/* * Copyright (c) 2017 Ming Yang * Copyright (c) 2019 Paul B Mahol * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "libavutil/imgutils.h" #include "libavutil/opt.h" #include "libavutil/pixdesc.h" #include "avfilter.h" #include "formats.h" #include "internal.h" #include "video.h" typedef struct BilateralContext { const AVClass *class; float sigmaS; float sigmaR; int planes; int nb_planes; int depth; int planewidth[4]; int planeheight[4]; float range_table[65536]; float *img_out_f; float *img_temp; float *map_factor_a; float *map_factor_b; float *slice_factor_a; float *slice_factor_b; float *line_factor_a; float *line_factor_b; } BilateralContext; #define OFFSET(x) offsetof(BilateralContext, x) #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM static const AVOption bilateral_options[] = { { "sigmaS", "set spatial sigma", OFFSET(sigmaS), AV_OPT_TYPE_FLOAT, {.dbl=0.1}, 0.0, 10, FLAGS }, { "sigmaR", "set range sigma", OFFSET(sigmaR), AV_OPT_TYPE_FLOAT, {.dbl=0.1}, 0.0, 1, FLAGS }, { "planes", "set planes to filter", OFFSET(planes), AV_OPT_TYPE_INT, {.i64=1}, 0, 0xF, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(bilateral); static int query_formats(AVFilterContext *ctx) { static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_YUVA444P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUV440P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVJ440P, AV_PIX_FMT_YUVA422P, AV_PIX_FMT_YUV422P, AV_PIX_FMT_YUVA420P, AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUVJ422P, AV_PIX_FMT_YUVJ420P, AV_PIX_FMT_YUVJ411P, AV_PIX_FMT_YUV411P, AV_PIX_FMT_YUV410P, AV_PIX_FMT_YUV420P9, AV_PIX_FMT_YUV422P9, AV_PIX_FMT_YUV444P9, AV_PIX_FMT_YUV420P10, AV_PIX_FMT_YUV422P10, AV_PIX_FMT_YUV444P10, AV_PIX_FMT_YUV420P12, AV_PIX_FMT_YUV422P12, AV_PIX_FMT_YUV444P12, AV_PIX_FMT_YUV440P12, AV_PIX_FMT_YUV420P14, AV_PIX_FMT_YUV422P14, AV_PIX_FMT_YUV444P14, AV_PIX_FMT_YUV420P16, AV_PIX_FMT_YUV422P16, AV_PIX_FMT_YUV444P16, AV_PIX_FMT_YUVA420P9, AV_PIX_FMT_YUVA422P9, AV_PIX_FMT_YUVA444P9, AV_PIX_FMT_YUVA420P10, AV_PIX_FMT_YUVA422P10, AV_PIX_FMT_YUVA444P10, AV_PIX_FMT_YUVA420P16, AV_PIX_FMT_YUVA422P16, AV_PIX_FMT_YUVA444P16, AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRP9, AV_PIX_FMT_GBRP10, AV_PIX_FMT_GBRP12, AV_PIX_FMT_GBRP14, AV_PIX_FMT_GBRP16, AV_PIX_FMT_GBRAP, AV_PIX_FMT_GBRAP10, AV_PIX_FMT_GBRAP12, AV_PIX_FMT_GBRAP16, AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY9, AV_PIX_FMT_GRAY10, AV_PIX_FMT_GRAY12, AV_PIX_FMT_GRAY14, AV_PIX_FMT_GRAY16, AV_PIX_FMT_NONE }; return ff_set_common_formats(ctx, ff_make_format_list(pix_fmts)); } static int config_input(AVFilterLink *inlink) { BilateralContext *s = inlink->dst->priv; const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format); float inv_sigma_range; s->depth = desc->comp[0].depth; inv_sigma_range = 1.0f / (s->sigmaR * ((1 << s->depth) - 1)); //compute a lookup table for (int i = 0; i < (1 << s->depth); i++) s->range_table[i] = expf(-i * inv_sigma_range); s->planewidth[1] = s->planewidth[2] = AV_CEIL_RSHIFT(inlink->w, desc->log2_chroma_w); s->planewidth[0] = s->planewidth[3] = inlink->w; s->planeheight[1] = s->planeheight[2] = AV_CEIL_RSHIFT(inlink->h, desc->log2_chroma_h); s->planeheight[0] = s->planeheight[3] = inlink->h; s->nb_planes = av_pix_fmt_count_planes(inlink->format); s->img_out_f = av_calloc(inlink->w * inlink->h, sizeof(float)); s->img_temp = av_calloc(inlink->w * inlink->h, sizeof(float)); s->map_factor_a = av_calloc(inlink->w * inlink->h, sizeof(float)); s->map_factor_b = av_calloc(inlink->w * inlink->h, sizeof(float)); s->slice_factor_a = av_calloc(inlink->w, sizeof(float)); s->slice_factor_b = av_calloc(inlink->w, sizeof(float)); s->line_factor_a = av_calloc(inlink->w, sizeof(float)); s->line_factor_b = av_calloc(inlink->w, sizeof(float)); if (!s->img_out_f || !s->img_temp || !s->map_factor_a || !s->map_factor_b || !s->slice_factor_a || !s->slice_factor_a || !s->line_factor_a || !s->line_factor_a) return AVERROR(ENOMEM); return 0; } #define BILATERAL(type, name) \ static void bilateral_##name(BilateralContext *s, const uint8_t *ssrc, uint8_t *ddst, \ float sigma_spatial, float sigma_range, \ int width, int height, int src_linesize, int dst_linesize) \ { \ type *dst = (type *)ddst; \ const type *src = (const type *)ssrc; \ float *img_out_f = s->img_out_f, *img_temp = s->img_temp; \ float *map_factor_a = s->map_factor_a, *map_factor_b = s->map_factor_b; \ float *slice_factor_a = s->slice_factor_a, *slice_factor_b = s->slice_factor_b; \ float *line_factor_a = s->line_factor_a, *line_factor_b = s->line_factor_b; \ float *range_table = s->range_table; \ float alpha = expf(-sqrtf(2.f) / (sigma_spatial * width)); \ float ypr, ycr, *ycy, *ypy, *xcy, fp, fc; \ float inv_alpha_ = 1 - alpha; \ float *ycf, *ypf, *xcf, *in_factor; \ const type *tcy, *tpy; \ int h1; \ \ for (int y = 0; y < height; y++) { \ float *temp_factor_x, *temp_x = &img_temp[y * width]; \ const type *in_x = &src[y * src_linesize]; \ const type *texture_x = &src[y * src_linesize]; \ type tpr; \ \ *temp_x++ = ypr = *in_x++; \ tpr = *texture_x++; \ \ temp_factor_x = &map_factor_a[y * width]; \ *temp_factor_x++ = fp = 1; \ \ for (int x = 1; x < width; x++) { \ float weight, alpha_; \ int range_dist; \ type tcr = *texture_x++; \ type dr = abs(tcr - tpr); \ \ range_dist = dr; \ weight = range_table[range_dist]; \ alpha_ = weight*alpha; \ *temp_x++ = ycr = inv_alpha_*(*in_x++) + alpha_*ypr; \ tpr = tcr; \ ypr = ycr; \ *temp_factor_x++ = fc = inv_alpha_ + alpha_ * fp; \ fp = fc; \ } \ --temp_x; *temp_x = 0.5f*((*temp_x) + (*--in_x)); \ tpr = *--texture_x; \ ypr = *in_x; \ \ --temp_factor_x; *temp_factor_x = 0.5f*((*temp_factor_x) + 1); \ fp = 1; \ \ for (int x = width - 2; x >= 0; x--) { \ type tcr = *--texture_x; \ type dr = abs(tcr - tpr); \ int range_dist = dr; \ float weight = range_table[range_dist]; \ float alpha_ = weight * alpha; \ \ ycr = inv_alpha_ * (*--in_x) + alpha_ * ypr; \ --temp_x; *temp_x = 0.5f*((*temp_x) + ycr); \ tpr = tcr; \ ypr = ycr; \ \ fc = inv_alpha_ + alpha_*fp; \ --temp_factor_x; \ *temp_factor_x = 0.5f*((*temp_factor_x) + fc); \ fp = fc; \ } \ } \ memcpy(img_out_f, img_temp, sizeof(float) * width); \ \ alpha = expf(-sqrtf(2.f) / (sigma_spatial * height)); \ inv_alpha_ = 1 - alpha; \ in_factor = map_factor_a; \ memcpy(map_factor_b, in_factor, sizeof(float) * width); \ for (int y = 1; y < height; y++) { \ tpy = &src[(y - 1) * src_linesize]; \ tcy = &src[y * src_linesize]; \ xcy = &img_temp[y * width]; \ ypy = &img_out_f[(y - 1) * width]; \ ycy = &img_out_f[y * width]; \ \ xcf = &in_factor[y * width]; \ ypf = &map_factor_b[(y - 1) * width]; \ ycf = &map_factor_b[y * width]; \ for (int x = 0; x < width; x++) { \ type dr = abs((*tcy++) - (*tpy++)); \ int range_dist = dr; \ float weight = range_table[range_dist]; \ float alpha_ = weight*alpha; \ \ *ycy++ = inv_alpha_*(*xcy++) + alpha_*(*ypy++); \ *ycf++ = inv_alpha_*(*xcf++) + alpha_*(*ypf++); \ } \ } \ h1 = height - 1; \ ycf = line_factor_a; \ ypf = line_factor_b; \ memcpy(ypf, &in_factor[h1 * width], sizeof(float) * width); \ for (int x = 0; x < width; x++) \ map_factor_b[h1 * width + x] = 0.5f*(map_factor_b[h1 * width + x] + ypf[x]); \ \ ycy = slice_factor_a; \ ypy = slice_factor_b; \ memcpy(ypy, &img_temp[h1 * width], sizeof(float) * width); \ for (int x = 0, k = 0; x < width; x++) { \ int idx = h1 * width + x; \ img_out_f[idx] = 0.5f*(img_out_f[idx] + ypy[k++]) / map_factor_b[h1 * width + x]; \ } \ \ for (int y = h1 - 1; y >= 0; y--) { \ float *ycf_, *ypf_, *factor_; \ float *ycy_, *ypy_, *out_; \ \ tpy = &src[(y + 1) * src_linesize]; \ tcy = &src[y * src_linesize]; \ xcy = &img_temp[y * width]; \ ycy_ = ycy; \ ypy_ = ypy; \ out_ = &img_out_f[y * width]; \ \ xcf = &in_factor[y * width]; \ ycf_ = ycf; \ ypf_ = ypf; \ factor_ = &map_factor_b[y * width]; \ for (int x = 0; x < width; x++) { \ type dr = abs((*tcy++) - (*tpy++)); \ int range_dist = dr; \ float weight = range_table[range_dist]; \ float alpha_ = weight*alpha; \ float ycc, fcc = inv_alpha_*(*xcf++) + alpha_*(*ypf_++); \ \ *ycf_++ = fcc; \ *factor_ = 0.5f * (*factor_ + fcc); \ \ ycc = inv_alpha_*(*xcy++) + alpha_*(*ypy_++); \ *ycy_++ = ycc; \ *out_ = 0.5f * (*out_ + ycc) / (*factor_); \ out_++; \ factor_++; \ } \ \ memcpy(ypy, ycy, sizeof(float) * width); \ memcpy(ypf, ycf, sizeof(float) * width); \ } \ \ for (int i = 0; i < height; i++) \ for (int j = 0; j < width; j++) \ dst[j + i * dst_linesize] = img_out_f[i * width + j]; \ } BILATERAL(uint8_t, byte) BILATERAL(uint16_t, word) static int filter_frame(AVFilterLink *inlink, AVFrame *in) { AVFilterContext *ctx = inlink->dst; BilateralContext *s = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; AVFrame *out; out = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } av_frame_copy_props(out, in); for (int plane = 0; plane < s->nb_planes; plane++) { if (!(s->planes & (1 << plane))) { av_image_copy_plane(out->data[plane], out->linesize[plane], in->data[plane], in->linesize[plane], s->planewidth[plane] * ((s->depth + 7) / 8), s->planeheight[plane]); continue; } if (s->depth <= 8) bilateral_byte(s, in->data[plane], out->data[plane], s->sigmaS, s->sigmaR, s->planewidth[plane], s->planeheight[plane], in->linesize[plane], out->linesize[plane]); else bilateral_word(s, in->data[plane], out->data[plane], s->sigmaS, s->sigmaR, s->planewidth[plane], s->planeheight[plane], in->linesize[plane] / 2, out->linesize[plane] / 2); } av_frame_free(&in); return ff_filter_frame(outlink, out); } static av_cold void uninit(AVFilterContext *ctx) { BilateralContext *s = ctx->priv; av_freep(&s->img_out_f); av_freep(&s->img_temp); av_freep(&s->map_factor_a); av_freep(&s->map_factor_b); av_freep(&s->slice_factor_a); av_freep(&s->slice_factor_b); av_freep(&s->line_factor_a); av_freep(&s->line_factor_b); } static const AVFilterPad bilateral_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_input, .filter_frame = filter_frame, }, { NULL } }; static const AVFilterPad bilateral_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, }, { NULL } }; AVFilter ff_vf_bilateral = { .name = "bilateral", .description = NULL_IF_CONFIG_SMALL("Apply Bilateral filter."), .priv_size = sizeof(BilateralContext), .priv_class = &bilateral_class, .uninit = uninit, .query_formats = query_formats, .inputs = bilateral_inputs, .outputs = bilateral_outputs, .flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, };