/* * Copyright (c) 2013 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "avfilter.h" #include "drawutils.h" #include "formats.h" #include "internal.h" #include "video.h" #define R 0 #define G 1 #define B 2 #define A 3 typedef struct ThreadData { AVFrame *in, *out; } ThreadData; typedef struct ColorChannelMixerContext { const AVClass *class; double rr, rg, rb, ra; double gr, gg, gb, ga; double br, bg, bb, ba; double ar, ag, ab, aa; int *lut[4][4]; int *buffer; uint8_t rgba_map[4]; int (*filter_slice)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs); } ColorChannelMixerContext; #define OFFSET(x) offsetof(ColorChannelMixerContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM static const AVOption colorchannelmixer_options[] = { { "rr", "set the red gain for the red channel", OFFSET(rr), AV_OPT_TYPE_DOUBLE, {.dbl=1}, -2, 2, FLAGS }, { "rg", "set the green gain for the red channel", OFFSET(rg), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -2, 2, FLAGS }, { "rb", "set the blue gain for the red channel", OFFSET(rb), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -2, 2, FLAGS }, { "ra", "set the alpha gain for the red channel", OFFSET(ra), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -2, 2, FLAGS }, { "gr", "set the red gain for the green channel", OFFSET(gr), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -2, 2, FLAGS }, { "gg", "set the green gain for the green channel", OFFSET(gg), AV_OPT_TYPE_DOUBLE, {.dbl=1}, -2, 2, FLAGS }, { "gb", "set the blue gain for the green channel", OFFSET(gb), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -2, 2, FLAGS }, { "ga", "set the alpha gain for the green channel", OFFSET(ga), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -2, 2, FLAGS }, { "br", "set the red gain for the blue channel", OFFSET(br), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -2, 2, FLAGS }, { "bg", "set the green gain for the blue channel", OFFSET(bg), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -2, 2, FLAGS }, { "bb", "set the blue gain for the blue channel", OFFSET(bb), AV_OPT_TYPE_DOUBLE, {.dbl=1}, -2, 2, FLAGS }, { "ba", "set the alpha gain for the blue channel", OFFSET(ba), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -2, 2, FLAGS }, { "ar", "set the red gain for the alpha channel", OFFSET(ar), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -2, 2, FLAGS }, { "ag", "set the green gain for the alpha channel", OFFSET(ag), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -2, 2, FLAGS }, { "ab", "set the blue gain for the alpha channel", OFFSET(ab), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -2, 2, FLAGS }, { "aa", "set the alpha gain for the alpha channel", OFFSET(aa), AV_OPT_TYPE_DOUBLE, {.dbl=1}, -2, 2, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(colorchannelmixer); static int query_formats(AVFilterContext *ctx) { static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGB24, AV_PIX_FMT_BGR24, AV_PIX_FMT_RGBA, AV_PIX_FMT_BGRA, AV_PIX_FMT_ARGB, AV_PIX_FMT_ABGR, AV_PIX_FMT_0RGB, AV_PIX_FMT_0BGR, AV_PIX_FMT_RGB0, AV_PIX_FMT_BGR0, AV_PIX_FMT_RGB48, AV_PIX_FMT_BGR48, AV_PIX_FMT_RGBA64, AV_PIX_FMT_BGRA64, AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16, AV_PIX_FMT_GBRAP16, AV_PIX_FMT_NONE }; AVFilterFormats *fmts_list = ff_make_format_list(pix_fmts); if (!fmts_list) return AVERROR(ENOMEM); return ff_set_common_formats(ctx, fmts_list); } static av_always_inline int filter_slice_rgba_planar(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs, int have_alpha) { ColorChannelMixerContext *s = ctx->priv; ThreadData *td = arg; AVFrame *in = td->in; AVFrame *out = td->out; const int slice_start = (out->height * jobnr) / nb_jobs; const int slice_end = (out->height * (jobnr+1)) / nb_jobs; const uint8_t *srcg = in->data[0] + slice_start * in->linesize[0]; const uint8_t *srcb = in->data[1] + slice_start * in->linesize[1]; const uint8_t *srcr = in->data[2] + slice_start * in->linesize[2]; const uint8_t *srca = in->data[3] + slice_start * in->linesize[3]; uint8_t *dstg = out->data[0] + slice_start * out->linesize[0]; uint8_t *dstb = out->data[1] + slice_start * out->linesize[1]; uint8_t *dstr = out->data[2] + slice_start * out->linesize[2]; uint8_t *dsta = out->data[3] + slice_start * out->linesize[3]; int i, j; for (i = slice_start; i < slice_end; i++) { for (j = 0; j < out->width; j++) { const uint8_t rin = srcr[j]; const uint8_t gin = srcg[j]; const uint8_t bin = srcb[j]; const uint8_t ain = have_alpha ? srca[j] : 0; dstr[j] = av_clip_uint8(s->lut[R][R][rin] + s->lut[R][G][gin] + s->lut[R][B][bin] + (have_alpha == 1 ? s->lut[R][A][ain] : 0)); dstg[j] = av_clip_uint8(s->lut[G][R][rin] + s->lut[G][G][gin] + s->lut[G][B][bin] + (have_alpha == 1 ? s->lut[G][A][ain] : 0)); dstb[j] = av_clip_uint8(s->lut[B][R][rin] + s->lut[B][G][gin] + s->lut[B][B][bin] + (have_alpha == 1 ? s->lut[B][A][ain] : 0)); if (have_alpha == 1) { dsta[j] = av_clip_uint8(s->lut[A][R][rin] + s->lut[A][G][gin] + s->lut[A][B][bin] + s->lut[A][A][ain]); } } srcg += in->linesize[0]; srcb += in->linesize[1]; srcr += in->linesize[2]; srca += in->linesize[3]; dstg += out->linesize[0]; dstb += out->linesize[1]; dstr += out->linesize[2]; dsta += out->linesize[3]; } return 0; } static av_always_inline int filter_slice_rgba16_planar(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs, int have_alpha, int depth) { ColorChannelMixerContext *s = ctx->priv; ThreadData *td = arg; AVFrame *in = td->in; AVFrame *out = td->out; const int slice_start = (out->height * jobnr) / nb_jobs; const int slice_end = (out->height * (jobnr+1)) / nb_jobs; const uint16_t *srcg = (const uint16_t *)(in->data[0] + slice_start * in->linesize[0]); const uint16_t *srcb = (const uint16_t *)(in->data[1] + slice_start * in->linesize[1]); const uint16_t *srcr = (const uint16_t *)(in->data[2] + slice_start * in->linesize[2]); const uint16_t *srca = (const uint16_t *)(in->data[3] + slice_start * in->linesize[3]); uint16_t *dstg = (uint16_t *)(out->data[0] + slice_start * out->linesize[0]); uint16_t *dstb = (uint16_t *)(out->data[1] + slice_start * out->linesize[1]); uint16_t *dstr = (uint16_t *)(out->data[2] + slice_start * out->linesize[2]); uint16_t *dsta = (uint16_t *)(out->data[3] + slice_start * out->linesize[3]); int i, j; for (i = slice_start; i < slice_end; i++) { for (j = 0; j < out->width; j++) { const uint16_t rin = srcr[j]; const uint16_t gin = srcg[j]; const uint16_t bin = srcb[j]; const uint16_t ain = have_alpha ? srca[j] : 0; dstr[j] = av_clip_uintp2(s->lut[R][R][rin] + s->lut[R][G][gin] + s->lut[R][B][bin] + (have_alpha == 1 ? s->lut[R][A][ain] : 0), depth); dstg[j] = av_clip_uintp2(s->lut[G][R][rin] + s->lut[G][G][gin] + s->lut[G][B][bin] + (have_alpha == 1 ? s->lut[G][A][ain] : 0), depth); dstb[j] = av_clip_uintp2(s->lut[B][R][rin] + s->lut[B][G][gin] + s->lut[B][B][bin] + (have_alpha == 1 ? s->lut[B][A][ain] : 0), depth); if (have_alpha == 1) { dsta[j] = av_clip_uintp2(s->lut[A][R][rin] + s->lut[A][G][gin] + s->lut[A][B][bin] + s->lut[A][A][ain], depth); } } srcg += in->linesize[0] / 2; srcb += in->linesize[1] / 2; srcr += in->linesize[2] / 2; srca += in->linesize[3] / 2; dstg += out->linesize[0] / 2; dstb += out->linesize[1] / 2; dstr += out->linesize[2] / 2; dsta += out->linesize[3] / 2; } return 0; } static int filter_slice_gbrp(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { return filter_slice_rgba_planar(ctx, arg, jobnr, nb_jobs, 0); } static int filter_slice_gbrap(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { return filter_slice_rgba_planar(ctx, arg, jobnr, nb_jobs, 1); } static int filter_slice_gbrp9(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { return filter_slice_rgba16_planar(ctx, arg, jobnr, nb_jobs, 0, 9); } static int filter_slice_gbrp10(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { return filter_slice_rgba16_planar(ctx, arg, jobnr, nb_jobs, 0, 10); } static int filter_slice_gbrap10(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { return filter_slice_rgba16_planar(ctx, arg, jobnr, nb_jobs, 1, 10); } static int filter_slice_gbrp12(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { return filter_slice_rgba16_planar(ctx, arg, jobnr, nb_jobs, 0, 12); } static int filter_slice_gbrap12(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { return filter_slice_rgba16_planar(ctx, arg, jobnr, nb_jobs, 1, 12); } static int filter_slice_gbrp14(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { return filter_slice_rgba16_planar(ctx, arg, jobnr, nb_jobs, 0, 14); } static int filter_slice_gbrp16(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { return filter_slice_rgba16_planar(ctx, arg, jobnr, nb_jobs, 0, 16); } static int filter_slice_gbrap16(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { return filter_slice_rgba16_planar(ctx, arg, jobnr, nb_jobs, 1, 16); } static av_always_inline int filter_slice_rgba_packed(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs, int have_alpha, int step) { ColorChannelMixerContext *s = ctx->priv; ThreadData *td = arg; AVFrame *in = td->in; AVFrame *out = td->out; const int slice_start = (out->height * jobnr) / nb_jobs; const int slice_end = (out->height * (jobnr+1)) / nb_jobs; const uint8_t roffset = s->rgba_map[R]; const uint8_t goffset = s->rgba_map[G]; const uint8_t boffset = s->rgba_map[B]; const uint8_t aoffset = s->rgba_map[A]; const uint8_t *srcrow = in->data[0] + slice_start * in->linesize[0]; uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; int i, j; for (i = slice_start; i < slice_end; i++) { const uint8_t *src = srcrow; uint8_t *dst = dstrow; for (j = 0; j < out->width * step; j += step) { const uint8_t rin = src[j + roffset]; const uint8_t gin = src[j + goffset]; const uint8_t bin = src[j + boffset]; const uint8_t ain = src[j + aoffset]; dst[j + roffset] = av_clip_uint8(s->lut[R][R][rin] + s->lut[R][G][gin] + s->lut[R][B][bin] + (have_alpha == 1 ? s->lut[R][A][ain] : 0)); dst[j + goffset] = av_clip_uint8(s->lut[G][R][rin] + s->lut[G][G][gin] + s->lut[G][B][bin] + (have_alpha == 1 ? s->lut[G][A][ain] : 0)); dst[j + boffset] = av_clip_uint8(s->lut[B][R][rin] + s->lut[B][G][gin] + s->lut[B][B][bin] + (have_alpha == 1 ? s->lut[B][A][ain] : 0)); if (have_alpha == 1) { dst[j + aoffset] = av_clip_uint8(s->lut[A][R][rin] + s->lut[A][G][gin] + s->lut[A][B][bin] + s->lut[A][A][ain]); } else if (have_alpha == -1 && in != out) dst[j + aoffset] = 0; } srcrow += in->linesize[0]; dstrow += out->linesize[0]; } return 0; } static av_always_inline int filter_slice_rgba16_packed(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs, int have_alpha, int step) { ColorChannelMixerContext *s = ctx->priv; ThreadData *td = arg; AVFrame *in = td->in; AVFrame *out = td->out; const int slice_start = (out->height * jobnr) / nb_jobs; const int slice_end = (out->height * (jobnr+1)) / nb_jobs; const uint8_t roffset = s->rgba_map[R]; const uint8_t goffset = s->rgba_map[G]; const uint8_t boffset = s->rgba_map[B]; const uint8_t aoffset = s->rgba_map[A]; const uint8_t *srcrow = in->data[0] + slice_start * in->linesize[0]; uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; int i, j; for (i = slice_start; i < slice_end; i++) { const uint16_t *src = (const uint16_t *)srcrow; uint16_t *dst = (uint16_t *)dstrow; for (j = 0; j < out->width * step; j += step) { const uint16_t rin = src[j + roffset]; const uint16_t gin = src[j + goffset]; const uint16_t bin = src[j + boffset]; const uint16_t ain = src[j + aoffset]; dst[j + roffset] = av_clip_uint16(s->lut[R][R][rin] + s->lut[R][G][gin] + s->lut[R][B][bin] + (have_alpha == 1 ? s->lut[R][A][ain] : 0)); dst[j + goffset] = av_clip_uint16(s->lut[G][R][rin] + s->lut[G][G][gin] + s->lut[G][B][bin] + (have_alpha == 1 ? s->lut[G][A][ain] : 0)); dst[j + boffset] = av_clip_uint16(s->lut[B][R][rin] + s->lut[B][G][gin] + s->lut[B][B][bin] + (have_alpha == 1 ? s->lut[B][A][ain] : 0)); if (have_alpha == 1) { dst[j + aoffset] = av_clip_uint16(s->lut[A][R][rin] + s->lut[A][G][gin] + s->lut[A][B][bin] + s->lut[A][A][ain]); } } srcrow += in->linesize[0]; dstrow += out->linesize[0]; } return 0; } static int filter_slice_rgba64(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { return filter_slice_rgba16_packed(ctx, arg, jobnr, nb_jobs, 1, 4); } static int filter_slice_rgb48(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { return filter_slice_rgba16_packed(ctx, arg, jobnr, nb_jobs, 0, 3); } static int filter_slice_rgba(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { return filter_slice_rgba_packed(ctx, arg, jobnr, nb_jobs, 1, 4); } static int filter_slice_rgb24(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { return filter_slice_rgba_packed(ctx, arg, jobnr, nb_jobs, 0, 3); } static int filter_slice_rgb0(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { return filter_slice_rgba_packed(ctx, arg, jobnr, nb_jobs, -1, 4); } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; ColorChannelMixerContext *s = ctx->priv; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(outlink->format); const int depth = desc->comp[0].depth; int i, j, size, *buffer = s->buffer; ff_fill_rgba_map(s->rgba_map, outlink->format); size = 1 << depth; if (!s->buffer) { s->buffer = buffer = av_malloc(16 * size * sizeof(*s->buffer)); if (!s->buffer) return AVERROR(ENOMEM); for (i = 0; i < 4; i++) for (j = 0; j < 4; j++, buffer += size) s->lut[i][j] = buffer; } for (i = 0; i < size; i++) { s->lut[R][R][i] = lrint(i * s->rr); s->lut[R][G][i] = lrint(i * s->rg); s->lut[R][B][i] = lrint(i * s->rb); s->lut[R][A][i] = lrint(i * s->ra); s->lut[G][R][i] = lrint(i * s->gr); s->lut[G][G][i] = lrint(i * s->gg); s->lut[G][B][i] = lrint(i * s->gb); s->lut[G][A][i] = lrint(i * s->ga); s->lut[B][R][i] = lrint(i * s->br); s->lut[B][G][i] = lrint(i * s->bg); s->lut[B][B][i] = lrint(i * s->bb); s->lut[B][A][i] = lrint(i * s->ba); s->lut[A][R][i] = lrint(i * s->ar); s->lut[A][G][i] = lrint(i * s->ag); s->lut[A][B][i] = lrint(i * s->ab); s->lut[A][A][i] = lrint(i * s->aa); } switch (outlink->format) { case AV_PIX_FMT_BGR24: case AV_PIX_FMT_RGB24: s->filter_slice = filter_slice_rgb24; break; case AV_PIX_FMT_0BGR: case AV_PIX_FMT_0RGB: case AV_PIX_FMT_BGR0: case AV_PIX_FMT_RGB0: s->filter_slice = filter_slice_rgb0; break; case AV_PIX_FMT_ABGR: case AV_PIX_FMT_ARGB: case AV_PIX_FMT_BGRA: case AV_PIX_FMT_RGBA: s->filter_slice = filter_slice_rgba; break; case AV_PIX_FMT_BGR48: case AV_PIX_FMT_RGB48: s->filter_slice = filter_slice_rgb48; break; case AV_PIX_FMT_BGRA64: case AV_PIX_FMT_RGBA64: s->filter_slice = filter_slice_rgba64; break; case AV_PIX_FMT_GBRP: s->filter_slice = filter_slice_gbrp; break; case AV_PIX_FMT_GBRAP: s->filter_slice = filter_slice_gbrap; break; case AV_PIX_FMT_GBRP9: s->filter_slice = filter_slice_gbrp9; break; case AV_PIX_FMT_GBRP10: s->filter_slice = filter_slice_gbrp10; break; case AV_PIX_FMT_GBRAP10: s->filter_slice = filter_slice_gbrap10; break; case AV_PIX_FMT_GBRP12: s->filter_slice = filter_slice_gbrp12; break; case AV_PIX_FMT_GBRAP12: s->filter_slice = filter_slice_gbrap12; break; case AV_PIX_FMT_GBRP14: s->filter_slice = filter_slice_gbrp14; break; case AV_PIX_FMT_GBRP16: s->filter_slice = filter_slice_gbrp16; break; case AV_PIX_FMT_GBRAP16: s->filter_slice = filter_slice_gbrap16; break; } return 0; } static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; ColorChannelMixerContext *s = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; ThreadData td; AVFrame *out; if (av_frame_is_writable(in)) { out = in; } else { out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } av_frame_copy_props(out, in); } td.in = in; td.out = out; ctx->internal->execute(ctx, s->filter_slice, &td, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx))); if (in != out) av_frame_free(&in); return ff_filter_frame(outlink, out); } static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags) { int ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags); if (ret < 0) return ret; return config_output(ctx->outputs[0]); } static av_cold void uninit(AVFilterContext *ctx) { ColorChannelMixerContext *s = ctx->priv; av_freep(&s->buffer); } static const AVFilterPad colorchannelmixer_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .filter_frame = filter_frame, }, { NULL } }; static const AVFilterPad colorchannelmixer_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_output, }, { NULL } }; AVFilter ff_vf_colorchannelmixer = { .name = "colorchannelmixer", .description = NULL_IF_CONFIG_SMALL("Adjust colors by mixing color channels."), .priv_size = sizeof(ColorChannelMixerContext), .priv_class = &colorchannelmixer_class, .uninit = uninit, .query_formats = query_formats, .inputs = colorchannelmixer_inputs, .outputs = colorchannelmixer_outputs, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | AVFILTER_FLAG_SLICE_THREADS, .process_command = process_command, };