/* * Copyright (c) 2003 Michael Niedermayer * Copyright (c) 2012 Jeremy Tran * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Apply a hue/saturation filter to the input video * Ported from MPlayer libmpcodecs/vf_hue.c. */ #include #include "libavutil/eval.h" #include "libavutil/imgutils.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "avfilter.h" #include "formats.h" #include "internal.h" #include "video.h" #define SAT_MIN_VAL -10 #define SAT_MAX_VAL 10 static const char *const var_names[] = { "n", // frame count "pts", // presentation timestamp expressed in AV_TIME_BASE units "r", // frame rate "t", // timestamp expressed in seconds "tb", // timebase NULL }; enum var_name { VAR_N, VAR_PTS, VAR_R, VAR_T, VAR_TB, VAR_NB }; typedef struct HueContext { const AVClass *class; float hue_deg; /* hue expressed in degrees */ float hue; /* hue expressed in radians */ char *hue_deg_expr; char *hue_expr; AVExpr *hue_deg_pexpr; AVExpr *hue_pexpr; float saturation; char *saturation_expr; AVExpr *saturation_pexpr; float brightness; char *brightness_expr; AVExpr *brightness_pexpr; int hsub; int vsub; int is_first; int32_t hue_sin; int32_t hue_cos; double var_values[VAR_NB]; uint8_t lut_l[256]; uint8_t lut_u[256][256]; uint8_t lut_v[256][256]; uint16_t lut_l16[65536]; uint16_t lut_u10[1024][1024]; uint16_t lut_v10[1024][1024]; } HueContext; #define OFFSET(x) offsetof(HueContext, x) #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM static const AVOption hue_options[] = { { "h", "set the hue angle degrees expression", OFFSET(hue_deg_expr), AV_OPT_TYPE_STRING, { .str = NULL }, .flags = FLAGS }, { "s", "set the saturation expression", OFFSET(saturation_expr), AV_OPT_TYPE_STRING, { .str = "1" }, .flags = FLAGS }, { "H", "set the hue angle radians expression", OFFSET(hue_expr), AV_OPT_TYPE_STRING, { .str = NULL }, .flags = FLAGS }, { "b", "set the brightness expression", OFFSET(brightness_expr), AV_OPT_TYPE_STRING, { .str = "0" }, .flags = FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(hue); static inline void compute_sin_and_cos(HueContext *hue) { /* * Scale the value to the norm of the resulting (U,V) vector, that is * the saturation. * This will be useful in the apply_lut function. */ hue->hue_sin = lrint(sin(hue->hue) * (1 << 16) * hue->saturation); hue->hue_cos = lrint(cos(hue->hue) * (1 << 16) * hue->saturation); } static inline void create_luma_lut(HueContext *h) { const float b = h->brightness; int i; for (i = 0; i < 256; i++) { h->lut_l[i] = av_clip_uint8(i + b * 25.5); } for (i = 0; i < 65536; i++) { h->lut_l16[i] = av_clip_uintp2(i + b * 102.4, 10); } } static inline void create_chrominance_lut(HueContext *h, const int32_t c, const int32_t s) { int32_t i, j, u, v, new_u, new_v; /* * If we consider U and V as the components of a 2D vector then its angle * is the hue and the norm is the saturation */ for (i = 0; i < 256; i++) { for (j = 0; j < 256; j++) { /* Normalize the components from range [16;140] to [-112;112] */ u = i - 128; v = j - 128; /* * Apply the rotation of the vector : (c * u) - (s * v) * (s * u) + (c * v) * De-normalize the components (without forgetting to scale 128 * by << 16) * Finally scale back the result by >> 16 */ new_u = ((c * u) - (s * v) + (1 << 15) + (128 << 16)) >> 16; new_v = ((s * u) + (c * v) + (1 << 15) + (128 << 16)) >> 16; /* Prevent a potential overflow */ h->lut_u[i][j] = av_clip_uint8(new_u); h->lut_v[i][j] = av_clip_uint8(new_v); } } for (i = 0; i < 1024; i++) { for (j = 0; j < 1024; j++) { u = i - 512; v = j - 512; /* * Apply the rotation of the vector : (c * u) - (s * v) * (s * u) + (c * v) * De-normalize the components (without forgetting to scale 512 * by << 16) * Finally scale back the result by >> 16 */ new_u = ((c * u) - (s * v) + (1 << 15) + (512 << 16)) >> 16; new_v = ((s * u) + (c * v) + (1 << 15) + (512 << 16)) >> 16; /* Prevent a potential overflow */ h->lut_u10[i][j] = av_clip_uintp2(new_u, 10); h->lut_v10[i][j] = av_clip_uintp2(new_v, 10); } } } static int set_expr(AVExpr **pexpr_ptr, char **expr_ptr, const char *expr, const char *option, void *log_ctx) { int ret; AVExpr *new_pexpr; char *new_expr; new_expr = av_strdup(expr); if (!new_expr) return AVERROR(ENOMEM); ret = av_expr_parse(&new_pexpr, expr, var_names, NULL, NULL, NULL, NULL, 0, log_ctx); if (ret < 0) { av_log(log_ctx, AV_LOG_ERROR, "Error when evaluating the expression '%s' for %s\n", expr, option); av_free(new_expr); return ret; } if (*pexpr_ptr) av_expr_free(*pexpr_ptr); *pexpr_ptr = new_pexpr; av_freep(expr_ptr); *expr_ptr = new_expr; return 0; } static av_cold int init(AVFilterContext *ctx) { HueContext *hue = ctx->priv; int ret; if (hue->hue_expr && hue->hue_deg_expr) { av_log(ctx, AV_LOG_ERROR, "H and h options are incompatible and cannot be specified " "at the same time\n"); return AVERROR(EINVAL); } #define SET_EXPR(expr, option) \ if (hue->expr##_expr) do { \ ret = set_expr(&hue->expr##_pexpr, &hue->expr##_expr, \ hue->expr##_expr, option, ctx); \ if (ret < 0) \ return ret; \ } while (0) SET_EXPR(brightness, "b"); SET_EXPR(saturation, "s"); SET_EXPR(hue_deg, "h"); SET_EXPR(hue, "H"); #undef SET_EXPR av_log(ctx, AV_LOG_VERBOSE, "H_expr:%s h_deg_expr:%s s_expr:%s b_expr:%s\n", hue->hue_expr, hue->hue_deg_expr, hue->saturation_expr, hue->brightness_expr); compute_sin_and_cos(hue); hue->is_first = 1; return 0; } static av_cold void uninit(AVFilterContext *ctx) { HueContext *hue = ctx->priv; av_expr_free(hue->brightness_pexpr); av_expr_free(hue->hue_deg_pexpr); av_expr_free(hue->hue_pexpr); av_expr_free(hue->saturation_pexpr); } static int query_formats(AVFilterContext *ctx) { static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV440P10, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_NONE }; AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts); if (!fmts_list) return AVERROR(ENOMEM); return ff_set_common_formats(ctx, fmts_list); } static int config_props(AVFilterLink *inlink) { HueContext *hue = inlink->dst->priv; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); hue->hsub = desc->log2_chroma_w; hue->vsub = desc->log2_chroma_h; hue->var_values[VAR_N] = 0; hue->var_values[VAR_TB] = av_q2d(inlink->time_base); hue->var_values[VAR_R] = inlink->frame_rate.num == 0 || inlink->frame_rate.den == 0 ? NAN : av_q2d(inlink->frame_rate); return 0; } static void apply_luma_lut(HueContext *s, uint8_t *ldst, const int dst_linesize, uint8_t *lsrc, const int src_linesize, int w, int h) { int i; while (h--) { for (i = 0; i < w; i++) ldst[i] = s->lut_l[lsrc[i]]; lsrc += src_linesize; ldst += dst_linesize; } } static void apply_luma_lut10(HueContext *s, uint16_t *ldst, const int dst_linesize, uint16_t *lsrc, const int src_linesize, int w, int h) { int i; while (h--) { for (i = 0; i < w; i++) ldst[i] = s->lut_l16[lsrc[i]]; lsrc += src_linesize; ldst += dst_linesize; } } static void apply_lut(HueContext *s, uint8_t *udst, uint8_t *vdst, const int dst_linesize, uint8_t *usrc, uint8_t *vsrc, const int src_linesize, int w, int h) { int i; while (h--) { for (i = 0; i < w; i++) { const int u = usrc[i]; const int v = vsrc[i]; udst[i] = s->lut_u[u][v]; vdst[i] = s->lut_v[u][v]; } usrc += src_linesize; vsrc += src_linesize; udst += dst_linesize; vdst += dst_linesize; } } static void apply_lut10(HueContext *s, uint16_t *udst, uint16_t *vdst, const int dst_linesize, uint16_t *usrc, uint16_t *vsrc, const int src_linesize, int w, int h) { int i; while (h--) { for (i = 0; i < w; i++) { const int u = av_clip_uintp2(usrc[i], 10); const int v = av_clip_uintp2(vsrc[i], 10); udst[i] = s->lut_u10[u][v]; vdst[i] = s->lut_v10[u][v]; } usrc += src_linesize; vsrc += src_linesize; udst += dst_linesize; vdst += dst_linesize; } } #define TS2D(ts) ((ts) == AV_NOPTS_VALUE ? NAN : (double)(ts)) #define TS2T(ts, tb) ((ts) == AV_NOPTS_VALUE ? NAN : (double)(ts) * av_q2d(tb)) static int filter_frame(AVFilterLink *inlink, AVFrame *inpic) { HueContext *hue = inlink->dst->priv; AVFilterLink *outlink = inlink->dst->outputs[0]; AVFrame *outpic; const int32_t old_hue_sin = hue->hue_sin, old_hue_cos = hue->hue_cos; const float old_brightness = hue->brightness; int direct = 0; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); const int bps = desc->comp[0].depth > 8 ? 2 : 1; if (av_frame_is_writable(inpic)) { direct = 1; outpic = inpic; } else { outpic = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!outpic) { av_frame_free(&inpic); return AVERROR(ENOMEM); } av_frame_copy_props(outpic, inpic); } hue->var_values[VAR_N] = inlink->frame_count_out; hue->var_values[VAR_T] = TS2T(inpic->pts, inlink->time_base); hue->var_values[VAR_PTS] = TS2D(inpic->pts); if (hue->saturation_expr) { hue->saturation = av_expr_eval(hue->saturation_pexpr, hue->var_values, NULL); if (hue->saturation < SAT_MIN_VAL || hue->saturation > SAT_MAX_VAL) { hue->saturation = av_clip(hue->saturation, SAT_MIN_VAL, SAT_MAX_VAL); av_log(inlink->dst, AV_LOG_WARNING, "Saturation value not in range [%d,%d]: clipping value to %0.1f\n", SAT_MIN_VAL, SAT_MAX_VAL, hue->saturation); } } if (hue->brightness_expr) { hue->brightness = av_expr_eval(hue->brightness_pexpr, hue->var_values, NULL); if (hue->brightness < -10 || hue->brightness > 10) { hue->brightness = av_clipf(hue->brightness, -10, 10); av_log(inlink->dst, AV_LOG_WARNING, "Brightness value not in range [%d,%d]: clipping value to %0.1f\n", -10, 10, hue->brightness); } } if (hue->hue_deg_expr) { hue->hue_deg = av_expr_eval(hue->hue_deg_pexpr, hue->var_values, NULL); hue->hue = hue->hue_deg * M_PI / 180; } else if (hue->hue_expr) { hue->hue = av_expr_eval(hue->hue_pexpr, hue->var_values, NULL); hue->hue_deg = hue->hue * 180 / M_PI; } av_log(inlink->dst, AV_LOG_DEBUG, "H:%0.1f*PI h:%0.1f s:%0.1f b:%0.f t:%0.1f n:%d\n", hue->hue/M_PI, hue->hue_deg, hue->saturation, hue->brightness, hue->var_values[VAR_T], (int)hue->var_values[VAR_N]); compute_sin_and_cos(hue); if (hue->is_first || (old_hue_sin != hue->hue_sin || old_hue_cos != hue->hue_cos)) create_chrominance_lut(hue, hue->hue_cos, hue->hue_sin); if (hue->is_first || (old_brightness != hue->brightness && hue->brightness)) create_luma_lut(hue); if (!direct) { if (!hue->brightness) av_image_copy_plane(outpic->data[0], outpic->linesize[0], inpic->data[0], inpic->linesize[0], inlink->w * bps, inlink->h); if (inpic->data[3]) av_image_copy_plane(outpic->data[3], outpic->linesize[3], inpic->data[3], inpic->linesize[3], inlink->w * bps, inlink->h); } if (bps > 1) { apply_lut10(hue, (uint16_t*)outpic->data[1], (uint16_t*)outpic->data[2], outpic->linesize[1]/2, (uint16_t*) inpic->data[1], (uint16_t*) inpic->data[2], inpic->linesize[1]/2, AV_CEIL_RSHIFT(inlink->w, hue->hsub), AV_CEIL_RSHIFT(inlink->h, hue->vsub)); if (hue->brightness) apply_luma_lut10(hue, (uint16_t*)outpic->data[0], outpic->linesize[0]/2, (uint16_t*) inpic->data[0], inpic->linesize[0]/2, inlink->w, inlink->h); } else { apply_lut(hue, outpic->data[1], outpic->data[2], outpic->linesize[1], inpic->data[1], inpic->data[2], inpic->linesize[1], AV_CEIL_RSHIFT(inlink->w, hue->hsub), AV_CEIL_RSHIFT(inlink->h, hue->vsub)); if (hue->brightness) apply_luma_lut(hue, outpic->data[0], outpic->linesize[0], inpic->data[0], inpic->linesize[0], inlink->w, inlink->h); } if (!direct) av_frame_free(&inpic); hue->is_first = 0; return ff_filter_frame(outlink, outpic); } static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags) { HueContext *hue = ctx->priv; int ret; #define SET_EXPR(expr, option) \ do { \ ret = set_expr(&hue->expr##_pexpr, &hue->expr##_expr, \ args, option, ctx); \ if (ret < 0) \ return ret; \ } while (0) if (!strcmp(cmd, "h")) { SET_EXPR(hue_deg, "h"); av_freep(&hue->hue_expr); } else if (!strcmp(cmd, "H")) { SET_EXPR(hue, "H"); av_freep(&hue->hue_deg_expr); } else if (!strcmp(cmd, "s")) { SET_EXPR(saturation, "s"); } else if (!strcmp(cmd, "b")) { SET_EXPR(brightness, "b"); } else return AVERROR(ENOSYS); return 0; } static const AVFilterPad hue_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .filter_frame = filter_frame, .config_props = config_props, }, { NULL } }; static const AVFilterPad hue_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, }, { NULL } }; AVFilter ff_vf_hue = { .name = "hue", .description = NULL_IF_CONFIG_SMALL("Adjust the hue and saturation of the input video."), .priv_size = sizeof(HueContext), .init = init, .uninit = uninit, .query_formats = query_formats, .process_command = process_command, .inputs = hue_inputs, .outputs = hue_outputs, .priv_class = &hue_class, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, };