/** * Copyright (c) 2016 Davinder Singh (DSM_) * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "motion_estimation.h" #include "libavcodec/mathops.h" #include "libavutil/avassert.h" #include "libavutil/common.h" #include "libavutil/imgutils.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "libavutil/motion_vector.h" #include "avfilter.h" #include "formats.h" #include "internal.h" #include "video.h" typedef struct MEContext { const AVClass *class; AVMotionEstContext me_ctx; int method; ///< motion estimation method int mb_size; ///< macroblock size int search_param; ///< search parameter int b_width, b_height, b_count; int log2_mb_size; AVFrame *prev, *cur, *next; int (*mv_table[3])[2][2]; ///< motion vectors of current & prev 2 frames } MEContext; #define OFFSET(x) offsetof(MEContext, x) #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM #define CONST(name, help, val, unit) { name, help, 0, AV_OPT_TYPE_CONST, {.i64=val}, 0, 0, FLAGS, unit } static const AVOption mestimate_options[] = { { "method", "motion estimation method", OFFSET(method), AV_OPT_TYPE_INT, {.i64 = AV_ME_METHOD_ESA}, AV_ME_METHOD_ESA, AV_ME_METHOD_UMH, FLAGS, "method" }, CONST("esa", "exhaustive search", AV_ME_METHOD_ESA, "method"), CONST("tss", "three step search", AV_ME_METHOD_TSS, "method"), CONST("tdls", "two dimensional logarithmic search", AV_ME_METHOD_TDLS, "method"), CONST("ntss", "new three step search", AV_ME_METHOD_NTSS, "method"), CONST("fss", "four step search", AV_ME_METHOD_FSS, "method"), CONST("ds", "diamond search", AV_ME_METHOD_DS, "method"), CONST("hexbs", "hexagon-based search", AV_ME_METHOD_HEXBS, "method"), CONST("epzs", "enhanced predictive zonal search", AV_ME_METHOD_EPZS, "method"), CONST("umh", "uneven multi-hexagon search", AV_ME_METHOD_UMH, "method"), { "mb_size", "macroblock size", OFFSET(mb_size), AV_OPT_TYPE_INT, {.i64 = 16}, 8, INT_MAX, FLAGS }, { "search_param", "search parameter", OFFSET(search_param), AV_OPT_TYPE_INT, {.i64 = 7}, 4, INT_MAX, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(mestimate); static int query_formats(AVFilterContext *ctx) { static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_GRAY8, AV_PIX_FMT_NONE }; AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts); if (!fmts_list) return AVERROR(ENOMEM); return ff_set_common_formats(ctx, fmts_list); } static int config_input(AVFilterLink *inlink) { MEContext *s = inlink->dst->priv; int i; s->log2_mb_size = av_ceil_log2_c(s->mb_size); s->mb_size = 1 << s->log2_mb_size; s->b_width = inlink->w >> s->log2_mb_size; s->b_height = inlink->h >> s->log2_mb_size; s->b_count = s->b_width * s->b_height; for (i = 0; i < 3; i++) { s->mv_table[i] = av_mallocz_array(s->b_count, sizeof(*s->mv_table[0])); if (!s->mv_table[i]) return AVERROR(ENOMEM); } ff_me_init_context(&s->me_ctx, s->mb_size, s->search_param, inlink->w, inlink->h, 0, (s->b_width - 1) << s->log2_mb_size, 0, (s->b_height - 1) << s->log2_mb_size); return 0; } static void add_mv_data(AVMotionVector *mv, int mb_size, int x, int y, int x_mv, int y_mv, int dir) { mv->w = mb_size; mv->h = mb_size; mv->dst_x = x + (mb_size >> 1); mv->dst_y = y + (mb_size >> 1); mv->src_x = x_mv + (mb_size >> 1); mv->src_y = y_mv + (mb_size >> 1); mv->source = dir ? 1 : -1; mv->flags = 0; } #define SEARCH_MV(method)\ do {\ for (mb_y = 0; mb_y < s->b_height; mb_y++)\ for (mb_x = 0; mb_x < s->b_width; mb_x++) {\ const int x_mb = mb_x << s->log2_mb_size;\ const int y_mb = mb_y << s->log2_mb_size;\ int mv[2] = {x_mb, y_mb};\ ff_me_search_##method(me_ctx, x_mb, y_mb, mv);\ add_mv_data(((AVMotionVector *) sd->data) + mv_count++, me_ctx->mb_size, x_mb, y_mb, mv[0], mv[1], dir);\ }\ } while (0) #define ADD_PRED(preds, px, py)\ do {\ preds.mvs[preds.nb][0] = px;\ preds.mvs[preds.nb][1] = py;\ preds.nb++;\ } while(0) static int filter_frame(AVFilterLink *inlink, AVFrame *frame) { AVFilterContext *ctx = inlink->dst; MEContext *s = ctx->priv; AVMotionEstContext *me_ctx = &s->me_ctx; AVFrameSideData *sd; AVFrame *out; int mb_x, mb_y, dir; int32_t mv_count = 0; int ret; if (frame->pts == AV_NOPTS_VALUE) { ret = ff_filter_frame(ctx->outputs[0], frame); return ret; } av_frame_free(&s->prev); s->prev = s->cur; s->cur = s->next; s->next = frame; s->mv_table[2] = memcpy(s->mv_table[2], s->mv_table[1], sizeof(*s->mv_table[1]) * s->b_count); s->mv_table[1] = memcpy(s->mv_table[1], s->mv_table[0], sizeof(*s->mv_table[0]) * s->b_count); if (!s->cur) { s->cur = av_frame_clone(frame); if (!s->cur) return AVERROR(ENOMEM); } if (!s->prev) return 0; out = av_frame_clone(s->cur); if (!out) return AVERROR(ENOMEM); sd = av_frame_new_side_data(out, AV_FRAME_DATA_MOTION_VECTORS, 2 * s->b_count * sizeof(AVMotionVector)); if (!sd) { av_frame_free(&out); return AVERROR(ENOMEM); } me_ctx->data_cur = s->cur->data[0]; me_ctx->linesize = s->cur->linesize[0]; for (dir = 0; dir < 2; dir++) { me_ctx->data_ref = (dir ? s->next : s->prev)->data[0]; if (s->method == AV_ME_METHOD_DS) SEARCH_MV(ds); else if (s->method == AV_ME_METHOD_ESA) SEARCH_MV(esa); else if (s->method == AV_ME_METHOD_FSS) SEARCH_MV(fss); else if (s->method == AV_ME_METHOD_NTSS) SEARCH_MV(ntss); else if (s->method == AV_ME_METHOD_TDLS) SEARCH_MV(tdls); else if (s->method == AV_ME_METHOD_TSS) SEARCH_MV(tss); else if (s->method == AV_ME_METHOD_HEXBS) SEARCH_MV(hexbs); else if (s->method == AV_ME_METHOD_UMH) { for (mb_y = 0; mb_y < s->b_height; mb_y++) for (mb_x = 0; mb_x < s->b_width; mb_x++) { const int mb_i = mb_x + mb_y * s->b_width; const int x_mb = mb_x << s->log2_mb_size; const int y_mb = mb_y << s->log2_mb_size; int mv[2] = {x_mb, y_mb}; AVMotionEstPredictor *preds = me_ctx->preds; preds[0].nb = 0; ADD_PRED(preds[0], 0, 0); //left mb in current frame if (mb_x > 0) ADD_PRED(preds[0], s->mv_table[0][mb_i - 1][dir][0], s->mv_table[0][mb_i - 1][dir][1]); if (mb_y > 0) { //top mb in current frame ADD_PRED(preds[0], s->mv_table[0][mb_i - s->b_width][dir][0], s->mv_table[0][mb_i - s->b_width][dir][1]); //top-right mb in current frame if (mb_x + 1 < s->b_width) ADD_PRED(preds[0], s->mv_table[0][mb_i - s->b_width + 1][dir][0], s->mv_table[0][mb_i - s->b_width + 1][dir][1]); //top-left mb in current frame else if (mb_x > 0) ADD_PRED(preds[0], s->mv_table[0][mb_i - s->b_width - 1][dir][0], s->mv_table[0][mb_i - s->b_width - 1][dir][1]); } //median predictor if (preds[0].nb == 4) { me_ctx->pred_x = mid_pred(preds[0].mvs[1][0], preds[0].mvs[2][0], preds[0].mvs[3][0]); me_ctx->pred_y = mid_pred(preds[0].mvs[1][1], preds[0].mvs[2][1], preds[0].mvs[3][1]); } else if (preds[0].nb == 3) { me_ctx->pred_x = mid_pred(0, preds[0].mvs[1][0], preds[0].mvs[2][0]); me_ctx->pred_y = mid_pred(0, preds[0].mvs[1][1], preds[0].mvs[2][1]); } else if (preds[0].nb == 2) { me_ctx->pred_x = preds[0].mvs[1][0]; me_ctx->pred_y = preds[0].mvs[1][1]; } else { me_ctx->pred_x = 0; me_ctx->pred_y = 0; } ff_me_search_umh(me_ctx, x_mb, y_mb, mv); s->mv_table[0][mb_i][dir][0] = mv[0] - x_mb; s->mv_table[0][mb_i][dir][1] = mv[1] - y_mb; add_mv_data(((AVMotionVector *) sd->data) + mv_count++, me_ctx->mb_size, x_mb, y_mb, mv[0], mv[1], dir); } } else if (s->method == AV_ME_METHOD_EPZS) { for (mb_y = 0; mb_y < s->b_height; mb_y++) for (mb_x = 0; mb_x < s->b_width; mb_x++) { const int mb_i = mb_x + mb_y * s->b_width; const int x_mb = mb_x << s->log2_mb_size; const int y_mb = mb_y << s->log2_mb_size; int mv[2] = {x_mb, y_mb}; AVMotionEstPredictor *preds = me_ctx->preds; preds[0].nb = 0; preds[1].nb = 0; ADD_PRED(preds[0], 0, 0); //left mb in current frame if (mb_x > 0) ADD_PRED(preds[0], s->mv_table[0][mb_i - 1][dir][0], s->mv_table[0][mb_i - 1][dir][1]); //top mb in current frame if (mb_y > 0) ADD_PRED(preds[0], s->mv_table[0][mb_i - s->b_width][dir][0], s->mv_table[0][mb_i - s->b_width][dir][1]); //top-right mb in current frame if (mb_y > 0 && mb_x + 1 < s->b_width) ADD_PRED(preds[0], s->mv_table[0][mb_i - s->b_width + 1][dir][0], s->mv_table[0][mb_i - s->b_width + 1][dir][1]); //median predictor if (preds[0].nb == 4) { me_ctx->pred_x = mid_pred(preds[0].mvs[1][0], preds[0].mvs[2][0], preds[0].mvs[3][0]); me_ctx->pred_y = mid_pred(preds[0].mvs[1][1], preds[0].mvs[2][1], preds[0].mvs[3][1]); } else if (preds[0].nb == 3) { me_ctx->pred_x = mid_pred(0, preds[0].mvs[1][0], preds[0].mvs[2][0]); me_ctx->pred_y = mid_pred(0, preds[0].mvs[1][1], preds[0].mvs[2][1]); } else if (preds[0].nb == 2) { me_ctx->pred_x = preds[0].mvs[1][0]; me_ctx->pred_y = preds[0].mvs[1][1]; } else { me_ctx->pred_x = 0; me_ctx->pred_y = 0; } //collocated mb in prev frame ADD_PRED(preds[0], s->mv_table[1][mb_i][dir][0], s->mv_table[1][mb_i][dir][1]); //accelerator motion vector of collocated block in prev frame ADD_PRED(preds[1], s->mv_table[1][mb_i][dir][0] + (s->mv_table[1][mb_i][dir][0] - s->mv_table[2][mb_i][dir][0]), s->mv_table[1][mb_i][dir][1] + (s->mv_table[1][mb_i][dir][1] - s->mv_table[2][mb_i][dir][1])); //left mb in prev frame if (mb_x > 0) ADD_PRED(preds[1], s->mv_table[1][mb_i - 1][dir][0], s->mv_table[1][mb_i - 1][dir][1]); //top mb in prev frame if (mb_y > 0) ADD_PRED(preds[1], s->mv_table[1][mb_i - s->b_width][dir][0], s->mv_table[1][mb_i - s->b_width][dir][1]); //right mb in prev frame if (mb_x + 1 < s->b_width) ADD_PRED(preds[1], s->mv_table[1][mb_i + 1][dir][0], s->mv_table[1][mb_i + 1][dir][1]); //bottom mb in prev frame if (mb_y + 1 < s->b_height) ADD_PRED(preds[1], s->mv_table[1][mb_i + s->b_width][dir][0], s->mv_table[1][mb_i + s->b_width][dir][1]); ff_me_search_epzs(me_ctx, x_mb, y_mb, mv); s->mv_table[0][mb_i][dir][0] = mv[0] - x_mb; s->mv_table[0][mb_i][dir][1] = mv[1] - y_mb; add_mv_data(((AVMotionVector *) sd->data) + mv_count++, s->mb_size, x_mb, y_mb, mv[0], mv[1], dir); } } } return ff_filter_frame(ctx->outputs[0], out); } static av_cold void uninit(AVFilterContext *ctx) { MEContext *s = ctx->priv; int i; av_frame_free(&s->prev); av_frame_free(&s->cur); av_frame_free(&s->next); for (i = 0; i < 3; i++) av_freep(&s->mv_table[i]); } static const AVFilterPad mestimate_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .filter_frame = filter_frame, .config_props = config_input, }, { NULL } }; static const AVFilterPad mestimate_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, }, { NULL } }; AVFilter ff_vf_mestimate = { .name = "mestimate", .description = NULL_IF_CONFIG_SMALL("Generate motion vectors."), .priv_size = sizeof(MEContext), .priv_class = &mestimate_class, .uninit = uninit, .query_formats = query_formats, .inputs = mestimate_inputs, .outputs = mestimate_outputs, };