/* * Copyright (c) 2012-2014 Clément Bœsch * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * Edge detection filter * * @see https://en.wikipedia.org/wiki/Canny_edge_detector */ #include "libavutil/avassert.h" #include "libavutil/imgutils.h" #include "libavutil/opt.h" #include "avfilter.h" #include "formats.h" #include "internal.h" #include "video.h" #define PLANE_R 0x4 #define PLANE_G 0x1 #define PLANE_B 0x2 #define PLANE_Y 0x1 #define PLANE_U 0x2 #define PLANE_V 0x4 #define PLANE_A 0x8 enum FilterMode { MODE_WIRES, MODE_COLORMIX, MODE_CANNY, NB_MODE }; struct plane_info { uint8_t *tmpbuf; uint16_t *gradients; char *directions; int width, height; }; typedef struct EdgeDetectContext { const AVClass *class; struct plane_info planes[3]; int filter_planes; int nb_planes; double low, high; uint8_t low_u8, high_u8; int mode; } EdgeDetectContext; #define OFFSET(x) offsetof(EdgeDetectContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM static const AVOption edgedetect_options[] = { { "high", "set high threshold", OFFSET(high), AV_OPT_TYPE_DOUBLE, {.dbl=50/255.}, 0, 1, FLAGS }, { "low", "set low threshold", OFFSET(low), AV_OPT_TYPE_DOUBLE, {.dbl=20/255.}, 0, 1, FLAGS }, { "mode", "set mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=MODE_WIRES}, 0, NB_MODE-1, FLAGS, "mode" }, { "wires", "white/gray wires on black", 0, AV_OPT_TYPE_CONST, {.i64=MODE_WIRES}, INT_MIN, INT_MAX, FLAGS, "mode" }, { "colormix", "mix colors", 0, AV_OPT_TYPE_CONST, {.i64=MODE_COLORMIX}, INT_MIN, INT_MAX, FLAGS, "mode" }, { "canny", "detect edges on planes", 0, AV_OPT_TYPE_CONST, {.i64=MODE_CANNY}, INT_MIN, INT_MAX, FLAGS, "mode" }, { "planes", "set planes to filter", OFFSET(filter_planes), AV_OPT_TYPE_FLAGS, {.i64=7}, 1, 0x7, FLAGS, "flags" }, { "y", "filter luma plane", 0, AV_OPT_TYPE_CONST, {.i64=PLANE_Y}, 0, 0, FLAGS, "flags" }, { "u", "filter u plane", 0, AV_OPT_TYPE_CONST, {.i64=PLANE_U}, 0, 0, FLAGS, "flags" }, { "v", "filter v plane", 0, AV_OPT_TYPE_CONST, {.i64=PLANE_V}, 0, 0, FLAGS, "flags" }, { "r", "filter red plane", 0, AV_OPT_TYPE_CONST, {.i64=PLANE_R}, 0, 0, FLAGS, "flags" }, { "g", "filter green plane", 0, AV_OPT_TYPE_CONST, {.i64=PLANE_G}, 0, 0, FLAGS, "flags" }, { "b", "filter blue plane", 0, AV_OPT_TYPE_CONST, {.i64=PLANE_B}, 0, 0, FLAGS, "flags" }, { NULL } }; AVFILTER_DEFINE_CLASS(edgedetect); static av_cold int init(AVFilterContext *ctx) { EdgeDetectContext *edgedetect = ctx->priv; edgedetect->low_u8 = edgedetect->low * 255. + .5; edgedetect->high_u8 = edgedetect->high * 255. + .5; return 0; } static int query_formats(AVFilterContext *ctx) { const EdgeDetectContext *edgedetect = ctx->priv; static const enum AVPixelFormat wires_pix_fmts[] = {AV_PIX_FMT_GRAY8, AV_PIX_FMT_NONE}; static const enum AVPixelFormat canny_pix_fmts[] = {AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_GBRP, AV_PIX_FMT_GRAY8, AV_PIX_FMT_NONE}; static const enum AVPixelFormat colormix_pix_fmts[] = {AV_PIX_FMT_GBRP, AV_PIX_FMT_GRAY8, AV_PIX_FMT_NONE}; AVFilterFormats *fmts_list; const enum AVPixelFormat *pix_fmts = NULL; if (edgedetect->mode == MODE_WIRES) { pix_fmts = wires_pix_fmts; } else if (edgedetect->mode == MODE_COLORMIX) { pix_fmts = colormix_pix_fmts; } else if (edgedetect->mode == MODE_CANNY) { pix_fmts = canny_pix_fmts; } else { av_assert0(0); } fmts_list = ff_make_format_list(pix_fmts); if (!fmts_list) return AVERROR(ENOMEM); return ff_set_common_formats(ctx, fmts_list); } static int config_props(AVFilterLink *inlink) { int p; AVFilterContext *ctx = inlink->dst; EdgeDetectContext *edgedetect = ctx->priv; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); edgedetect->nb_planes = inlink->format == AV_PIX_FMT_GRAY8 ? 1 : 3; for (p = 0; p < edgedetect->nb_planes; p++) { struct plane_info *plane = &edgedetect->planes[p]; int vsub = p ? desc->log2_chroma_h : 0; int hsub = p ? desc->log2_chroma_w : 0; plane->width = AV_CEIL_RSHIFT(inlink->w, hsub); plane->height = AV_CEIL_RSHIFT(inlink->h, vsub); plane->tmpbuf = av_malloc(plane->width * plane->height); plane->gradients = av_calloc(plane->width * plane->height, sizeof(*plane->gradients)); plane->directions = av_malloc(plane->width * plane->height); if (!plane->tmpbuf || !plane->gradients || !plane->directions) return AVERROR(ENOMEM); } return 0; } static void gaussian_blur(AVFilterContext *ctx, int w, int h, uint8_t *dst, int dst_linesize, const uint8_t *src, int src_linesize) { int i, j; memcpy(dst, src, w); dst += dst_linesize; src += src_linesize; if (h > 1) { memcpy(dst, src, w); dst += dst_linesize; src += src_linesize; } for (j = 2; j < h - 2; j++) { dst[0] = src[0]; if (w > 1) dst[1] = src[1]; for (i = 2; i < w - 2; i++) { /* Gaussian mask of size 5x5 with sigma = 1.4 */ dst[i] = ((src[-2*src_linesize + i-2] + src[2*src_linesize + i-2]) * 2 + (src[-2*src_linesize + i-1] + src[2*src_linesize + i-1]) * 4 + (src[-2*src_linesize + i ] + src[2*src_linesize + i ]) * 5 + (src[-2*src_linesize + i+1] + src[2*src_linesize + i+1]) * 4 + (src[-2*src_linesize + i+2] + src[2*src_linesize + i+2]) * 2 + (src[ -src_linesize + i-2] + src[ src_linesize + i-2]) * 4 + (src[ -src_linesize + i-1] + src[ src_linesize + i-1]) * 9 + (src[ -src_linesize + i ] + src[ src_linesize + i ]) * 12 + (src[ -src_linesize + i+1] + src[ src_linesize + i+1]) * 9 + (src[ -src_linesize + i+2] + src[ src_linesize + i+2]) * 4 + src[i-2] * 5 + src[i-1] * 12 + src[i ] * 15 + src[i+1] * 12 + src[i+2] * 5) / 159; } if (w > 2) dst[i ] = src[i ]; if (w > 3) dst[i + 1] = src[i + 1]; dst += dst_linesize; src += src_linesize; } if (h > 2) { memcpy(dst, src, w); dst += dst_linesize; src += src_linesize; } if (h > 3) memcpy(dst, src, w); } enum { DIRECTION_45UP, DIRECTION_45DOWN, DIRECTION_HORIZONTAL, DIRECTION_VERTICAL, }; static int get_rounded_direction(int gx, int gy) { /* reference angles: * tan( pi/8) = sqrt(2)-1 * tan(3pi/8) = sqrt(2)+1 * Gy/Gx is the tangent of the angle (theta), so Gy/Gx is compared against * , or more simply Gy against *Gx * * Gx and Gy bounds = [-1020;1020], using 16-bit arithmetic: * round((sqrt(2)-1) * (1<<16)) = 27146 * round((sqrt(2)+1) * (1<<16)) = 158218 */ if (gx) { int tanpi8gx, tan3pi8gx; if (gx < 0) gx = -gx, gy = -gy; gy *= (1 << 16); tanpi8gx = 27146 * gx; tan3pi8gx = 158218 * gx; if (gy > -tan3pi8gx && gy < -tanpi8gx) return DIRECTION_45UP; if (gy > -tanpi8gx && gy < tanpi8gx) return DIRECTION_HORIZONTAL; if (gy > tanpi8gx && gy < tan3pi8gx) return DIRECTION_45DOWN; } return DIRECTION_VERTICAL; } static void sobel(int w, int h, uint16_t *dst, int dst_linesize, int8_t *dir, int dir_linesize, const uint8_t *src, int src_linesize) { int i, j; for (j = 1; j < h - 1; j++) { dst += dst_linesize; dir += dir_linesize; src += src_linesize; for (i = 1; i < w - 1; i++) { const int gx = -1*src[-src_linesize + i-1] + 1*src[-src_linesize + i+1] -2*src[ i-1] + 2*src[ i+1] -1*src[ src_linesize + i-1] + 1*src[ src_linesize + i+1]; const int gy = -1*src[-src_linesize + i-1] + 1*src[ src_linesize + i-1] -2*src[-src_linesize + i ] + 2*src[ src_linesize + i ] -1*src[-src_linesize + i+1] + 1*src[ src_linesize + i+1]; dst[i] = FFABS(gx) + FFABS(gy); dir[i] = get_rounded_direction(gx, gy); } } } static void non_maximum_suppression(int w, int h, uint8_t *dst, int dst_linesize, const int8_t *dir, int dir_linesize, const uint16_t *src, int src_linesize) { int i, j; #define COPY_MAXIMA(ay, ax, by, bx) do { \ if (src[i] > src[(ay)*src_linesize + i+(ax)] && \ src[i] > src[(by)*src_linesize + i+(bx)]) \ dst[i] = av_clip_uint8(src[i]); \ } while (0) for (j = 1; j < h - 1; j++) { dst += dst_linesize; dir += dir_linesize; src += src_linesize; for (i = 1; i < w - 1; i++) { switch (dir[i]) { case DIRECTION_45UP: COPY_MAXIMA( 1, -1, -1, 1); break; case DIRECTION_45DOWN: COPY_MAXIMA(-1, -1, 1, 1); break; case DIRECTION_HORIZONTAL: COPY_MAXIMA( 0, -1, 0, 1); break; case DIRECTION_VERTICAL: COPY_MAXIMA(-1, 0, 1, 0); break; } } } } static void double_threshold(int low, int high, int w, int h, uint8_t *dst, int dst_linesize, const uint8_t *src, int src_linesize) { int i, j; for (j = 0; j < h; j++) { for (i = 0; i < w; i++) { if (src[i] > high) { dst[i] = src[i]; continue; } if ((!i || i == w - 1 || !j || j == h - 1) && src[i] > low && (src[-src_linesize + i-1] > high || src[-src_linesize + i ] > high || src[-src_linesize + i+1] > high || src[ i-1] > high || src[ i+1] > high || src[ src_linesize + i-1] > high || src[ src_linesize + i ] > high || src[ src_linesize + i+1] > high)) dst[i] = src[i]; else dst[i] = 0; } dst += dst_linesize; src += src_linesize; } } static void color_mix(int w, int h, uint8_t *dst, int dst_linesize, const uint8_t *src, int src_linesize) { int i, j; for (j = 0; j < h; j++) { for (i = 0; i < w; i++) dst[i] = (dst[i] + src[i]) >> 1; dst += dst_linesize; src += src_linesize; } } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; EdgeDetectContext *edgedetect = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; int p, direct = 0; AVFrame *out; if (edgedetect->mode != MODE_COLORMIX && av_frame_is_writable(in)) { direct = 1; out = in; } else { out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } av_frame_copy_props(out, in); } for (p = 0; p < edgedetect->nb_planes; p++) { struct plane_info *plane = &edgedetect->planes[p]; uint8_t *tmpbuf = plane->tmpbuf; uint16_t *gradients = plane->gradients; int8_t *directions = plane->directions; const int width = plane->width; const int height = plane->height; if (!((1 << p) & edgedetect->filter_planes)) { if (!direct) av_image_copy_plane(out->data[p], out->linesize[p], in->data[p], in->linesize[p], width, height); continue; } /* gaussian filter to reduce noise */ gaussian_blur(ctx, width, height, tmpbuf, width, in->data[p], in->linesize[p]); /* compute the 16-bits gradients and directions for the next step */ sobel(width, height, gradients, width, directions,width, tmpbuf, width); /* non_maximum_suppression() will actually keep & clip what's necessary and * ignore the rest, so we need a clean output buffer */ memset(tmpbuf, 0, width * height); non_maximum_suppression(width, height, tmpbuf, width, directions,width, gradients, width); /* keep high values, or low values surrounded by high values */ double_threshold(edgedetect->low_u8, edgedetect->high_u8, width, height, out->data[p], out->linesize[p], tmpbuf, width); if (edgedetect->mode == MODE_COLORMIX) { color_mix(width, height, out->data[p], out->linesize[p], in->data[p], in->linesize[p]); } } if (!direct) av_frame_free(&in); return ff_filter_frame(outlink, out); } static av_cold void uninit(AVFilterContext *ctx) { int p; EdgeDetectContext *edgedetect = ctx->priv; for (p = 0; p < edgedetect->nb_planes; p++) { struct plane_info *plane = &edgedetect->planes[p]; av_freep(&plane->tmpbuf); av_freep(&plane->gradients); av_freep(&plane->directions); } } static const AVFilterPad edgedetect_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_props, .filter_frame = filter_frame, }, { NULL } }; static const AVFilterPad edgedetect_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, }, { NULL } }; AVFilter ff_vf_edgedetect = { .name = "edgedetect", .description = NULL_IF_CONFIG_SMALL("Detect and draw edge."), .priv_size = sizeof(EdgeDetectContext), .init = init, .uninit = uninit, .query_formats = query_formats, .inputs = edgedetect_inputs, .outputs = edgedetect_outputs, .priv_class = &edgedetect_class, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, };