/* * Copyright (c) 2017 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include "libavutil/imgutils.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "libavcodec/avfft.h" #include "avfilter.h" #include "formats.h" #include "framesync.h" #include "internal.h" #include "video.h" #define MAX_THREADS 16 typedef struct ConvolveContext { const AVClass *class; FFFrameSync fs; FFTContext *fft[4][MAX_THREADS]; FFTContext *ifft[4][MAX_THREADS]; int fft_bits[4]; int fft_len[4]; int planewidth[4]; int planeheight[4]; FFTComplex *fft_hdata[4]; FFTComplex *fft_vdata[4]; FFTComplex *fft_hdata_impulse[4]; FFTComplex *fft_vdata_impulse[4]; int depth; int planes; int impulse; float noise; int nb_planes; int got_impulse[4]; int (*filter)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs); } ConvolveContext; #define OFFSET(x) offsetof(ConvolveContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM static const AVOption convolve_options[] = { { "planes", "set planes to convolve", OFFSET(planes), AV_OPT_TYPE_INT, {.i64=7}, 0, 15, FLAGS }, { "impulse", "when to process impulses", OFFSET(impulse), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, FLAGS, "impulse" }, { "first", "process only first impulse, ignore rest", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "impulse" }, { "all", "process all impulses", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "impulse" }, { "noise", "set noise", OFFSET(noise), AV_OPT_TYPE_FLOAT, {.dbl=0.0000001}, 0, 1, FLAGS }, { NULL }, }; static int query_formats(AVFilterContext *ctx) { static const enum AVPixelFormat pixel_fmts_fftfilt[] = { AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV440P12, AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16, AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA420P16, AV_PIX_FMT_YUVA422P16, AV_PIX_FMT_YUVA444P16, AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16, AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16, AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16, AV_PIX_FMT_NONE }; AVFilterFormats *fmts_list = ff_make_format_list(pixel_fmts_fftfilt); if (!fmts_list) return AVERROR(ENOMEM); return ff_set_common_formats(ctx, fmts_list); } static int config_input_main(AVFilterLink *inlink) { ConvolveContext *s = inlink->dst->priv; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); int fft_bits, i; s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w); s->planewidth[0] = s->planewidth[3] = inlink->w; s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h); s->planeheight[0] = s->planeheight[3] = inlink->h; s->nb_planes = desc->nb_components; s->depth = desc->comp[0].depth; for (i = 0; i < s->nb_planes; i++) { int w = s->planewidth[i]; int h = s->planeheight[i]; int n = FFMAX(w, h); for (fft_bits = 1; 1 << fft_bits < n; fft_bits++); s->fft_bits[i] = fft_bits; s->fft_len[i] = 1 << s->fft_bits[i]; if (!(s->fft_hdata[i] = av_calloc(s->fft_len[i], s->fft_len[i] * sizeof(FFTComplex)))) return AVERROR(ENOMEM); if (!(s->fft_vdata[i] = av_calloc(s->fft_len[i], s->fft_len[i] * sizeof(FFTComplex)))) return AVERROR(ENOMEM); if (!(s->fft_hdata_impulse[i] = av_calloc(s->fft_len[i], s->fft_len[i] * sizeof(FFTComplex)))) return AVERROR(ENOMEM); if (!(s->fft_vdata_impulse[i] = av_calloc(s->fft_len[i], s->fft_len[i] * sizeof(FFTComplex)))) return AVERROR(ENOMEM); } return 0; } static int config_input_impulse(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; if (ctx->inputs[0]->w != ctx->inputs[1]->w || ctx->inputs[0]->h != ctx->inputs[1]->h) { av_log(ctx, AV_LOG_ERROR, "Width and height of input videos must be same.\n"); return AVERROR(EINVAL); } if (ctx->inputs[0]->format != ctx->inputs[1]->format) { av_log(ctx, AV_LOG_ERROR, "Inputs must be of same pixel format.\n"); return AVERROR(EINVAL); } return 0; } typedef struct ThreadData { FFTComplex *hdata, *vdata; int plane, n; } ThreadData; static int fft_horizontal(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ConvolveContext *s = ctx->priv; ThreadData *td = arg; FFTComplex *hdata = td->hdata; const int plane = td->plane; const int n = td->n; int start = (n * jobnr) / nb_jobs; int end = (n * (jobnr+1)) / nb_jobs; int y; for (y = start; y < end; y++) { av_fft_permute(s->fft[plane][jobnr], hdata + y * n); av_fft_calc(s->fft[plane][jobnr], hdata + y * n); } return 0; } static void get_input(ConvolveContext *s, FFTComplex *fft_hdata, AVFrame *in, int w, int h, int n, int plane, float scale) { const int iw = (n - w) / 2, ih = (n - h) / 2; int y, x; if (s->depth == 8) { for (y = 0; y < h; y++) { const uint8_t *src = in->data[plane] + in->linesize[plane] * y; for (x = 0; x < w; x++) { fft_hdata[(y + ih) * n + iw + x].re = src[x] * scale; fft_hdata[(y + ih) * n + iw + x].im = 0; } for (x = 0; x < iw; x++) { fft_hdata[(y + ih) * n + x].re = fft_hdata[(y + ih) * n + iw].re; fft_hdata[(y + ih) * n + x].im = 0; } for (x = n - iw; x < n; x++) { fft_hdata[(y + ih) * n + x].re = fft_hdata[(y + ih) * n + n - iw - 1].re; fft_hdata[(y + ih) * n + x].im = 0; } } for (y = 0; y < ih; y++) { for (x = 0; x < n; x++) { fft_hdata[y * n + x].re = fft_hdata[ih * n + x].re; fft_hdata[y * n + x].im = 0; } } for (y = n - ih; y < n; y++) { for (x = 0; x < n; x++) { fft_hdata[y * n + x].re = fft_hdata[(n - ih - 1) * n + x].re; fft_hdata[y * n + x].im = 0; } } } else { for (y = 0; y < h; y++) { const uint16_t *src = (const uint16_t *)(in->data[plane] + in->linesize[plane] * y); for (x = 0; x < w; x++) { fft_hdata[(y + ih) * n + iw + x].re = src[x] * scale; fft_hdata[(y + ih) * n + iw + x].im = 0; } for (x = 0; x < iw; x++) { fft_hdata[(y + ih) * n + x].re = fft_hdata[(y + ih) * n + iw].re; fft_hdata[(y + ih) * n + x].im = 0; } for (x = n - iw; x < n; x++) { fft_hdata[(y + ih) * n + x].re = fft_hdata[(y + ih) * n + n - iw - 1].re; fft_hdata[(y + ih) * n + x].im = 0; } } for (y = 0; y < ih; y++) { for (x = 0; x < n; x++) { fft_hdata[y * n + x].re = fft_hdata[ih * n + x].re; fft_hdata[y * n + x].im = 0; } } for (y = n - ih; y < n; y++) { for (x = 0; x < n; x++) { fft_hdata[y * n + x].re = fft_hdata[(n - ih - 1) * n + x].re; fft_hdata[y * n + x].im = 0; } } } } static int fft_vertical(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ConvolveContext *s = ctx->priv; ThreadData *td = arg; FFTComplex *hdata = td->hdata; FFTComplex *vdata = td->vdata; const int plane = td->plane; const int n = td->n; int start = (n * jobnr) / nb_jobs; int end = (n * (jobnr+1)) / nb_jobs; int y, x; for (y = start; y < end; y++) { for (x = 0; x < n; x++) { vdata[y * n + x].re = hdata[x * n + y].re; vdata[y * n + x].im = hdata[x * n + y].im; } av_fft_permute(s->fft[plane][jobnr], vdata + y * n); av_fft_calc(s->fft[plane][jobnr], vdata + y * n); } return 0; } static int ifft_vertical(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ConvolveContext *s = ctx->priv; ThreadData *td = arg; FFTComplex *hdata = td->hdata; FFTComplex *vdata = td->vdata; const int plane = td->plane; const int n = td->n; int start = (n * jobnr) / nb_jobs; int end = (n * (jobnr+1)) / nb_jobs; int y, x; for (y = start; y < end; y++) { av_fft_permute(s->ifft[plane][jobnr], vdata + y * n); av_fft_calc(s->ifft[plane][jobnr], vdata + y * n); for (x = 0; x < n; x++) { hdata[x * n + y].re = vdata[y * n + x].re; hdata[x * n + y].im = vdata[y * n + x].im; } } return 0; } static int ifft_horizontal(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ConvolveContext *s = ctx->priv; ThreadData *td = arg; FFTComplex *hdata = td->hdata; const int plane = td->plane; const int n = td->n; int start = (n * jobnr) / nb_jobs; int end = (n * (jobnr+1)) / nb_jobs; int y; for (y = start; y < end; y++) { av_fft_permute(s->ifft[plane][jobnr], hdata + y * n); av_fft_calc(s->ifft[plane][jobnr], hdata + y * n); } return 0; } static void get_output(ConvolveContext *s, FFTComplex *input, AVFrame *out, int w, int h, int n, int plane, float scale) { const int max = (1 << s->depth) - 1; const int hh = h / 2; const int hw = w / 2; int y, x; if (s->depth == 8) { for (y = 0; y < hh; y++) { uint8_t *dst = out->data[plane] + (y + hh) * out->linesize[plane] + hw; for (x = 0; x < hw; x++) dst[x] = av_clip_uint8(input[y * n + x].re * scale); } for (y = 0; y < hh; y++) { uint8_t *dst = out->data[plane] + (y + hh) * out->linesize[plane]; for (x = 0; x < hw; x++) dst[x] = av_clip_uint8(input[y * n + n - hw + x].re * scale); } for (y = 0; y < hh; y++) { uint8_t *dst = out->data[plane] + y * out->linesize[plane] + hw; for (x = 0; x < hw; x++) dst[x] = av_clip_uint8(input[(n - hh + y) * n + x].re * scale); } for (y = 0; y < hh; y++) { uint8_t *dst = out->data[plane] + y * out->linesize[plane]; for (x = 0; x < hw; x++) dst[x] = av_clip_uint8(input[(n - hh + y) * n + n - hw + x].re * scale); } } else { for (y = 0; y < hh; y++) { uint16_t *dst = (uint16_t *)(out->data[plane] + (y + hh) * out->linesize[plane] + hw * 2); for (x = 0; x < hw; x++) dst[x] = av_clip(input[y * n + x].re * scale, 0, max); } for (y = 0; y < hh; y++) { uint16_t *dst = (uint16_t *)(out->data[plane] + (y + hh) * out->linesize[plane]); for (x = 0; x < hw; x++) dst[x] = av_clip(input[y * n + n - hw + x].re * scale, 0, max); } for (y = 0; y < hh; y++) { uint16_t *dst = (uint16_t *)(out->data[plane] + y * out->linesize[plane] + hw * 2); for (x = 0; x < hw; x++) dst[x] = av_clip(input[(n - hh + y) * n + x].re * scale, 0, max); } for (y = 0; y < hh; y++) { uint16_t *dst = (uint16_t *)(out->data[plane] + y * out->linesize[plane]); for (x = 0; x < hw; x++) dst[x] = av_clip(input[(n - hh + y) * n + n - hw + x].re * scale, 0, max); } } } static int complex_multiply(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ConvolveContext *s = ctx->priv; ThreadData *td = arg; FFTComplex *input = td->hdata; FFTComplex *filter = td->vdata; const float noise = s->noise; const int n = td->n; int start = (n * jobnr) / nb_jobs; int end = (n * (jobnr+1)) / nb_jobs; int y, x; for (y = start; y < end; y++) { int yn = y * n; for (x = 0; x < n; x++) { FFTSample re, im, ire, iim; re = input[yn + x].re; im = input[yn + x].im; ire = filter[yn + x].re + noise; iim = filter[yn + x].im; input[yn + x].re = ire * re - iim * im; input[yn + x].im = iim * re + ire * im; } } return 0; } static int complex_divide(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ConvolveContext *s = ctx->priv; ThreadData *td = arg; FFTComplex *input = td->hdata; FFTComplex *filter = td->vdata; const float noise = s->noise; const int n = td->n; int start = (n * jobnr) / nb_jobs; int end = (n * (jobnr+1)) / nb_jobs; int y, x; for (y = start; y < end; y++) { int yn = y * n; for (x = 0; x < n; x++) { FFTSample re, im, ire, iim, div; re = input[yn + x].re; im = input[yn + x].im; ire = filter[yn + x].re; iim = filter[yn + x].im; div = ire * ire + iim * iim + noise; input[yn + x].re = (ire * re + iim * im) / div; input[yn + x].im = (ire * im - iim * re) / div; } } return 0; } static int do_convolve(FFFrameSync *fs) { AVFilterContext *ctx = fs->parent; AVFilterLink *outlink = ctx->outputs[0]; ConvolveContext *s = ctx->priv; AVFrame *mainpic = NULL, *impulsepic = NULL; int ret, y, x, plane; ret = ff_framesync_dualinput_get(fs, &mainpic, &impulsepic); if (ret < 0) return ret; if (!impulsepic) return ff_filter_frame(outlink, mainpic); for (plane = 0; plane < s->nb_planes; plane++) { FFTComplex *filter = s->fft_vdata_impulse[plane]; FFTComplex *input = s->fft_vdata[plane]; const int n = s->fft_len[plane]; const int w = s->planewidth[plane]; const int h = s->planeheight[plane]; float total = 0; ThreadData td; if (!(s->planes & (1 << plane))) { continue; } td.plane = plane, td.n = n; get_input(s, s->fft_hdata[plane], mainpic, w, h, n, plane, 1.f); td.hdata = s->fft_hdata[plane]; td.vdata = s->fft_vdata[plane]; ctx->internal->execute(ctx, fft_horizontal, &td, NULL, FFMIN3(MAX_THREADS, n, ff_filter_get_nb_threads(ctx))); ctx->internal->execute(ctx, fft_vertical, &td, NULL, FFMIN3(MAX_THREADS, n, ff_filter_get_nb_threads(ctx))); if ((!s->impulse && !s->got_impulse[plane]) || s->impulse) { if (s->depth == 8) { for (y = 0; y < h; y++) { const uint8_t *src = (const uint8_t *)(impulsepic->data[plane] + y * impulsepic->linesize[plane]) ; for (x = 0; x < w; x++) { total += src[x]; } } } else { for (y = 0; y < h; y++) { const uint16_t *src = (const uint16_t *)(impulsepic->data[plane] + y * impulsepic->linesize[plane]) ; for (x = 0; x < w; x++) { total += src[x]; } } } total = FFMAX(1, total); get_input(s, s->fft_hdata_impulse[plane], impulsepic, w, h, n, plane, 1.f / total); td.hdata = s->fft_hdata_impulse[plane]; td.vdata = s->fft_vdata_impulse[plane]; ctx->internal->execute(ctx, fft_horizontal, &td, NULL, FFMIN3(MAX_THREADS, n, ff_filter_get_nb_threads(ctx))); ctx->internal->execute(ctx, fft_vertical, &td, NULL, FFMIN3(MAX_THREADS, n, ff_filter_get_nb_threads(ctx))); s->got_impulse[plane] = 1; } td.hdata = input; td.vdata = filter; ctx->internal->execute(ctx, s->filter, &td, NULL, FFMIN3(MAX_THREADS, n, ff_filter_get_nb_threads(ctx))); td.hdata = s->fft_hdata[plane]; td.vdata = s->fft_vdata[plane]; ctx->internal->execute(ctx, ifft_vertical, &td, NULL, FFMIN3(MAX_THREADS, n, ff_filter_get_nb_threads(ctx))); ctx->internal->execute(ctx, ifft_horizontal, &td, NULL, FFMIN3(MAX_THREADS, n, ff_filter_get_nb_threads(ctx))); get_output(s, s->fft_hdata[plane], mainpic, w, h, n, plane, 1.f / (n * n)); } return ff_filter_frame(outlink, mainpic); } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; ConvolveContext *s = ctx->priv; AVFilterLink *mainlink = ctx->inputs[0]; int ret, i, j; s->fs.on_event = do_convolve; ret = ff_framesync_init_dualinput(&s->fs, ctx); if (ret < 0) return ret; outlink->w = mainlink->w; outlink->h = mainlink->h; outlink->time_base = mainlink->time_base; outlink->sample_aspect_ratio = mainlink->sample_aspect_ratio; outlink->frame_rate = mainlink->frame_rate; if ((ret = ff_framesync_configure(&s->fs)) < 0) return ret; for (i = 0; i < s->nb_planes; i++) { for (j = 0; j < MAX_THREADS; j++) { s->fft[i][j] = av_fft_init(s->fft_bits[i], 0); s->ifft[i][j] = av_fft_init(s->fft_bits[i], 1); if (!s->fft[i][j] || !s->ifft[i][j]) return AVERROR(ENOMEM); } } return 0; } static int activate(AVFilterContext *ctx) { ConvolveContext *s = ctx->priv; return ff_framesync_activate(&s->fs); } static av_cold int init(AVFilterContext *ctx) { ConvolveContext *s = ctx->priv; if (!strcmp(ctx->filter->name, "convolve")) { s->filter = complex_multiply; } else if (!strcmp(ctx->filter->name, "deconvolve")) { s->filter = complex_divide; } else { return AVERROR_BUG; } return 0; } static av_cold void uninit(AVFilterContext *ctx) { ConvolveContext *s = ctx->priv; int i, j; for (i = 0; i < 4; i++) { av_freep(&s->fft_hdata[i]); av_freep(&s->fft_vdata[i]); av_freep(&s->fft_hdata_impulse[i]); av_freep(&s->fft_vdata_impulse[i]); for (j = 0; j < MAX_THREADS; j++) { av_fft_end(s->fft[i][j]); av_fft_end(s->ifft[i][j]); } } ff_framesync_uninit(&s->fs); } static const AVFilterPad convolve_inputs[] = { { .name = "main", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_input_main, },{ .name = "impulse", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_input_impulse, }, { NULL } }; static const AVFilterPad convolve_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_output, }, { NULL } }; #if CONFIG_CONVOLVE_FILTER FRAMESYNC_DEFINE_CLASS(convolve, ConvolveContext, fs); AVFilter ff_vf_convolve = { .name = "convolve", .description = NULL_IF_CONFIG_SMALL("Convolve first video stream with second video stream."), .preinit = convolve_framesync_preinit, .init = init, .uninit = uninit, .query_formats = query_formats, .activate = activate, .priv_size = sizeof(ConvolveContext), .priv_class = &convolve_class, .inputs = convolve_inputs, .outputs = convolve_outputs, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS, }; #endif /* CONFIG_CONVOLVE_FILTER */ #if CONFIG_DECONVOLVE_FILTER static const AVOption deconvolve_options[] = { { "planes", "set planes to deconvolve", OFFSET(planes), AV_OPT_TYPE_INT, {.i64=7}, 0, 15, FLAGS }, { "impulse", "when to process impulses", OFFSET(impulse), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, FLAGS, "impulse" }, { "first", "process only first impulse, ignore rest", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, FLAGS, "impulse" }, { "all", "process all impulses", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, FLAGS, "impulse" }, { "noise", "set noise", OFFSET(noise), AV_OPT_TYPE_FLOAT, {.dbl=0.0000001}, 0, 1, FLAGS }, { NULL }, }; FRAMESYNC_DEFINE_CLASS(deconvolve, ConvolveContext, fs); AVFilter ff_vf_deconvolve = { .name = "deconvolve", .description = NULL_IF_CONFIG_SMALL("Deconvolve first video stream with second video stream."), .preinit = deconvolve_framesync_preinit, .init = init, .uninit = uninit, .query_formats = query_formats, .activate = activate, .priv_size = sizeof(ConvolveContext), .priv_class = &deconvolve_class, .inputs = convolve_inputs, .outputs = convolve_outputs, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL | AVFILTER_FLAG_SLICE_THREADS, }; #endif /* CONFIG_DECONVOLVE_FILTER */