include "libavutil/mem.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "avfilter.h" #include "internal.h" #include "opencl.h" #include "opencl_source.h" #include "video.h" // TODO: // the integral image may overflow 32bit, consider using 64bit static const enum AVPixelFormat supported_formats[] = { AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_GBRP, }; static int is_format_supported(enum AVPixelFormat fmt) { int i; for (i = 0; i < FF_ARRAY_ELEMS(supported_formats); i++) if (supported_formats[i] == fmt) return 1; return 0; } typedef struct NLMeansOpenCLContext { OpenCLFilterContext ocf; int initialised; cl_kernel vert_kernel; cl_kernel horiz_kernel; cl_kernel accum_kernel; cl_kernel average_kernel; cl_mem integral_img; cl_mem weight; cl_mem sum; cl_mem overflow; // overflow in integral image? double sigma; float h; int chroma_w; int chroma_h; int patch_size; int patch_size_uv; int research_size; int research_size_uv; cl_command_queue command_queue; } NLMeansOpenCLContext; static int nlmeans_opencl_init(AVFilterContext *avctx, int width, int height) { NLMeansOpenCLContext *ctx = avctx->priv; cl_int cle; int err; int weight_buf_size = width * height * sizeof(float); ctx->h = ctx->sigma * 10; if (!(ctx->research_size & 1)) { ctx->research_size |= 1; av_log(avctx, AV_LOG_WARNING, "research_size should be odd, set to %d", ctx->research_size); } if (!(ctx->patch_size & 1)) { ctx->patch_size |= 1; av_log(avctx, AV_LOG_WARNING, "patch_size should be odd, set to %d", ctx->patch_size); } if (!ctx->research_size_uv) ctx->research_size_uv = ctx->research_size; if (!ctx->patch_size_uv) ctx->patch_size_uv = ctx->patch_size; err = ff_opencl_filter_load_program(avctx, &ff_opencl_source_nlmeans, 1); if (err < 0) goto fail; ctx->command_queue = clCreateCommandQueue(ctx->ocf.hwctx->context, ctx->ocf.hwctx->device_id, 0, &cle); CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create OpenCL " "command queue %d.\n", cle); ctx->vert_kernel = clCreateKernel(ctx->ocf.program, "vert_sum", &cle); CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create " "vert_sum kernel %d.\n", cle); ctx->horiz_kernel = clCreateKernel(ctx->ocf.program, "horiz_sum", &cle); CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create " "horiz_sum kernel %d.\n", cle); ctx->accum_kernel = clCreateKernel(ctx->ocf.program, "weight_accum", &cle); CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create " "accum kernel %d.\n", cle); ctx->average_kernel = clCreateKernel(ctx->ocf.program, "average", &cle); CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create " "average kernel %d.\n", cle); ctx->integral_img = clCreateBuffer(ctx->ocf.hwctx->context, 0, 4 * width * height * sizeof(cl_int), NULL, &cle); CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create " "integral image %d.\n", cle); ctx->weight = clCreateBuffer(ctx->ocf.hwctx->context, 0, weight_buf_size, NULL, &cle); CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create " "weight buffer %d.\n", cle); ctx->sum = clCreateBuffer(ctx->ocf.hwctx->context, 0, weight_buf_size, NULL, &cle); CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create " "sum buffer %d.\n", cle); ctx->overflow = clCreateBuffer(ctx->ocf.hwctx->context, 0, sizeof(cl_int), NULL, &cle); CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to create " "overflow buffer %d.\n", cle); ctx->initialised = 1; return 0; fail: CL_RELEASE_KERNEL(ctx->vert_kernel); CL_RELEASE_KERNEL(ctx->horiz_kernel); CL_RELEASE_KERNEL(ctx->accum_kernel); CL_RELEASE_KERNEL(ctx->average_kernel); CL_RELEASE_MEMORY(ctx->integral_img); CL_RELEASE_MEMORY(ctx->weight); CL_RELEASE_MEMORY(ctx->sum); CL_RELEASE_MEMORY(ctx->overflow); CL_RELEASE_QUEUE(ctx->command_queue); return err; } static int nlmeans_plane(AVFilterContext *avctx, cl_mem dst, cl_mem src, cl_int width, cl_int height, cl_int p, cl_int r) { NLMeansOpenCLContext *ctx = avctx->priv; const float zero = 0.0f; const size_t worksize1[] = {height}; const size_t worksize2[] = {width}; const size_t worksize3[2] = {width, height}; int i, dx, dy, err = 0, weight_buf_size; cl_int cle; int nb_pixel, *tmp = NULL, idx = 0; cl_int *dxdy = NULL; weight_buf_size = width * height * sizeof(float); cle = clEnqueueFillBuffer(ctx->command_queue, ctx->weight, &zero, sizeof(float), 0, weight_buf_size, 0, NULL, NULL); CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to fill weight buffer: %d.\n", cle); cle = clEnqueueFillBuffer(ctx->command_queue, ctx->sum, &zero, sizeof(float), 0, weight_buf_size, 0, NULL, NULL); CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to fill sum buffer: %d.\n", cle); nb_pixel = (2 * r + 1) * (2 * r + 1) - 1; dxdy = av_malloc(nb_pixel * 2 * sizeof(cl_int)); tmp = av_malloc(nb_pixel * 2 * sizeof(int)); if (!dxdy || !tmp) goto fail; for (dx = -r; dx <= r; dx++) { for (dy = -r; dy <= r; dy++) { if (dx || dy) { tmp[idx++] = dx; tmp[idx++] = dy; } } } // repack dx/dy seperately, as we want to do four pairs of dx/dy in a batch for (i = 0; i < nb_pixel / 4; i++) { dxdy[i * 8] = tmp[i * 8]; // dx0 dxdy[i * 8 + 1] = tmp[i * 8 + 2]; // dx1 dxdy[i * 8 + 2] = tmp[i * 8 + 4]; // dx2 dxdy[i * 8 + 3] = tmp[i * 8 + 6]; // dx3 dxdy[i * 8 + 4] = tmp[i * 8 + 1]; // dy0 dxdy[i * 8 + 5] = tmp[i * 8 + 3]; // dy1 dxdy[i * 8 + 6] = tmp[i * 8 + 5]; // dy2 dxdy[i * 8 + 7] = tmp[i * 8 + 7]; // dy3 } av_freep(&tmp); for (i = 0; i < nb_pixel / 4; i++) { cl_int *dx_cur = dxdy + 8 * i; cl_int *dy_cur = dxdy + 8 * i + 4; // horizontal pass // integral(x,y) = sum([u(v,y) - u(v+dx,y+dy)]^2) for v in [0, x] CL_SET_KERNEL_ARG(ctx->horiz_kernel, 0, cl_mem, &ctx->integral_img); CL_SET_KERNEL_ARG(ctx->horiz_kernel, 1, cl_mem, &src); CL_SET_KERNEL_ARG(ctx->horiz_kernel, 2, cl_int, &width); CL_SET_KERNEL_ARG(ctx->horiz_kernel, 3, cl_int, &height); CL_SET_KERNEL_ARG(ctx->horiz_kernel, 4, cl_int4, dx_cur); CL_SET_KERNEL_ARG(ctx->horiz_kernel, 5, cl_int4, dy_cur); cle = clEnqueueNDRangeKernel(ctx->command_queue, ctx->horiz_kernel, 1, NULL, worksize1, NULL, 0, NULL, NULL); CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to enqueue horiz_kernel: %d.\n", cle); // vertical pass // integral(x, y) = sum(integral(x, v)) for v in [0, y] CL_SET_KERNEL_ARG(ctx->vert_kernel, 0, cl_mem, &ctx->integral_img); CL_SET_KERNEL_ARG(ctx->vert_kernel, 1, cl_mem, &ctx->overflow); CL_SET_KERNEL_ARG(ctx->vert_kernel, 2, cl_int, &width); CL_SET_KERNEL_ARG(ctx->vert_kernel, 3, cl_int, &height); cle = clEnqueueNDRangeKernel(ctx->command_queue, ctx->vert_kernel, 1, NULL, worksize2, NULL, 0, NULL, NULL); CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to enqueue vert_kernel: %d.\n", cle); // accumulate weights CL_SET_KERNEL_ARG(ctx->accum_kernel, 0, cl_mem, &ctx->sum); CL_SET_KERNEL_ARG(ctx->accum_kernel, 1, cl_mem, &ctx->weight); CL_SET_KERNEL_ARG(ctx->accum_kernel, 2, cl_mem, &ctx->integral_img); CL_SET_KERNEL_ARG(ctx->accum_kernel, 3, cl_mem, &src); CL_SET_KERNEL_ARG(ctx->accum_kernel, 4, cl_int, &width); CL_SET_KERNEL_ARG(ctx->accum_kernel, 5, cl_int, &height); CL_SET_KERNEL_ARG(ctx->accum_kernel, 6, cl_int, &p); CL_SET_KERNEL_ARG(ctx->accum_kernel, 7, cl_float, &ctx->h); CL_SET_KERNEL_ARG(ctx->accum_kernel, 8, cl_int4, dx_cur); CL_SET_KERNEL_ARG(ctx->accum_kernel, 9, cl_int4, dy_cur); cle = clEnqueueNDRangeKernel(ctx->command_queue, ctx->accum_kernel, 2, NULL, worksize3, NULL, 0, NULL, NULL); CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to enqueue kernel: %d.\n", cle); } av_freep(&dxdy); // average CL_SET_KERNEL_ARG(ctx->average_kernel, 0, cl_mem, &dst); CL_SET_KERNEL_ARG(ctx->average_kernel, 1, cl_mem, &src); CL_SET_KERNEL_ARG(ctx->average_kernel, 2, cl_mem, &ctx->sum); CL_SET_KERNEL_ARG(ctx->average_kernel, 3, cl_mem, &ctx->weight); cle = clEnqueueNDRangeKernel(ctx->command_queue, ctx->average_kernel, 2, NULL, worksize3, NULL, 0, NULL, NULL); CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to enqueue average kernel: %d.\n", cle); cle = clFlush(ctx->command_queue); CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to flush command queue: %d.\n", cle); fail: if (tmp) av_freep(&tmp); if (dxdy) av_freep(&dxdy); return err; } static int nlmeans_opencl_filter_frame(AVFilterLink *inlink, AVFrame *input) { AVFilterContext *avctx = inlink->dst; AVFilterLink *outlink = avctx->outputs[0]; NLMeansOpenCLContext *ctx = avctx->priv; AVFrame *output = NULL; AVHWFramesContext *input_frames_ctx; const AVPixFmtDescriptor *desc; enum AVPixelFormat in_format; cl_mem src, dst; const cl_int zero = 0; int w, h, err, cle, overflow, p, patch, research; av_log(ctx, AV_LOG_DEBUG, "Filter input: %s, %ux%u (%"PRId64").\n", av_get_pix_fmt_name(input->format), input->width, input->height, input->pts); if (!input->hw_frames_ctx) return AVERROR(EINVAL); input_frames_ctx = (AVHWFramesContext*)input->hw_frames_ctx->data; in_format = input_frames_ctx->sw_format; output = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!output) { err = AVERROR(ENOMEM); goto fail; } err = av_frame_copy_props(output, input); if (err < 0) goto fail; if (!ctx->initialised) { desc = av_pix_fmt_desc_get(in_format); if (!is_format_supported(in_format)) { err = AVERROR(EINVAL); av_log(avctx, AV_LOG_ERROR, "input format %s not supported\n", av_get_pix_fmt_name(in_format)); goto fail; } ctx->chroma_w = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w); ctx->chroma_h = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h); err = nlmeans_opencl_init(avctx, inlink->w, inlink->h); if (err < 0) goto fail; } cle = clEnqueueWriteBuffer(ctx->command_queue, ctx->overflow, CL_FALSE, 0, sizeof(cl_int), &zero, 0, NULL, NULL); CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to initialize overflow" "detection buffer %d.\n", cle); for (p = 0; p < FF_ARRAY_ELEMS(output->data); p++) { src = (cl_mem) input->data[p]; dst = (cl_mem) output->data[p]; if (!dst) break; av_assert0(src); w = p ? ctx->chroma_w : inlink->w; h = p ? ctx->chroma_h : inlink->h; patch = (p ? ctx->patch_size_uv : ctx->patch_size) / 2; research = (p ? ctx->research_size_uv : ctx->research_size) / 2; err = nlmeans_plane(avctx, dst, src, w, h, patch, research); if (err < 0) goto fail; } // overflow occurred? cle = clEnqueueReadBuffer(ctx->command_queue, ctx->overflow, CL_FALSE, 0, sizeof(cl_int), &overflow, 0, NULL, NULL); CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to read overflow: %d.\n", cle); cle = clFinish(ctx->command_queue); CL_FAIL_ON_ERROR(AVERROR(EIO), "Failed to finish kernel: %d.\n", cle); if (overflow > 0) av_log(avctx, AV_LOG_ERROR, "integral image overflow %d\n", overflow); av_frame_free(&input); av_log(ctx, AV_LOG_DEBUG, "Filter output: %s, %ux%u (%"PRId64").\n", av_get_pix_fmt_name(output->format), output->width, output->height, output->pts); return ff_filter_frame(outlink, output); fail: clFinish(ctx->command_queue); av_frame_free(&input); av_frame_free(&output); return err; } static av_cold void nlmeans_opencl_uninit(AVFilterContext *avctx) { NLMeansOpenCLContext *ctx = avctx->priv; cl_int cle; CL_RELEASE_KERNEL(ctx->vert_kernel); CL_RELEASE_KERNEL(ctx->horiz_kernel); CL_RELEASE_KERNEL(ctx->accum_kernel); CL_RELEASE_KERNEL(ctx->average_kernel); CL_RELEASE_MEMORY(ctx->integral_img); CL_RELEASE_MEMORY(ctx->weight); CL_RELEASE_MEMORY(ctx->sum); CL_RELEASE_MEMORY(ctx->overflow); CL_RELEASE_QUEUE(ctx->command_queue); ff_opencl_filter_uninit(avctx); } #define OFFSET(x) offsetof(NLMeansOpenCLContext, x) #define FLAGS (AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_VIDEO_PARAM) static const AVOption nlmeans_opencl_options[] = { { "s", "denoising strength", OFFSET(sigma), AV_OPT_TYPE_DOUBLE, { .dbl = 1.0 }, 1.0, 30.0, FLAGS }, { "p", "patch size", OFFSET(patch_size), AV_OPT_TYPE_INT, { .i64 = 2*3+1 }, 0, 99, FLAGS }, { "pc", "patch size for chroma planes", OFFSET(patch_size_uv), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 99, FLAGS }, { "r", "research window", OFFSET(research_size), AV_OPT_TYPE_INT, { .i64 = 7*2+1 }, 0, 99, FLAGS }, { "rc", "research window for chroma planes", OFFSET(research_size_uv), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 99, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(nlmeans_opencl); static const AVFilterPad nlmeans_opencl_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .filter_frame = &nlmeans_opencl_filter_frame, .config_props = &ff_opencl_filter_config_input, }, { NULL } }; static const AVFilterPad nlmeans_opencl_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = &ff_opencl_filter_config_output, }, { NULL } }; AVFilter ff_vf_nlmeans_opencl = { .name = "nlmeans_opencl", .description = NULL_IF_CONFIG_SMALL("Non-local means denoiser through OpenCL"), .priv_size = sizeof(NLMeansOpenCLContext), .priv_class = &nlmeans_opencl_class, .init = &ff_opencl_filter_init, .uninit = &nlmeans_opencl_uninit, .query_formats = &ff_opencl_filter_query_formats, .inputs = nlmeans_opencl_inputs, .outputs = nlmeans_opencl_outputs, .flags_internal = FF_FILTER_FLAG_HWFRAME_AWARE, };