/* * Copyright (c) 2011 Stefano Sabatini * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Compute a look-up table for binding the input value to the output * value, and apply it to input video. */ #include "libavutil/attributes.h" #include "libavutil/bswap.h" #include "libavutil/common.h" #include "libavutil/eval.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "avfilter.h" #include "drawutils.h" #include "formats.h" #include "internal.h" #include "video.h" static const char *const var_names[] = { "w", ///< width of the input video "h", ///< height of the input video "val", ///< input value for the pixel "maxval", ///< max value for the pixel "minval", ///< min value for the pixel "negval", ///< negated value "clipval", NULL }; enum var_name { VAR_W, VAR_H, VAR_VAL, VAR_MAXVAL, VAR_MINVAL, VAR_NEGVAL, VAR_CLIPVAL, VAR_VARS_NB }; typedef struct LutContext { const AVClass *class; uint16_t lut[4][256 * 256]; ///< lookup table for each component char *comp_expr_str[4]; AVExpr *comp_expr[4]; int hsub, vsub; double var_values[VAR_VARS_NB]; int is_rgb, is_yuv; int is_planar; int is_16bit; int step; int negate_alpha; /* only used by negate */ } LutContext; #define Y 0 #define U 1 #define V 2 #define R 0 #define G 1 #define B 2 #define A 3 #define OFFSET(x) offsetof(LutContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM static const AVOption options[] = { { "c0", "set component #0 expression", OFFSET(comp_expr_str[0]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS }, { "c1", "set component #1 expression", OFFSET(comp_expr_str[1]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS }, { "c2", "set component #2 expression", OFFSET(comp_expr_str[2]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS }, { "c3", "set component #3 expression", OFFSET(comp_expr_str[3]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS }, { "y", "set Y expression", OFFSET(comp_expr_str[Y]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS }, { "u", "set U expression", OFFSET(comp_expr_str[U]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS }, { "v", "set V expression", OFFSET(comp_expr_str[V]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS }, { "r", "set R expression", OFFSET(comp_expr_str[R]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS }, { "g", "set G expression", OFFSET(comp_expr_str[G]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS }, { "b", "set B expression", OFFSET(comp_expr_str[B]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS }, { "a", "set A expression", OFFSET(comp_expr_str[A]), AV_OPT_TYPE_STRING, { .str = "clipval" }, .flags = FLAGS }, { NULL } }; static av_cold void uninit(AVFilterContext *ctx) { LutContext *s = ctx->priv; int i; for (i = 0; i < 4; i++) { av_expr_free(s->comp_expr[i]); s->comp_expr[i] = NULL; av_freep(&s->comp_expr_str[i]); } } #define YUV_FORMATS \ AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV420P, \ AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV440P, \ AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA444P, \ AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P, \ AV_PIX_FMT_YUVJ440P, \ AV_PIX_FMT_YUV444P9LE, AV_PIX_FMT_YUV422P9LE, AV_PIX_FMT_YUV420P9LE, \ AV_PIX_FMT_YUV444P10LE, AV_PIX_FMT_YUV422P10LE, AV_PIX_FMT_YUV420P10LE, AV_PIX_FMT_YUV440P10LE, \ AV_PIX_FMT_YUV444P12LE, AV_PIX_FMT_YUV422P12LE, AV_PIX_FMT_YUV420P12LE, AV_PIX_FMT_YUV440P12LE, \ AV_PIX_FMT_YUV444P14LE, AV_PIX_FMT_YUV422P14LE, AV_PIX_FMT_YUV420P14LE, \ AV_PIX_FMT_YUV444P16LE, AV_PIX_FMT_YUV422P16LE, AV_PIX_FMT_YUV420P16LE, \ AV_PIX_FMT_YUVA444P16LE, AV_PIX_FMT_YUVA422P16LE, AV_PIX_FMT_YUVA420P16LE #define RGB_FORMATS \ AV_PIX_FMT_ARGB, AV_PIX_FMT_RGBA, \ AV_PIX_FMT_ABGR, AV_PIX_FMT_BGRA, \ AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24, \ AV_PIX_FMT_RGB48LE, AV_PIX_FMT_RGBA64LE, \ AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, \ AV_PIX_FMT_GBRP9LE, AV_PIX_FMT_GBRP10LE, \ AV_PIX_FMT_GBRAP10LE, \ AV_PIX_FMT_GBRP12LE, AV_PIX_FMT_GBRP14LE, \ AV_PIX_FMT_GBRP16LE, AV_PIX_FMT_GBRAP12LE, \ AV_PIX_FMT_GBRAP16LE #define GRAY_FORMATS \ AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9LE, AV_PIX_FMT_GRAY10LE, \ AV_PIX_FMT_GRAY12LE, AV_PIX_FMT_GRAY14LE, AV_PIX_FMT_GRAY16LE static const enum AVPixelFormat yuv_pix_fmts[] = { YUV_FORMATS, AV_PIX_FMT_NONE }; static const enum AVPixelFormat rgb_pix_fmts[] = { RGB_FORMATS, AV_PIX_FMT_NONE }; static const enum AVPixelFormat all_pix_fmts[] = { RGB_FORMATS, YUV_FORMATS, GRAY_FORMATS, AV_PIX_FMT_NONE }; static int query_formats(AVFilterContext *ctx) { LutContext *s = ctx->priv; const enum AVPixelFormat *pix_fmts = s->is_rgb ? rgb_pix_fmts : s->is_yuv ? yuv_pix_fmts : all_pix_fmts; AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts); if (!fmts_list) return AVERROR(ENOMEM); return ff_set_common_formats(ctx, fmts_list); } /** * Clip value val in the minval - maxval range. */ static double clip(void *opaque, double val) { LutContext *s = opaque; double minval = s->var_values[VAR_MINVAL]; double maxval = s->var_values[VAR_MAXVAL]; return av_clip(val, minval, maxval); } /** * Compute gamma correction for value val, assuming the minval-maxval * range, val is clipped to a value contained in the same interval. */ static double compute_gammaval(void *opaque, double gamma) { LutContext *s = opaque; double val = s->var_values[VAR_CLIPVAL]; double minval = s->var_values[VAR_MINVAL]; double maxval = s->var_values[VAR_MAXVAL]; return pow((val-minval)/(maxval-minval), gamma) * (maxval-minval)+minval; } /** * Compute ITU Rec.709 gamma correction of value val. */ static double compute_gammaval709(void *opaque, double gamma) { LutContext *s = opaque; double val = s->var_values[VAR_CLIPVAL]; double minval = s->var_values[VAR_MINVAL]; double maxval = s->var_values[VAR_MAXVAL]; double level = (val - minval) / (maxval - minval); level = level < 0.018 ? 4.5 * level : 1.099 * pow(level, 1.0 / gamma) - 0.099; return level * (maxval - minval) + minval; } static double (* const funcs1[])(void *, double) = { clip, compute_gammaval, compute_gammaval709, NULL }; static const char * const funcs1_names[] = { "clip", "gammaval", "gammaval709", NULL }; static int config_props(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; LutContext *s = ctx->priv; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); uint8_t rgba_map[4]; /* component index -> RGBA color index map */ int min[4], max[4]; int val, color, ret; s->hsub = desc->log2_chroma_w; s->vsub = desc->log2_chroma_h; s->var_values[VAR_W] = inlink->w; s->var_values[VAR_H] = inlink->h; s->is_16bit = desc->comp[0].depth > 8; switch (inlink->format) { case AV_PIX_FMT_YUV410P: case AV_PIX_FMT_YUV411P: case AV_PIX_FMT_YUV420P: case AV_PIX_FMT_YUV422P: case AV_PIX_FMT_YUV440P: case AV_PIX_FMT_YUV444P: case AV_PIX_FMT_YUVA420P: case AV_PIX_FMT_YUVA422P: case AV_PIX_FMT_YUVA444P: case AV_PIX_FMT_YUV420P9LE: case AV_PIX_FMT_YUV422P9LE: case AV_PIX_FMT_YUV444P9LE: case AV_PIX_FMT_YUVA420P9LE: case AV_PIX_FMT_YUVA422P9LE: case AV_PIX_FMT_YUVA444P9LE: case AV_PIX_FMT_YUV420P10LE: case AV_PIX_FMT_YUV422P10LE: case AV_PIX_FMT_YUV440P10LE: case AV_PIX_FMT_YUV444P10LE: case AV_PIX_FMT_YUVA420P10LE: case AV_PIX_FMT_YUVA422P10LE: case AV_PIX_FMT_YUVA444P10LE: case AV_PIX_FMT_YUV420P12LE: case AV_PIX_FMT_YUV422P12LE: case AV_PIX_FMT_YUV440P12LE: case AV_PIX_FMT_YUV444P12LE: case AV_PIX_FMT_YUV420P14LE: case AV_PIX_FMT_YUV422P14LE: case AV_PIX_FMT_YUV444P14LE: case AV_PIX_FMT_YUV420P16LE: case AV_PIX_FMT_YUV422P16LE: case AV_PIX_FMT_YUV444P16LE: case AV_PIX_FMT_YUVA420P16LE: case AV_PIX_FMT_YUVA422P16LE: case AV_PIX_FMT_YUVA444P16LE: min[Y] = 16 * (1 << (desc->comp[0].depth - 8)); min[U] = 16 * (1 << (desc->comp[1].depth - 8)); min[V] = 16 * (1 << (desc->comp[2].depth - 8)); min[A] = 0; max[Y] = 235 * (1 << (desc->comp[0].depth - 8)); max[U] = 240 * (1 << (desc->comp[1].depth - 8)); max[V] = 240 * (1 << (desc->comp[2].depth - 8)); max[A] = (1 << desc->comp[0].depth) - 1; break; case AV_PIX_FMT_RGB48LE: case AV_PIX_FMT_RGBA64LE: min[0] = min[1] = min[2] = min[3] = 0; max[0] = max[1] = max[2] = max[3] = 65535; break; default: min[0] = min[1] = min[2] = min[3] = 0; max[0] = max[1] = max[2] = max[3] = 255 * (1 << (desc->comp[0].depth - 8)); } s->is_yuv = s->is_rgb = 0; s->is_planar = desc->flags & AV_PIX_FMT_FLAG_PLANAR; if (ff_fmt_is_in(inlink->format, yuv_pix_fmts)) s->is_yuv = 1; else if (ff_fmt_is_in(inlink->format, rgb_pix_fmts)) s->is_rgb = 1; if (s->is_rgb) { ff_fill_rgba_map(rgba_map, inlink->format); s->step = av_get_bits_per_pixel(desc) >> 3; if (s->is_16bit) { s->step = s->step >> 1; } } for (color = 0; color < desc->nb_components; color++) { double res; int comp = s->is_rgb ? rgba_map[color] : color; /* create the parsed expression */ av_expr_free(s->comp_expr[color]); s->comp_expr[color] = NULL; ret = av_expr_parse(&s->comp_expr[color], s->comp_expr_str[color], var_names, funcs1_names, funcs1, NULL, NULL, 0, ctx); if (ret < 0) { av_log(ctx, AV_LOG_ERROR, "Error when parsing the expression '%s' for the component %d and color %d.\n", s->comp_expr_str[comp], comp, color); return AVERROR(EINVAL); } /* compute the lut */ s->var_values[VAR_MAXVAL] = max[color]; s->var_values[VAR_MINVAL] = min[color]; for (val = 0; val < FF_ARRAY_ELEMS(s->lut[comp]); val++) { s->var_values[VAR_VAL] = val; s->var_values[VAR_CLIPVAL] = av_clip(val, min[color], max[color]); s->var_values[VAR_NEGVAL] = av_clip(min[color] + max[color] - s->var_values[VAR_VAL], min[color], max[color]); res = av_expr_eval(s->comp_expr[color], s->var_values, s); if (isnan(res)) { av_log(ctx, AV_LOG_ERROR, "Error when evaluating the expression '%s' for the value %d for the component %d.\n", s->comp_expr_str[color], val, comp); return AVERROR(EINVAL); } s->lut[comp][val] = av_clip((int)res, 0, max[A]); av_log(ctx, AV_LOG_DEBUG, "val[%d][%d] = %d\n", comp, val, s->lut[comp][val]); } } return 0; } struct thread_data { AVFrame *in; AVFrame *out; int w; int h; }; #define LOAD_PACKED_COMMON\ LutContext *s = ctx->priv;\ const struct thread_data *td = arg;\ \ int i, j;\ const int w = td->w;\ const int h = td->h;\ AVFrame *in = td->in;\ AVFrame *out = td->out;\ const uint16_t (*tab)[256*256] = (const uint16_t (*)[256*256])s->lut;\ const int step = s->step;\ \ const int slice_start = (h * jobnr ) / nb_jobs;\ const int slice_end = (h * (jobnr+1)) / nb_jobs;\ /* packed, 16-bit */ static int lut_packed_16bits(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { LOAD_PACKED_COMMON uint16_t *inrow, *outrow, *inrow0, *outrow0; const int in_linesize = in->linesize[0] / 2; const int out_linesize = out->linesize[0] / 2; inrow0 = (uint16_t *)in ->data[0]; outrow0 = (uint16_t *)out->data[0]; for (i = slice_start; i < slice_end; i++) { inrow = inrow0 + i * in_linesize; outrow = outrow0 + i * out_linesize; for (j = 0; j < w; j++) { switch (step) { #if HAVE_BIGENDIAN case 4: outrow[3] = av_bswap16(tab[3][av_bswap16(inrow[3])]); // Fall-through case 3: outrow[2] = av_bswap16(tab[2][av_bswap16(inrow[2])]); // Fall-through case 2: outrow[1] = av_bswap16(tab[1][av_bswap16(inrow[1])]); // Fall-through default: outrow[0] = av_bswap16(tab[0][av_bswap16(inrow[0])]); #else case 4: outrow[3] = tab[3][inrow[3]]; // Fall-through case 3: outrow[2] = tab[2][inrow[2]]; // Fall-through case 2: outrow[1] = tab[1][inrow[1]]; // Fall-through default: outrow[0] = tab[0][inrow[0]]; #endif } outrow += step; inrow += step; } } return 0; } /* packed, 8-bit */ static int lut_packed_8bits(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { LOAD_PACKED_COMMON uint8_t *inrow, *outrow, *inrow0, *outrow0; const int in_linesize = in->linesize[0]; const int out_linesize = out->linesize[0]; inrow0 = in ->data[0]; outrow0 = out->data[0]; for (i = slice_start; i < slice_end; i++) { inrow = inrow0 + i * in_linesize; outrow = outrow0 + i * out_linesize; for (j = 0; j < w; j++) { switch (step) { case 4: outrow[3] = tab[3][inrow[3]]; // Fall-through case 3: outrow[2] = tab[2][inrow[2]]; // Fall-through case 2: outrow[1] = tab[1][inrow[1]]; // Fall-through default: outrow[0] = tab[0][inrow[0]]; } outrow += step; inrow += step; } } return 0; } #define LOAD_PLANAR_COMMON\ LutContext *s = ctx->priv;\ const struct thread_data *td = arg;\ int i, j, plane;\ AVFrame *in = td->in;\ AVFrame *out = td->out;\ #define PLANAR_COMMON\ int vsub = plane == 1 || plane == 2 ? s->vsub : 0;\ int hsub = plane == 1 || plane == 2 ? s->hsub : 0;\ int h = AV_CEIL_RSHIFT(td->h, vsub);\ int w = AV_CEIL_RSHIFT(td->w, hsub);\ const uint16_t *tab = s->lut[plane];\ \ const int slice_start = (h * jobnr ) / nb_jobs;\ const int slice_end = (h * (jobnr+1)) / nb_jobs;\ /* planar >8 bit depth */ static int lut_planar_16bits(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { LOAD_PLANAR_COMMON uint16_t *inrow, *outrow; for (plane = 0; plane < 4 && in->data[plane] && in->linesize[plane]; plane++) { PLANAR_COMMON const int in_linesize = in->linesize[plane] / 2; const int out_linesize = out->linesize[plane] / 2; inrow = (uint16_t *)in ->data[plane] + slice_start * in_linesize; outrow = (uint16_t *)out->data[plane] + slice_start * out_linesize; for (i = slice_start; i < slice_end; i++) { for (j = 0; j < w; j++) { #if HAVE_BIGENDIAN outrow[j] = av_bswap16(tab[av_bswap16(inrow[j])]); #else outrow[j] = tab[inrow[j]]; #endif } inrow += in_linesize; outrow += out_linesize; } } return 0; } /* planar 8bit depth */ static int lut_planar_8bits(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { LOAD_PLANAR_COMMON uint8_t *inrow, *outrow; for (plane = 0; plane < 4 && in->data[plane] && in->linesize[plane]; plane++) { PLANAR_COMMON const int in_linesize = in->linesize[plane]; const int out_linesize = out->linesize[plane]; inrow = in ->data[plane] + slice_start * in_linesize; outrow = out->data[plane] + slice_start * out_linesize; for (i = slice_start; i < slice_end; i++) { for (j = 0; j < w; j++) outrow[j] = tab[inrow[j]]; inrow += in_linesize; outrow += out_linesize; } } return 0; } #define PACKED_THREAD_DATA\ struct thread_data td = {\ .in = in,\ .out = out,\ .w = inlink->w,\ .h = in->height,\ };\ #define PLANAR_THREAD_DATA\ struct thread_data td = {\ .in = in,\ .out = out,\ .w = inlink->w,\ .h = inlink->h,\ };\ static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; LutContext *s = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; AVFrame *out; int direct = 0; if (av_frame_is_writable(in)) { direct = 1; out = in; } else { out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } av_frame_copy_props(out, in); } if (s->is_rgb && s->is_16bit && !s->is_planar) { /* packed, 16-bit */ PACKED_THREAD_DATA ctx->internal->execute(ctx, lut_packed_16bits, &td, NULL, FFMIN(in->height, ff_filter_get_nb_threads(ctx))); } else if (s->is_rgb && !s->is_planar) { /* packed 8 bits */ PACKED_THREAD_DATA ctx->internal->execute(ctx, lut_packed_8bits, &td, NULL, FFMIN(in->height, ff_filter_get_nb_threads(ctx))); } else if (s->is_16bit) { /* planar >8 bit depth */ PLANAR_THREAD_DATA ctx->internal->execute(ctx, lut_planar_16bits, &td, NULL, FFMIN(in->height, ff_filter_get_nb_threads(ctx))); } else { /* planar 8bit depth */ PLANAR_THREAD_DATA ctx->internal->execute(ctx, lut_planar_8bits, &td, NULL, FFMIN(in->height, ff_filter_get_nb_threads(ctx))); } if (!direct) av_frame_free(&in); return ff_filter_frame(outlink, out); } static const AVFilterPad inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .filter_frame = filter_frame, .config_props = config_props, }, { NULL } }; static const AVFilterPad outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, }, { NULL } }; #define DEFINE_LUT_FILTER(name_, description_) \ AVFilter ff_vf_##name_ = { \ .name = #name_, \ .description = NULL_IF_CONFIG_SMALL(description_), \ .priv_size = sizeof(LutContext), \ .priv_class = &name_ ## _class, \ .init = name_##_init, \ .uninit = uninit, \ .query_formats = query_formats, \ .inputs = inputs, \ .outputs = outputs, \ .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, \ } #if CONFIG_LUT_FILTER #define lut_options options AVFILTER_DEFINE_CLASS(lut); static int lut_init(AVFilterContext *ctx) { return 0; } DEFINE_LUT_FILTER(lut, "Compute and apply a lookup table to the RGB/YUV input video."); #endif #if CONFIG_LUTYUV_FILTER #define lutyuv_options options AVFILTER_DEFINE_CLASS(lutyuv); static av_cold int lutyuv_init(AVFilterContext *ctx) { LutContext *s = ctx->priv; s->is_yuv = 1; return 0; } DEFINE_LUT_FILTER(lutyuv, "Compute and apply a lookup table to the YUV input video."); #endif #if CONFIG_LUTRGB_FILTER #define lutrgb_options options AVFILTER_DEFINE_CLASS(lutrgb); static av_cold int lutrgb_init(AVFilterContext *ctx) { LutContext *s = ctx->priv; s->is_rgb = 1; return 0; } DEFINE_LUT_FILTER(lutrgb, "Compute and apply a lookup table to the RGB input video."); #endif #if CONFIG_NEGATE_FILTER static const AVOption negate_options[] = { { "negate_alpha", NULL, OFFSET(negate_alpha), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(negate); static av_cold int negate_init(AVFilterContext *ctx) { LutContext *s = ctx->priv; int i; av_log(ctx, AV_LOG_DEBUG, "negate_alpha:%d\n", s->negate_alpha); for (i = 0; i < 4; i++) { s->comp_expr_str[i] = av_strdup((i == 3 && !s->negate_alpha) ? "val" : "negval"); if (!s->comp_expr_str[i]) { uninit(ctx); return AVERROR(ENOMEM); } } return 0; } DEFINE_LUT_FILTER(negate, "Negate input video."); #endif