/** * Copyright (c) 2014-2015 Michael Niedermayer * Copyright (c) 2016 Davinder Singh (DSM_) * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "motion_estimation.h" #include "libavcodec/mathops.h" #include "libavutil/avassert.h" #include "libavutil/common.h" #include "libavutil/motion_vector.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "avfilter.h" #include "formats.h" #include "internal.h" #include "video.h" #include "scene_sad.h" #define ME_MODE_BIDIR 0 #define ME_MODE_BILAT 1 #define MC_MODE_OBMC 0 #define MC_MODE_AOBMC 1 #define SCD_METHOD_NONE 0 #define SCD_METHOD_FDIFF 1 #define NB_FRAMES 4 #define NB_PIXEL_MVS 32 #define NB_CLUSTERS 128 #define ALPHA_MAX 1024 #define CLUSTER_THRESHOLD 4 #define PX_WEIGHT_MAX 255 #define COST_PRED_SCALE 64 static const uint8_t obmc_linear32[1024] = { 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, 0, 4, 4, 4, 8, 8, 8, 12, 12, 16, 16, 16, 20, 20, 20, 24, 24, 20, 20, 20, 16, 16, 16, 12, 12, 8, 8, 8, 4, 4, 4, 0, 0, 4, 8, 8, 12, 12, 16, 20, 20, 24, 28, 28, 32, 32, 36, 40, 40, 36, 32, 32, 28, 28, 24, 20, 20, 16, 12, 12, 8, 8, 4, 0, 0, 4, 8, 12, 16, 20, 24, 28, 28, 32, 36, 40, 44, 48, 52, 56, 56, 52, 48, 44, 40, 36, 32, 28, 28, 24, 20, 16, 12, 8, 4, 0, 4, 8, 12, 16, 20, 24, 28, 32, 40, 44, 48, 52, 56, 60, 64, 68, 68, 64, 60, 56, 52, 48, 44, 40, 32, 28, 24, 20, 16, 12, 8, 4, 4, 8, 12, 20, 24, 32, 36, 40, 48, 52, 56, 64, 68, 76, 80, 84, 84, 80, 76, 68, 64, 56, 52, 48, 40, 36, 32, 24, 20, 12, 8, 4, 4, 8, 16, 24, 28, 36, 44, 48, 56, 60, 68, 76, 80, 88, 96,100,100, 96, 88, 80, 76, 68, 60, 56, 48, 44, 36, 28, 24, 16, 8, 4, 4, 12, 20, 28, 32, 40, 48, 56, 64, 72, 80, 88, 92,100,108,116,116,108,100, 92, 88, 80, 72, 64, 56, 48, 40, 32, 28, 20, 12, 4, 4, 12, 20, 28, 40, 48, 56, 64, 72, 80, 88, 96,108,116,124,132,132,124,116,108, 96, 88, 80, 72, 64, 56, 48, 40, 28, 20, 12, 4, 4, 16, 24, 32, 44, 52, 60, 72, 80, 92,100,108,120,128,136,148,148,136,128,120,108,100, 92, 80, 72, 60, 52, 44, 32, 24, 16, 4, 4, 16, 28, 36, 48, 56, 68, 80, 88,100,112,120,132,140,152,164,164,152,140,132,120,112,100, 88, 80, 68, 56, 48, 36, 28, 16, 4, 4, 16, 28, 40, 52, 64, 76, 88, 96,108,120,132,144,156,168,180,180,168,156,144,132,120,108, 96, 88, 76, 64, 52, 40, 28, 16, 4, 8, 20, 32, 44, 56, 68, 80, 92,108,120,132,144,156,168,180,192,192,180,168,156,144,132,120,108, 92, 80, 68, 56, 44, 32, 20, 8, 8, 20, 32, 48, 60, 76, 88,100,116,128,140,156,168,184,196,208,208,196,184,168,156,140,128,116,100, 88, 76, 60, 48, 32, 20, 8, 8, 20, 36, 52, 64, 80, 96,108,124,136,152,168,180,196,212,224,224,212,196,180,168,152,136,124,108, 96, 80, 64, 52, 36, 20, 8, 8, 24, 40, 56, 68, 84,100,116,132,148,164,180,192,208,224,240,240,224,208,192,180,164,148,132,116,100, 84, 68, 56, 40, 24, 8, 8, 24, 40, 56, 68, 84,100,116,132,148,164,180,192,208,224,240,240,224,208,192,180,164,148,132,116,100, 84, 68, 56, 40, 24, 8, 8, 20, 36, 52, 64, 80, 96,108,124,136,152,168,180,196,212,224,224,212,196,180,168,152,136,124,108, 96, 80, 64, 52, 36, 20, 8, 8, 20, 32, 48, 60, 76, 88,100,116,128,140,156,168,184,196,208,208,196,184,168,156,140,128,116,100, 88, 76, 60, 48, 32, 20, 8, 8, 20, 32, 44, 56, 68, 80, 92,108,120,132,144,156,168,180,192,192,180,168,156,144,132,120,108, 92, 80, 68, 56, 44, 32, 20, 8, 4, 16, 28, 40, 52, 64, 76, 88, 96,108,120,132,144,156,168,180,180,168,156,144,132,120,108, 96, 88, 76, 64, 52, 40, 28, 16, 4, 4, 16, 28, 36, 48, 56, 68, 80, 88,100,112,120,132,140,152,164,164,152,140,132,120,112,100, 88, 80, 68, 56, 48, 36, 28, 16, 4, 4, 16, 24, 32, 44, 52, 60, 72, 80, 92,100,108,120,128,136,148,148,136,128,120,108,100, 92, 80, 72, 60, 52, 44, 32, 24, 16, 4, 4, 12, 20, 28, 40, 48, 56, 64, 72, 80, 88, 96,108,116,124,132,132,124,116,108, 96, 88, 80, 72, 64, 56, 48, 40, 28, 20, 12, 4, 4, 12, 20, 28, 32, 40, 48, 56, 64, 72, 80, 88, 92,100,108,116,116,108,100, 92, 88, 80, 72, 64, 56, 48, 40, 32, 28, 20, 12, 4, 4, 8, 16, 24, 28, 36, 44, 48, 56, 60, 68, 76, 80, 88, 96,100,100, 96, 88, 80, 76, 68, 60, 56, 48, 44, 36, 28, 24, 16, 8, 4, 4, 8, 12, 20, 24, 32, 36, 40, 48, 52, 56, 64, 68, 76, 80, 84, 84, 80, 76, 68, 64, 56, 52, 48, 40, 36, 32, 24, 20, 12, 8, 4, 4, 8, 12, 16, 20, 24, 28, 32, 40, 44, 48, 52, 56, 60, 64, 68, 68, 64, 60, 56, 52, 48, 44, 40, 32, 28, 24, 20, 16, 12, 8, 4, 0, 4, 8, 12, 16, 20, 24, 28, 28, 32, 36, 40, 44, 48, 52, 56, 56, 52, 48, 44, 40, 36, 32, 28, 28, 24, 20, 16, 12, 8, 4, 0, 0, 4, 8, 8, 12, 12, 16, 20, 20, 24, 28, 28, 32, 32, 36, 40, 40, 36, 32, 32, 28, 28, 24, 20, 20, 16, 12, 12, 8, 8, 4, 0, 0, 4, 4, 4, 8, 8, 8, 12, 12, 16, 16, 16, 20, 20, 20, 24, 24, 20, 20, 20, 16, 16, 16, 12, 12, 8, 8, 8, 4, 4, 4, 0, 0, 0, 0, 0, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 4, 4, 4, 4, 0, 0, 0, 0, }; static const uint8_t obmc_linear16[256] = { 0, 4, 4, 8, 8, 12, 12, 16, 16, 12, 12, 8, 8, 4, 4, 0, 4, 8, 16, 20, 28, 32, 40, 44, 44, 40, 32, 28, 20, 16, 8, 4, 4, 16, 24, 36, 44, 56, 64, 76, 76, 64, 56, 44, 36, 24, 16, 4, 8, 20, 36, 48, 64, 76, 92,104,104, 92, 76, 64, 48, 36, 20, 8, 8, 28, 44, 64, 80,100,116,136,136,116,100, 80, 64, 44, 28, 8, 12, 32, 56, 76,100,120,144,164,164,144,120,100, 76, 56, 32, 12, 12, 40, 64, 92,116,144,168,196,196,168,144,116, 92, 64, 40, 12, 16, 44, 76,104,136,164,196,224,224,196,164,136,104, 76, 44, 16, 16, 44, 76,104,136,164,196,224,224,196,164,136,104, 76, 44, 16, 12, 40, 64, 92,116,144,168,196,196,168,144,116, 92, 64, 40, 12, 12, 32, 56, 76,100,120,144,164,164,144,120,100, 76, 56, 32, 12, 8, 28, 44, 64, 80,100,116,136,136,116,100, 80, 64, 44, 28, 8, 8, 20, 36, 48, 64, 76, 92,104,104, 92, 76, 64, 48, 36, 20, 8, 4, 16, 24, 36, 44, 56, 64, 76, 76, 64, 56, 44, 36, 24, 16, 4, 4, 8, 16, 20, 28, 32, 40, 44, 44, 40, 32, 28, 20, 16, 8, 4, 0, 4, 4, 8, 8, 12, 12, 16, 16, 12, 12, 8, 8, 4, 4, 0, }; static const uint8_t obmc_linear8[64] = { 4, 12, 20, 28, 28, 20, 12, 4, 12, 36, 60, 84, 84, 60, 36, 12, 20, 60,100,140,140,100, 60, 20, 28, 84,140,196,196,140, 84, 28, 28, 84,140,196,196,140, 84, 28, 20, 60,100,140,140,100, 60, 20, 12, 36, 60, 84, 84, 60, 36, 12, 4, 12, 20, 28, 28, 20, 12, 4, }; static const uint8_t obmc_linear4[16] = { 16, 48, 48, 16, 48,144,144, 48, 48,144,144, 48, 16, 48, 48, 16, }; static const uint8_t * const obmc_tab_linear[4]= { obmc_linear32, obmc_linear16, obmc_linear8, obmc_linear4 }; enum MIMode { MI_MODE_DUP = 0, MI_MODE_BLEND = 1, MI_MODE_MCI = 2, }; typedef struct Cluster { int64_t sum[2]; int nb; } Cluster; typedef struct Block { int16_t mvs[2][2]; int cid; uint64_t sbad; int sb; struct Block *subs; } Block; typedef struct PixelMVS { int16_t mvs[NB_PIXEL_MVS][2]; } PixelMVS; typedef struct PixelWeights { uint32_t weights[NB_PIXEL_MVS]; } PixelWeights; typedef struct PixelRefs { int8_t refs[NB_PIXEL_MVS]; int nb; } PixelRefs; typedef struct Frame { AVFrame *avf; Block *blocks; } Frame; typedef struct MIContext { const AVClass *class; AVMotionEstContext me_ctx; AVRational frame_rate; enum MIMode mi_mode; int mc_mode; int me_mode; int me_method; int mb_size; int search_param; int vsbmc; Frame frames[NB_FRAMES]; Cluster clusters[NB_CLUSTERS]; Block *int_blocks; PixelMVS *pixel_mvs; PixelWeights *pixel_weights; PixelRefs *pixel_refs; int (*mv_table[3])[2][2]; int64_t out_pts; int b_width, b_height, b_count; int log2_mb_size; int scd_method; int scene_changed; ff_scene_sad_fn sad; double prev_mafd; double scd_threshold; int log2_chroma_w; int log2_chroma_h; int nb_planes; } MIContext; #define OFFSET(x) offsetof(MIContext, x) #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM #define CONST(name, help, val, unit) { name, help, 0, AV_OPT_TYPE_CONST, {.i64=val}, 0, 0, FLAGS, unit } static const AVOption minterpolate_options[] = { { "fps", "output's frame rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str = "60"}, 0, INT_MAX, FLAGS }, { "mi_mode", "motion interpolation mode", OFFSET(mi_mode), AV_OPT_TYPE_INT, {.i64 = MI_MODE_MCI}, MI_MODE_DUP, MI_MODE_MCI, FLAGS, "mi_mode" }, CONST("dup", "duplicate frames", MI_MODE_DUP, "mi_mode"), CONST("blend", "blend frames", MI_MODE_BLEND, "mi_mode"), CONST("mci", "motion compensated interpolation", MI_MODE_MCI, "mi_mode"), { "mc_mode", "motion compensation mode", OFFSET(mc_mode), AV_OPT_TYPE_INT, {.i64 = MC_MODE_OBMC}, MC_MODE_OBMC, MC_MODE_AOBMC, FLAGS, "mc_mode" }, CONST("obmc", "overlapped block motion compensation", MC_MODE_OBMC, "mc_mode"), CONST("aobmc", "adaptive overlapped block motion compensation", MC_MODE_AOBMC, "mc_mode"), { "me_mode", "motion estimation mode", OFFSET(me_mode), AV_OPT_TYPE_INT, {.i64 = ME_MODE_BILAT}, ME_MODE_BIDIR, ME_MODE_BILAT, FLAGS, "me_mode" }, CONST("bidir", "bidirectional motion estimation", ME_MODE_BIDIR, "me_mode"), CONST("bilat", "bilateral motion estimation", ME_MODE_BILAT, "me_mode"), { "me", "motion estimation method", OFFSET(me_method), AV_OPT_TYPE_INT, {.i64 = AV_ME_METHOD_EPZS}, AV_ME_METHOD_ESA, AV_ME_METHOD_UMH, FLAGS, "me" }, CONST("esa", "exhaustive search", AV_ME_METHOD_ESA, "me"), CONST("tss", "three step search", AV_ME_METHOD_TSS, "me"), CONST("tdls", "two dimensional logarithmic search", AV_ME_METHOD_TDLS, "me"), CONST("ntss", "new three step search", AV_ME_METHOD_NTSS, "me"), CONST("fss", "four step search", AV_ME_METHOD_FSS, "me"), CONST("ds", "diamond search", AV_ME_METHOD_DS, "me"), CONST("hexbs", "hexagon-based search", AV_ME_METHOD_HEXBS, "me"), CONST("epzs", "enhanced predictive zonal search", AV_ME_METHOD_EPZS, "me"), CONST("umh", "uneven multi-hexagon search", AV_ME_METHOD_UMH, "me"), { "mb_size", "macroblock size", OFFSET(mb_size), AV_OPT_TYPE_INT, {.i64 = 16}, 4, 16, FLAGS }, { "search_param", "search parameter", OFFSET(search_param), AV_OPT_TYPE_INT, {.i64 = 32}, 4, INT_MAX, FLAGS }, { "vsbmc", "variable-size block motion compensation", OFFSET(vsbmc), AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, FLAGS }, { "scd", "scene change detection method", OFFSET(scd_method), AV_OPT_TYPE_INT, {.i64 = SCD_METHOD_FDIFF}, SCD_METHOD_NONE, SCD_METHOD_FDIFF, FLAGS, "scene" }, CONST("none", "disable detection", SCD_METHOD_NONE, "scene"), CONST("fdiff", "frame difference", SCD_METHOD_FDIFF, "scene"), { "scd_threshold", "scene change threshold", OFFSET(scd_threshold), AV_OPT_TYPE_DOUBLE, {.dbl = 5.0}, 0, 100.0, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(minterpolate); static int query_formats(AVFilterContext *ctx) { static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_GRAY8, AV_PIX_FMT_NONE }; AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts); if (!fmts_list) return AVERROR(ENOMEM); return ff_set_common_formats(ctx, fmts_list); } static uint64_t get_sbad(AVMotionEstContext *me_ctx, int x, int y, int x_mv, int y_mv) { uint8_t *data_cur = me_ctx->data_cur; uint8_t *data_next = me_ctx->data_ref; int linesize = me_ctx->linesize; int mv_x1 = x_mv - x; int mv_y1 = y_mv - y; int mv_x, mv_y, i, j; uint64_t sbad = 0; x = av_clip(x, me_ctx->x_min, me_ctx->x_max); y = av_clip(y, me_ctx->y_min, me_ctx->y_max); mv_x = av_clip(x_mv - x, -FFMIN(x - me_ctx->x_min, me_ctx->x_max - x), FFMIN(x - me_ctx->x_min, me_ctx->x_max - x)); mv_y = av_clip(y_mv - y, -FFMIN(y - me_ctx->y_min, me_ctx->y_max - y), FFMIN(y - me_ctx->y_min, me_ctx->y_max - y)); data_cur += (y + mv_y) * linesize; data_next += (y - mv_y) * linesize; for (j = 0; j < me_ctx->mb_size; j++) for (i = 0; i < me_ctx->mb_size; i++) sbad += FFABS(data_cur[x + mv_x + i + j * linesize] - data_next[x - mv_x + i + j * linesize]); return sbad + (FFABS(mv_x1 - me_ctx->pred_x) + FFABS(mv_y1 - me_ctx->pred_y)) * COST_PRED_SCALE; } static uint64_t get_sbad_ob(AVMotionEstContext *me_ctx, int x, int y, int x_mv, int y_mv) { uint8_t *data_cur = me_ctx->data_cur; uint8_t *data_next = me_ctx->data_ref; int linesize = me_ctx->linesize; int x_min = me_ctx->x_min + me_ctx->mb_size / 2; int x_max = me_ctx->x_max - me_ctx->mb_size / 2; int y_min = me_ctx->y_min + me_ctx->mb_size / 2; int y_max = me_ctx->y_max - me_ctx->mb_size / 2; int mv_x1 = x_mv - x; int mv_y1 = y_mv - y; int mv_x, mv_y, i, j; uint64_t sbad = 0; x = av_clip(x, x_min, x_max); y = av_clip(y, y_min, y_max); mv_x = av_clip(x_mv - x, -FFMIN(x - x_min, x_max - x), FFMIN(x - x_min, x_max - x)); mv_y = av_clip(y_mv - y, -FFMIN(y - y_min, y_max - y), FFMIN(y - y_min, y_max - y)); for (j = -me_ctx->mb_size / 2; j < me_ctx->mb_size * 3 / 2; j++) for (i = -me_ctx->mb_size / 2; i < me_ctx->mb_size * 3 / 2; i++) sbad += FFABS(data_cur[x + mv_x + i + (y + mv_y + j) * linesize] - data_next[x - mv_x + i + (y - mv_y + j) * linesize]); return sbad + (FFABS(mv_x1 - me_ctx->pred_x) + FFABS(mv_y1 - me_ctx->pred_y)) * COST_PRED_SCALE; } static uint64_t get_sad_ob(AVMotionEstContext *me_ctx, int x, int y, int x_mv, int y_mv) { uint8_t *data_ref = me_ctx->data_ref; uint8_t *data_cur = me_ctx->data_cur; int linesize = me_ctx->linesize; int x_min = me_ctx->x_min + me_ctx->mb_size / 2; int x_max = me_ctx->x_max - me_ctx->mb_size / 2; int y_min = me_ctx->y_min + me_ctx->mb_size / 2; int y_max = me_ctx->y_max - me_ctx->mb_size / 2; int mv_x = x_mv - x; int mv_y = y_mv - y; int i, j; uint64_t sad = 0; x = av_clip(x, x_min, x_max); y = av_clip(y, y_min, y_max); x_mv = av_clip(x_mv, x_min, x_max); y_mv = av_clip(y_mv, y_min, y_max); for (j = -me_ctx->mb_size / 2; j < me_ctx->mb_size * 3 / 2; j++) for (i = -me_ctx->mb_size / 2; i < me_ctx->mb_size * 3 / 2; i++) sad += FFABS(data_ref[x_mv + i + (y_mv + j) * linesize] - data_cur[x + i + (y + j) * linesize]); return sad + (FFABS(mv_x - me_ctx->pred_x) + FFABS(mv_y - me_ctx->pred_y)) * COST_PRED_SCALE; } static int config_input(AVFilterLink *inlink) { MIContext *mi_ctx = inlink->dst->priv; AVMotionEstContext *me_ctx = &mi_ctx->me_ctx; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); const int height = inlink->h; const int width = inlink->w; int i, ret = 0; mi_ctx->log2_chroma_h = desc->log2_chroma_h; mi_ctx->log2_chroma_w = desc->log2_chroma_w; mi_ctx->nb_planes = av_pix_fmt_count_planes(inlink->format); mi_ctx->log2_mb_size = av_ceil_log2_c(mi_ctx->mb_size); mi_ctx->mb_size = 1 << mi_ctx->log2_mb_size; mi_ctx->b_width = width >> mi_ctx->log2_mb_size; mi_ctx->b_height = height >> mi_ctx->log2_mb_size; mi_ctx->b_count = mi_ctx->b_width * mi_ctx->b_height; for (i = 0; i < NB_FRAMES; i++) { Frame *frame = &mi_ctx->frames[i]; frame->blocks = av_mallocz_array(mi_ctx->b_count, sizeof(Block)); if (!frame->blocks) return AVERROR(ENOMEM); } if (mi_ctx->mi_mode == MI_MODE_MCI) { mi_ctx->pixel_mvs = av_mallocz_array(width * height, sizeof(PixelMVS)); mi_ctx->pixel_weights = av_mallocz_array(width * height, sizeof(PixelWeights)); mi_ctx->pixel_refs = av_mallocz_array(width * height, sizeof(PixelRefs)); if (!mi_ctx->pixel_mvs || !mi_ctx->pixel_weights || !mi_ctx->pixel_refs) { ret = AVERROR(ENOMEM); goto fail; } if (mi_ctx->me_mode == ME_MODE_BILAT) if (!(mi_ctx->int_blocks = av_mallocz_array(mi_ctx->b_count, sizeof(Block)))) return AVERROR(ENOMEM); if (mi_ctx->me_method == AV_ME_METHOD_EPZS) { for (i = 0; i < 3; i++) { mi_ctx->mv_table[i] = av_mallocz_array(mi_ctx->b_count, sizeof(*mi_ctx->mv_table[0])); if (!mi_ctx->mv_table[i]) return AVERROR(ENOMEM); } } } if (mi_ctx->scd_method == SCD_METHOD_FDIFF) { mi_ctx->sad = ff_scene_sad_get_fn(8); if (!mi_ctx->sad) return AVERROR(EINVAL); } ff_me_init_context(me_ctx, mi_ctx->mb_size, mi_ctx->search_param, width, height, 0, (mi_ctx->b_width - 1) << mi_ctx->log2_mb_size, 0, (mi_ctx->b_height - 1) << mi_ctx->log2_mb_size); if (mi_ctx->me_mode == ME_MODE_BIDIR) me_ctx->get_cost = &get_sad_ob; else if (mi_ctx->me_mode == ME_MODE_BILAT) me_ctx->get_cost = &get_sbad_ob; return 0; fail: for (i = 0; i < NB_FRAMES; i++) av_freep(&mi_ctx->frames[i].blocks); av_freep(&mi_ctx->pixel_mvs); av_freep(&mi_ctx->pixel_weights); av_freep(&mi_ctx->pixel_refs); return ret; } static int config_output(AVFilterLink *outlink) { MIContext *mi_ctx = outlink->src->priv; outlink->frame_rate = mi_ctx->frame_rate; outlink->time_base = av_inv_q(mi_ctx->frame_rate); return 0; } #define ADD_PRED(preds, px, py)\ do {\ preds.mvs[preds.nb][0] = px;\ preds.mvs[preds.nb][1] = py;\ preds.nb++;\ } while(0) static void search_mv(MIContext *mi_ctx, Block *blocks, int mb_x, int mb_y, int dir) { AVMotionEstContext *me_ctx = &mi_ctx->me_ctx; AVMotionEstPredictor *preds = me_ctx->preds; Block *block = &blocks[mb_x + mb_y * mi_ctx->b_width]; const int x_mb = mb_x << mi_ctx->log2_mb_size; const int y_mb = mb_y << mi_ctx->log2_mb_size; const int mb_i = mb_x + mb_y * mi_ctx->b_width; int mv[2] = {x_mb, y_mb}; switch (mi_ctx->me_method) { case AV_ME_METHOD_ESA: ff_me_search_esa(me_ctx, x_mb, y_mb, mv); break; case AV_ME_METHOD_TSS: ff_me_search_tss(me_ctx, x_mb, y_mb, mv); break; case AV_ME_METHOD_TDLS: ff_me_search_tdls(me_ctx, x_mb, y_mb, mv); break; case AV_ME_METHOD_NTSS: ff_me_search_ntss(me_ctx, x_mb, y_mb, mv); break; case AV_ME_METHOD_FSS: ff_me_search_fss(me_ctx, x_mb, y_mb, mv); break; case AV_ME_METHOD_DS: ff_me_search_ds(me_ctx, x_mb, y_mb, mv); break; case AV_ME_METHOD_HEXBS: ff_me_search_hexbs(me_ctx, x_mb, y_mb, mv); break; case AV_ME_METHOD_EPZS: preds[0].nb = 0; preds[1].nb = 0; ADD_PRED(preds[0], 0, 0); //left mb in current frame if (mb_x > 0) ADD_PRED(preds[0], mi_ctx->mv_table[0][mb_i - 1][dir][0], mi_ctx->mv_table[0][mb_i - 1][dir][1]); //top mb in current frame if (mb_y > 0) ADD_PRED(preds[0], mi_ctx->mv_table[0][mb_i - mi_ctx->b_width][dir][0], mi_ctx->mv_table[0][mb_i - mi_ctx->b_width][dir][1]); //top-right mb in current frame if (mb_y > 0 && mb_x + 1 < mi_ctx->b_width) ADD_PRED(preds[0], mi_ctx->mv_table[0][mb_i - mi_ctx->b_width + 1][dir][0], mi_ctx->mv_table[0][mb_i - mi_ctx->b_width + 1][dir][1]); //median predictor if (preds[0].nb == 4) { me_ctx->pred_x = mid_pred(preds[0].mvs[1][0], preds[0].mvs[2][0], preds[0].mvs[3][0]); me_ctx->pred_y = mid_pred(preds[0].mvs[1][1], preds[0].mvs[2][1], preds[0].mvs[3][1]); } else if (preds[0].nb == 3) { me_ctx->pred_x = mid_pred(0, preds[0].mvs[1][0], preds[0].mvs[2][0]); me_ctx->pred_y = mid_pred(0, preds[0].mvs[1][1], preds[0].mvs[2][1]); } else if (preds[0].nb == 2) { me_ctx->pred_x = preds[0].mvs[1][0]; me_ctx->pred_y = preds[0].mvs[1][1]; } else { me_ctx->pred_x = 0; me_ctx->pred_y = 0; } //collocated mb in prev frame ADD_PRED(preds[0], mi_ctx->mv_table[1][mb_i][dir][0], mi_ctx->mv_table[1][mb_i][dir][1]); //accelerator motion vector of collocated block in prev frame ADD_PRED(preds[1], mi_ctx->mv_table[1][mb_i][dir][0] + (mi_ctx->mv_table[1][mb_i][dir][0] - mi_ctx->mv_table[2][mb_i][dir][0]), mi_ctx->mv_table[1][mb_i][dir][1] + (mi_ctx->mv_table[1][mb_i][dir][1] - mi_ctx->mv_table[2][mb_i][dir][1])); //left mb in prev frame if (mb_x > 0) ADD_PRED(preds[1], mi_ctx->mv_table[1][mb_i - 1][dir][0], mi_ctx->mv_table[1][mb_i - 1][dir][1]); //top mb in prev frame if (mb_y > 0) ADD_PRED(preds[1], mi_ctx->mv_table[1][mb_i - mi_ctx->b_width][dir][0], mi_ctx->mv_table[1][mb_i - mi_ctx->b_width][dir][1]); //right mb in prev frame if (mb_x + 1 < mi_ctx->b_width) ADD_PRED(preds[1], mi_ctx->mv_table[1][mb_i + 1][dir][0], mi_ctx->mv_table[1][mb_i + 1][dir][1]); //bottom mb in prev frame if (mb_y + 1 < mi_ctx->b_height) ADD_PRED(preds[1], mi_ctx->mv_table[1][mb_i + mi_ctx->b_width][dir][0], mi_ctx->mv_table[1][mb_i + mi_ctx->b_width][dir][1]); ff_me_search_epzs(me_ctx, x_mb, y_mb, mv); mi_ctx->mv_table[0][mb_i][dir][0] = mv[0] - x_mb; mi_ctx->mv_table[0][mb_i][dir][1] = mv[1] - y_mb; break; case AV_ME_METHOD_UMH: preds[0].nb = 0; ADD_PRED(preds[0], 0, 0); //left mb in current frame if (mb_x > 0) ADD_PRED(preds[0], blocks[mb_i - 1].mvs[dir][0], blocks[mb_i - 1].mvs[dir][1]); if (mb_y > 0) { //top mb in current frame ADD_PRED(preds[0], blocks[mb_i - mi_ctx->b_width].mvs[dir][0], blocks[mb_i - mi_ctx->b_width].mvs[dir][1]); //top-right mb in current frame if (mb_x + 1 < mi_ctx->b_width) ADD_PRED(preds[0], blocks[mb_i - mi_ctx->b_width + 1].mvs[dir][0], blocks[mb_i - mi_ctx->b_width + 1].mvs[dir][1]); //top-left mb in current frame else if (mb_x > 0) ADD_PRED(preds[0], blocks[mb_i - mi_ctx->b_width - 1].mvs[dir][0], blocks[mb_i - mi_ctx->b_width - 1].mvs[dir][1]); } //median predictor if (preds[0].nb == 4) { me_ctx->pred_x = mid_pred(preds[0].mvs[1][0], preds[0].mvs[2][0], preds[0].mvs[3][0]); me_ctx->pred_y = mid_pred(preds[0].mvs[1][1], preds[0].mvs[2][1], preds[0].mvs[3][1]); } else if (preds[0].nb == 3) { me_ctx->pred_x = mid_pred(0, preds[0].mvs[1][0], preds[0].mvs[2][0]); me_ctx->pred_y = mid_pred(0, preds[0].mvs[1][1], preds[0].mvs[2][1]); } else if (preds[0].nb == 2) { me_ctx->pred_x = preds[0].mvs[1][0]; me_ctx->pred_y = preds[0].mvs[1][1]; } else { me_ctx->pred_x = 0; me_ctx->pred_y = 0; } ff_me_search_umh(me_ctx, x_mb, y_mb, mv); break; } block->mvs[dir][0] = mv[0] - x_mb; block->mvs[dir][1] = mv[1] - y_mb; } static void bilateral_me(MIContext *mi_ctx) { Block *block; int mb_x, mb_y; for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++) for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) { block = &mi_ctx->int_blocks[mb_x + mb_y * mi_ctx->b_width]; block->cid = 0; block->sb = 0; block->mvs[0][0] = 0; block->mvs[0][1] = 0; } for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++) for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) search_mv(mi_ctx, mi_ctx->int_blocks, mb_x, mb_y, 0); } static int var_size_bme(MIContext *mi_ctx, Block *block, int x_mb, int y_mb, int n) { AVMotionEstContext *me_ctx = &mi_ctx->me_ctx; uint64_t cost_sb, cost_old; int mb_size = me_ctx->mb_size; int search_param = me_ctx->search_param; int mv_x, mv_y; int x, y; int ret; me_ctx->mb_size = 1 << n; cost_old = me_ctx->get_cost(me_ctx, x_mb, y_mb, x_mb + block->mvs[0][0], y_mb + block->mvs[0][1]); me_ctx->mb_size = mb_size; if (!cost_old) { block->sb = 0; return 0; } if (!block->subs) { block->subs = av_mallocz_array(4, sizeof(Block)); if (!block->subs) return AVERROR(ENOMEM); } block->sb = 1; for (y = 0; y < 2; y++) for (x = 0; x < 2; x++) { Block *sb = &block->subs[x + y * 2]; int mv[2] = {x_mb + block->mvs[0][0], y_mb + block->mvs[0][1]}; me_ctx->mb_size = 1 << (n - 1); me_ctx->search_param = 2; me_ctx->pred_x = block->mvs[0][0]; me_ctx->pred_y = block->mvs[0][1]; cost_sb = ff_me_search_ds(&mi_ctx->me_ctx, x_mb + block->mvs[0][0], y_mb + block->mvs[0][1], mv); mv_x = mv[0] - x_mb; mv_y = mv[1] - y_mb; me_ctx->mb_size = mb_size; me_ctx->search_param = search_param; if (cost_sb < cost_old / 4) { sb->mvs[0][0] = mv_x; sb->mvs[0][1] = mv_y; if (n > 1) { if (ret = var_size_bme(mi_ctx, sb, x_mb + (x << (n - 1)), y_mb + (y << (n - 1)), n - 1)) return ret; } else sb->sb = 0; } else { block->sb = 0; return 0; } } return 0; } static int cluster_mvs(MIContext *mi_ctx) { int changed, c, c_max = 0; int mb_x, mb_y, x, y; int mv_x, mv_y, avg_x, avg_y, dx, dy; int d, ret; Block *block; Cluster *cluster, *cluster_new; do { changed = 0; for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++) for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) { block = &mi_ctx->int_blocks[mb_x + mb_y * mi_ctx->b_width]; c = block->cid; cluster = &mi_ctx->clusters[c]; mv_x = block->mvs[0][0]; mv_y = block->mvs[0][1]; if (cluster->nb < 2) continue; avg_x = cluster->sum[0] / cluster->nb; avg_y = cluster->sum[1] / cluster->nb; dx = avg_x - mv_x; dy = avg_y - mv_y; if (FFABS(dx) > CLUSTER_THRESHOLD || FFABS(dy) > CLUSTER_THRESHOLD) { for (d = 1; d < 5; d++) for (y = FFMAX(mb_y - d, 0); y < FFMIN(mb_y + d + 1, mi_ctx->b_height); y++) for (x = FFMAX(mb_x - d, 0); x < FFMIN(mb_x + d + 1, mi_ctx->b_width); x++) { Block *nb = &mi_ctx->int_blocks[x + y * mi_ctx->b_width]; if (nb->cid > block->cid) { if (nb->cid < c || c == block->cid) c = nb->cid; } } if (c == block->cid) c = c_max + 1; if (c >= NB_CLUSTERS) { continue; } cluster_new = &mi_ctx->clusters[c]; cluster_new->sum[0] += mv_x; cluster_new->sum[1] += mv_y; cluster->sum[0] -= mv_x; cluster->sum[1] -= mv_y; cluster_new->nb++; cluster->nb--; c_max = FFMAX(c_max, c); block->cid = c; changed = 1; } } } while (changed); /* find boundaries */ for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++) for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) { block = &mi_ctx->int_blocks[mb_x + mb_y * mi_ctx->b_width]; for (y = FFMAX(mb_y - 1, 0); y < FFMIN(mb_y + 2, mi_ctx->b_height); y++) for (x = FFMAX(mb_x - 1, 0); x < FFMIN(mb_x + 2, mi_ctx->b_width); x++) { dx = x - mb_x; dy = y - mb_y; if ((x - mb_x) && (y - mb_y) || !dx && !dy) continue; if (!mb_x || !mb_y || mb_x == mi_ctx->b_width - 1 || mb_y == mi_ctx->b_height - 1) continue; if (block->cid != mi_ctx->int_blocks[x + y * mi_ctx->b_width].cid) { if (!dx && block->cid == mi_ctx->int_blocks[x + (mb_y - dy) * mi_ctx->b_width].cid || !dy && block->cid == mi_ctx->int_blocks[(mb_x - dx) + y * mi_ctx->b_width].cid) { if (ret = var_size_bme(mi_ctx, block, mb_x << mi_ctx->log2_mb_size, mb_y << mi_ctx->log2_mb_size, mi_ctx->log2_mb_size)) return ret; } } } } return 0; } static int inject_frame(AVFilterLink *inlink, AVFrame *avf_in) { AVFilterContext *ctx = inlink->dst; MIContext *mi_ctx = ctx->priv; Frame frame_tmp; int mb_x, mb_y, dir; av_frame_free(&mi_ctx->frames[0].avf); frame_tmp = mi_ctx->frames[0]; memmove(&mi_ctx->frames[0], &mi_ctx->frames[1], sizeof(mi_ctx->frames[0]) * (NB_FRAMES - 1)); mi_ctx->frames[NB_FRAMES - 1] = frame_tmp; mi_ctx->frames[NB_FRAMES - 1].avf = avf_in; if (mi_ctx->mi_mode == MI_MODE_MCI) { if (mi_ctx->me_method == AV_ME_METHOD_EPZS) { mi_ctx->mv_table[2] = memcpy(mi_ctx->mv_table[2], mi_ctx->mv_table[1], sizeof(*mi_ctx->mv_table[1]) * mi_ctx->b_count); mi_ctx->mv_table[1] = memcpy(mi_ctx->mv_table[1], mi_ctx->mv_table[0], sizeof(*mi_ctx->mv_table[0]) * mi_ctx->b_count); } if (mi_ctx->me_mode == ME_MODE_BIDIR) { if (mi_ctx->frames[1].avf) { for (dir = 0; dir < 2; dir++) { mi_ctx->me_ctx.linesize = mi_ctx->frames[2].avf->linesize[0]; mi_ctx->me_ctx.data_cur = mi_ctx->frames[2].avf->data[0]; mi_ctx->me_ctx.data_ref = mi_ctx->frames[dir ? 3 : 1].avf->data[0]; for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++) for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) search_mv(mi_ctx, mi_ctx->frames[2].blocks, mb_x, mb_y, dir); } } } else if (mi_ctx->me_mode == ME_MODE_BILAT) { Block *block; int i, ret; if (!mi_ctx->frames[0].avf) return 0; mi_ctx->me_ctx.linesize = mi_ctx->frames[0].avf->linesize[0]; mi_ctx->me_ctx.data_cur = mi_ctx->frames[1].avf->data[0]; mi_ctx->me_ctx.data_ref = mi_ctx->frames[2].avf->data[0]; bilateral_me(mi_ctx); if (mi_ctx->mc_mode == MC_MODE_AOBMC) { for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++) for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) { int x_mb = mb_x << mi_ctx->log2_mb_size; int y_mb = mb_y << mi_ctx->log2_mb_size; block = &mi_ctx->int_blocks[mb_x + mb_y * mi_ctx->b_width]; block->sbad = get_sbad(&mi_ctx->me_ctx, x_mb, y_mb, x_mb + block->mvs[0][0], y_mb + block->mvs[0][1]); } } if (mi_ctx->vsbmc) { for (i = 0; i < NB_CLUSTERS; i++) { mi_ctx->clusters[i].sum[0] = 0; mi_ctx->clusters[i].sum[1] = 0; mi_ctx->clusters[i].nb = 0; } for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++) for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) { block = &mi_ctx->int_blocks[mb_x + mb_y * mi_ctx->b_width]; mi_ctx->clusters[0].sum[0] += block->mvs[0][0]; mi_ctx->clusters[0].sum[1] += block->mvs[0][1]; } mi_ctx->clusters[0].nb = mi_ctx->b_count; if (ret = cluster_mvs(mi_ctx)) return ret; } } } return 0; } static int detect_scene_change(MIContext *mi_ctx) { AVMotionEstContext *me_ctx = &mi_ctx->me_ctx; uint8_t *p1 = mi_ctx->frames[1].avf->data[0]; ptrdiff_t linesize1 = mi_ctx->frames[1].avf->linesize[0]; uint8_t *p2 = mi_ctx->frames[2].avf->data[0]; ptrdiff_t linesize2 = mi_ctx->frames[2].avf->linesize[0]; if (mi_ctx->scd_method == SCD_METHOD_FDIFF) { double ret = 0, mafd, diff; uint64_t sad; mi_ctx->sad(p1, linesize1, p2, linesize2, me_ctx->width, me_ctx->height, &sad); emms_c(); mafd = (double) sad / (me_ctx->height * me_ctx->width * 3); diff = fabs(mafd - mi_ctx->prev_mafd); ret = av_clipf(FFMIN(mafd, diff), 0, 100.0); mi_ctx->prev_mafd = mafd; return ret >= mi_ctx->scd_threshold; } return 0; } #define ADD_PIXELS(b_weight, mv_x, mv_y)\ do {\ if (!b_weight || pixel_refs->nb + 1 >= NB_PIXEL_MVS)\ continue;\ pixel_refs->refs[pixel_refs->nb] = 1;\ pixel_weights->weights[pixel_refs->nb] = b_weight * (ALPHA_MAX - alpha);\ pixel_mvs->mvs[pixel_refs->nb][0] = av_clip((mv_x * alpha) / ALPHA_MAX, x_min, x_max);\ pixel_mvs->mvs[pixel_refs->nb][1] = av_clip((mv_y * alpha) / ALPHA_MAX, y_min, y_max);\ pixel_refs->nb++;\ pixel_refs->refs[pixel_refs->nb] = 2;\ pixel_weights->weights[pixel_refs->nb] = b_weight * alpha;\ pixel_mvs->mvs[pixel_refs->nb][0] = av_clip(-mv_x * (ALPHA_MAX - alpha) / ALPHA_MAX, x_min, x_max);\ pixel_mvs->mvs[pixel_refs->nb][1] = av_clip(-mv_y * (ALPHA_MAX - alpha) / ALPHA_MAX, y_min, y_max);\ pixel_refs->nb++;\ } while(0) static void bidirectional_obmc(MIContext *mi_ctx, int alpha) { int x, y; int width = mi_ctx->frames[0].avf->width; int height = mi_ctx->frames[0].avf->height; int mb_y, mb_x, dir; for (y = 0; y < height; y++) for (x = 0; x < width; x++) mi_ctx->pixel_refs[x + y * width].nb = 0; for (dir = 0; dir < 2; dir++) for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++) for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) { int a = dir ? alpha : (ALPHA_MAX - alpha); int mv_x = mi_ctx->frames[2 - dir].blocks[mb_x + mb_y * mi_ctx->b_width].mvs[dir][0]; int mv_y = mi_ctx->frames[2 - dir].blocks[mb_x + mb_y * mi_ctx->b_width].mvs[dir][1]; int start_x, start_y; int startc_x, startc_y, endc_x, endc_y; start_x = (mb_x << mi_ctx->log2_mb_size) - mi_ctx->mb_size / 2 + mv_x * a / ALPHA_MAX; start_y = (mb_y << mi_ctx->log2_mb_size) - mi_ctx->mb_size / 2 + mv_y * a / ALPHA_MAX; startc_x = av_clip(start_x, 0, width - 1); startc_y = av_clip(start_y, 0, height - 1); endc_x = av_clip(start_x + (2 << mi_ctx->log2_mb_size), 0, width - 1); endc_y = av_clip(start_y + (2 << mi_ctx->log2_mb_size), 0, height - 1); if (dir) { mv_x = -mv_x; mv_y = -mv_y; } for (y = startc_y; y < endc_y; y++) { int y_min = -y; int y_max = height - y - 1; for (x = startc_x; x < endc_x; x++) { int x_min = -x; int x_max = width - x - 1; int obmc_weight = obmc_tab_linear[4 - mi_ctx->log2_mb_size][(x - start_x) + ((y - start_y) << (mi_ctx->log2_mb_size + 1))]; PixelMVS *pixel_mvs = &mi_ctx->pixel_mvs[x + y * width]; PixelWeights *pixel_weights = &mi_ctx->pixel_weights[x + y * width]; PixelRefs *pixel_refs = &mi_ctx->pixel_refs[x + y * width]; ADD_PIXELS(obmc_weight, mv_x, mv_y); } } } } static void set_frame_data(MIContext *mi_ctx, int alpha, AVFrame *avf_out) { int x, y, plane; for (plane = 0; plane < mi_ctx->nb_planes; plane++) { int width = avf_out->width; int height = avf_out->height; int chroma = plane == 1 || plane == 2; for (y = 0; y < height; y++) for (x = 0; x < width; x++) { int x_mv, y_mv; int weight_sum = 0; int i, val = 0; PixelMVS *pixel_mvs = &mi_ctx->pixel_mvs[x + y * avf_out->width]; PixelWeights *pixel_weights = &mi_ctx->pixel_weights[x + y * avf_out->width]; PixelRefs *pixel_refs = &mi_ctx->pixel_refs[x + y * avf_out->width]; for (i = 0; i < pixel_refs->nb; i++) weight_sum += pixel_weights->weights[i]; if (!weight_sum || !pixel_refs->nb) { pixel_weights->weights[0] = ALPHA_MAX - alpha; pixel_refs->refs[0] = 1; pixel_mvs->mvs[0][0] = 0; pixel_mvs->mvs[0][1] = 0; pixel_weights->weights[1] = alpha; pixel_refs->refs[1] = 2; pixel_mvs->mvs[1][0] = 0; pixel_mvs->mvs[1][1] = 0; pixel_refs->nb = 2; weight_sum = ALPHA_MAX; } for (i = 0; i < pixel_refs->nb; i++) { Frame *frame = &mi_ctx->frames[pixel_refs->refs[i]]; if (chroma) { x_mv = (x >> mi_ctx->log2_chroma_w) + pixel_mvs->mvs[i][0] / (1 << mi_ctx->log2_chroma_w); y_mv = (y >> mi_ctx->log2_chroma_h) + pixel_mvs->mvs[i][1] / (1 << mi_ctx->log2_chroma_h); } else { x_mv = x + pixel_mvs->mvs[i][0]; y_mv = y + pixel_mvs->mvs[i][1]; } val += pixel_weights->weights[i] * frame->avf->data[plane][x_mv + y_mv * frame->avf->linesize[plane]]; } val = ROUNDED_DIV(val, weight_sum); if (chroma) avf_out->data[plane][(x >> mi_ctx->log2_chroma_w) + (y >> mi_ctx->log2_chroma_h) * avf_out->linesize[plane]] = val; else avf_out->data[plane][x + y * avf_out->linesize[plane]] = val; } } } static void var_size_bmc(MIContext *mi_ctx, Block *block, int x_mb, int y_mb, int n, int alpha) { int sb_x, sb_y; int width = mi_ctx->frames[0].avf->width; int height = mi_ctx->frames[0].avf->height; for (sb_y = 0; sb_y < 2; sb_y++) for (sb_x = 0; sb_x < 2; sb_x++) { Block *sb = &block->subs[sb_x + sb_y * 2]; if (sb->sb) var_size_bmc(mi_ctx, sb, x_mb + (sb_x << (n - 1)), y_mb + (sb_y << (n - 1)), n - 1, alpha); else { int x, y; int mv_x = sb->mvs[0][0] * 2; int mv_y = sb->mvs[0][1] * 2; int start_x = x_mb + (sb_x << (n - 1)); int start_y = y_mb + (sb_y << (n - 1)); int end_x = start_x + (1 << (n - 1)); int end_y = start_y + (1 << (n - 1)); for (y = start_y; y < end_y; y++) { int y_min = -y; int y_max = height - y - 1; for (x = start_x; x < end_x; x++) { int x_min = -x; int x_max = width - x - 1; PixelMVS *pixel_mvs = &mi_ctx->pixel_mvs[x + y * width]; PixelWeights *pixel_weights = &mi_ctx->pixel_weights[x + y * width]; PixelRefs *pixel_refs = &mi_ctx->pixel_refs[x + y * width]; ADD_PIXELS(PX_WEIGHT_MAX, mv_x, mv_y); } } } } } static void bilateral_obmc(MIContext *mi_ctx, Block *block, int mb_x, int mb_y, int alpha) { int x, y; int width = mi_ctx->frames[0].avf->width; int height = mi_ctx->frames[0].avf->height; Block *nb; int nb_x, nb_y; uint64_t sbads[9]; int mv_x = block->mvs[0][0] * 2; int mv_y = block->mvs[0][1] * 2; int start_x, start_y; int startc_x, startc_y, endc_x, endc_y; if (mi_ctx->mc_mode == MC_MODE_AOBMC) for (nb_y = FFMAX(0, mb_y - 1); nb_y < FFMIN(mb_y + 2, mi_ctx->b_height); nb_y++) for (nb_x = FFMAX(0, mb_x - 1); nb_x < FFMIN(mb_x + 2, mi_ctx->b_width); nb_x++) { int x_nb = nb_x << mi_ctx->log2_mb_size; int y_nb = nb_y << mi_ctx->log2_mb_size; if (nb_x - mb_x || nb_y - mb_y) sbads[nb_x - mb_x + 1 + (nb_y - mb_y + 1) * 3] = get_sbad(&mi_ctx->me_ctx, x_nb, y_nb, x_nb + block->mvs[0][0], y_nb + block->mvs[0][1]); } start_x = (mb_x << mi_ctx->log2_mb_size) - mi_ctx->mb_size / 2; start_y = (mb_y << mi_ctx->log2_mb_size) - mi_ctx->mb_size / 2; startc_x = av_clip(start_x, 0, width - 1); startc_y = av_clip(start_y, 0, height - 1); endc_x = av_clip(start_x + (2 << mi_ctx->log2_mb_size), 0, width - 1); endc_y = av_clip(start_y + (2 << mi_ctx->log2_mb_size), 0, height - 1); for (y = startc_y; y < endc_y; y++) { int y_min = -y; int y_max = height - y - 1; for (x = startc_x; x < endc_x; x++) { int x_min = -x; int x_max = width - x - 1; int obmc_weight = obmc_tab_linear[4 - mi_ctx->log2_mb_size][(x - start_x) + ((y - start_y) << (mi_ctx->log2_mb_size + 1))]; PixelMVS *pixel_mvs = &mi_ctx->pixel_mvs[x + y * width]; PixelWeights *pixel_weights = &mi_ctx->pixel_weights[x + y * width]; PixelRefs *pixel_refs = &mi_ctx->pixel_refs[x + y * width]; if (mi_ctx->mc_mode == MC_MODE_AOBMC) { nb_x = (((x - start_x) >> (mi_ctx->log2_mb_size - 1)) * 2 - 3) / 2; nb_y = (((y - start_y) >> (mi_ctx->log2_mb_size - 1)) * 2 - 3) / 2; if (nb_x || nb_y) { uint64_t sbad = sbads[nb_x + 1 + (nb_y + 1) * 3]; nb = &mi_ctx->int_blocks[mb_x + nb_x + (mb_y + nb_y) * mi_ctx->b_width]; if (sbad && sbad != UINT64_MAX && nb->sbad != UINT64_MAX) { int phi = av_clip(ALPHA_MAX * nb->sbad / sbad, 0, ALPHA_MAX); obmc_weight = obmc_weight * phi / ALPHA_MAX; } } } ADD_PIXELS(obmc_weight, mv_x, mv_y); } } } static void interpolate(AVFilterLink *inlink, AVFrame *avf_out) { AVFilterContext *ctx = inlink->dst; AVFilterLink *outlink = ctx->outputs[0]; MIContext *mi_ctx = ctx->priv; int x, y; int plane, alpha; int64_t pts; pts = av_rescale(avf_out->pts, (int64_t) ALPHA_MAX * outlink->time_base.num * inlink->time_base.den, (int64_t) outlink->time_base.den * inlink->time_base.num); alpha = (pts - mi_ctx->frames[1].avf->pts * ALPHA_MAX) / (mi_ctx->frames[2].avf->pts - mi_ctx->frames[1].avf->pts); alpha = av_clip(alpha, 0, ALPHA_MAX); if (alpha == 0 || alpha == ALPHA_MAX) { av_frame_copy(avf_out, alpha ? mi_ctx->frames[2].avf : mi_ctx->frames[1].avf); return; } if (mi_ctx->scene_changed) { /* duplicate frame */ av_frame_copy(avf_out, alpha > ALPHA_MAX / 2 ? mi_ctx->frames[2].avf : mi_ctx->frames[1].avf); return; } switch(mi_ctx->mi_mode) { case MI_MODE_DUP: av_frame_copy(avf_out, alpha > ALPHA_MAX / 2 ? mi_ctx->frames[2].avf : mi_ctx->frames[1].avf); break; case MI_MODE_BLEND: for (plane = 0; plane < mi_ctx->nb_planes; plane++) { int width = avf_out->width; int height = avf_out->height; if (plane == 1 || plane == 2) { width = AV_CEIL_RSHIFT(width, mi_ctx->log2_chroma_w); height = AV_CEIL_RSHIFT(height, mi_ctx->log2_chroma_h); } for (y = 0; y < height; y++) { for (x = 0; x < width; x++) { avf_out->data[plane][x + y * avf_out->linesize[plane]] = (alpha * mi_ctx->frames[2].avf->data[plane][x + y * mi_ctx->frames[2].avf->linesize[plane]] + (ALPHA_MAX - alpha) * mi_ctx->frames[1].avf->data[plane][x + y * mi_ctx->frames[1].avf->linesize[plane]] + 512) >> 10; } } } break; case MI_MODE_MCI: if (mi_ctx->me_mode == ME_MODE_BIDIR) { bidirectional_obmc(mi_ctx, alpha); set_frame_data(mi_ctx, alpha, avf_out); } else if (mi_ctx->me_mode == ME_MODE_BILAT) { int mb_x, mb_y; Block *block; for (y = 0; y < mi_ctx->frames[0].avf->height; y++) for (x = 0; x < mi_ctx->frames[0].avf->width; x++) mi_ctx->pixel_refs[x + y * mi_ctx->frames[0].avf->width].nb = 0; for (mb_y = 0; mb_y < mi_ctx->b_height; mb_y++) for (mb_x = 0; mb_x < mi_ctx->b_width; mb_x++) { block = &mi_ctx->int_blocks[mb_x + mb_y * mi_ctx->b_width]; if (block->sb) var_size_bmc(mi_ctx, block, mb_x << mi_ctx->log2_mb_size, mb_y << mi_ctx->log2_mb_size, mi_ctx->log2_mb_size, alpha); bilateral_obmc(mi_ctx, block, mb_x, mb_y, alpha); } set_frame_data(mi_ctx, alpha, avf_out); } break; } } static int filter_frame(AVFilterLink *inlink, AVFrame *avf_in) { AVFilterContext *ctx = inlink->dst; AVFilterLink *outlink = ctx->outputs[0]; MIContext *mi_ctx = ctx->priv; int ret; if (avf_in->pts == AV_NOPTS_VALUE) { ret = ff_filter_frame(ctx->outputs[0], avf_in); return ret; } if (!mi_ctx->frames[NB_FRAMES - 1].avf || avf_in->pts < mi_ctx->frames[NB_FRAMES - 1].avf->pts) { av_log(ctx, AV_LOG_VERBOSE, "Initializing out pts from input pts %"PRId64"\n", avf_in->pts); mi_ctx->out_pts = av_rescale_q(avf_in->pts, inlink->time_base, outlink->time_base); } if (!mi_ctx->frames[NB_FRAMES - 1].avf) if (ret = inject_frame(inlink, av_frame_clone(avf_in))) return ret; if (ret = inject_frame(inlink, avf_in)) return ret; if (!mi_ctx->frames[0].avf) return 0; mi_ctx->scene_changed = detect_scene_change(mi_ctx); for (;;) { AVFrame *avf_out; if (av_compare_ts(mi_ctx->out_pts, outlink->time_base, mi_ctx->frames[2].avf->pts, inlink->time_base) > 0) break; if (!(avf_out = ff_get_video_buffer(ctx->outputs[0], inlink->w, inlink->h))) return AVERROR(ENOMEM); av_frame_copy_props(avf_out, mi_ctx->frames[NB_FRAMES - 1].avf); avf_out->pts = mi_ctx->out_pts++; interpolate(inlink, avf_out); if ((ret = ff_filter_frame(ctx->outputs[0], avf_out)) < 0) return ret; } return 0; } static av_cold void free_blocks(Block *block, int sb) { if (block->subs) free_blocks(block->subs, 1); if (sb) av_freep(&block); } static av_cold void uninit(AVFilterContext *ctx) { MIContext *mi_ctx = ctx->priv; int i, m; av_freep(&mi_ctx->pixel_mvs); av_freep(&mi_ctx->pixel_weights); av_freep(&mi_ctx->pixel_refs); if (mi_ctx->int_blocks) for (m = 0; m < mi_ctx->b_count; m++) free_blocks(&mi_ctx->int_blocks[m], 0); av_freep(&mi_ctx->int_blocks); for (i = 0; i < NB_FRAMES; i++) { Frame *frame = &mi_ctx->frames[i]; av_freep(&frame->blocks); av_frame_free(&frame->avf); } for (i = 0; i < 3; i++) av_freep(&mi_ctx->mv_table[i]); } static const AVFilterPad minterpolate_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .filter_frame = filter_frame, .config_props = config_input, }, { NULL } }; static const AVFilterPad minterpolate_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_output, }, { NULL } }; AVFilter ff_vf_minterpolate = { .name = "minterpolate", .description = NULL_IF_CONFIG_SMALL("Frame rate conversion using Motion Interpolation."), .priv_size = sizeof(MIContext), .priv_class = &minterpolate_class, .uninit = uninit, .query_formats = query_formats, .inputs = minterpolate_inputs, .outputs = minterpolate_outputs, };