/* * Copyright (c) 2016 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * SpectrumSynth filter * @todo support float pixel format */ #include "libavcodec/avfft.h" #include "libavutil/avassert.h" #include "libavutil/channel_layout.h" #include "libavutil/ffmath.h" #include "libavutil/opt.h" #include "libavutil/parseutils.h" #include "avfilter.h" #include "formats.h" #include "audio.h" #include "video.h" #include "internal.h" #include "window_func.h" enum MagnitudeScale { LINEAR, LOG, NB_SCALES }; enum SlideMode { REPLACE, SCROLL, FULLFRAME, RSCROLL, NB_SLIDES }; enum Orientation { VERTICAL, HORIZONTAL, NB_ORIENTATIONS }; typedef struct SpectrumSynthContext { const AVClass *class; int sample_rate; int channels; int scale; int sliding; int win_func; float overlap; int orientation; AVFrame *magnitude, *phase; FFTContext *fft; ///< Fast Fourier Transform context int fft_bits; ///< number of bits (FFT window size = 1<priv; AVFilterFormats *formats = NULL; AVFilterChannelLayouts *layout = NULL; AVFilterLink *magnitude = ctx->inputs[0]; AVFilterLink *phase = ctx->inputs[1]; AVFilterLink *outlink = ctx->outputs[0]; static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE }; static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_GRAY8, AV_PIX_FMT_GRAY16, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUV444P16, AV_PIX_FMT_NONE }; int ret, sample_rates[] = { 48000, -1 }; formats = ff_make_format_list(sample_fmts); if ((ret = ff_formats_ref (formats, &outlink->in_formats )) < 0 || (ret = ff_add_channel_layout (&layout, FF_COUNT2LAYOUT(s->channels))) < 0 || (ret = ff_channel_layouts_ref (layout , &outlink->in_channel_layouts)) < 0) return ret; sample_rates[0] = s->sample_rate; formats = ff_make_format_list(sample_rates); if (!formats) return AVERROR(ENOMEM); if ((ret = ff_formats_ref(formats, &outlink->in_samplerates)) < 0) return ret; formats = ff_make_format_list(pix_fmts); if (!formats) return AVERROR(ENOMEM); if ((ret = ff_formats_ref(formats, &magnitude->out_formats)) < 0) return ret; formats = ff_make_format_list(pix_fmts); if (!formats) return AVERROR(ENOMEM); if ((ret = ff_formats_ref(formats, &phase->out_formats)) < 0) return ret; return 0; } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; SpectrumSynthContext *s = ctx->priv; int width = ctx->inputs[0]->w; int height = ctx->inputs[0]->h; AVRational time_base = ctx->inputs[0]->time_base; AVRational frame_rate = ctx->inputs[0]->frame_rate; int i, ch, fft_bits; float factor, overlap; outlink->sample_rate = s->sample_rate; outlink->time_base = (AVRational){1, s->sample_rate}; if (width != ctx->inputs[1]->w || height != ctx->inputs[1]->h) { av_log(ctx, AV_LOG_ERROR, "Magnitude and Phase sizes differ (%dx%d vs %dx%d).\n", width, height, ctx->inputs[1]->w, ctx->inputs[1]->h); return AVERROR_INVALIDDATA; } else if (av_cmp_q(time_base, ctx->inputs[1]->time_base) != 0) { av_log(ctx, AV_LOG_ERROR, "Magnitude and Phase time bases differ (%d/%d vs %d/%d).\n", time_base.num, time_base.den, ctx->inputs[1]->time_base.num, ctx->inputs[1]->time_base.den); return AVERROR_INVALIDDATA; } else if (av_cmp_q(frame_rate, ctx->inputs[1]->frame_rate) != 0) { av_log(ctx, AV_LOG_ERROR, "Magnitude and Phase framerates differ (%d/%d vs %d/%d).\n", frame_rate.num, frame_rate.den, ctx->inputs[1]->frame_rate.num, ctx->inputs[1]->frame_rate.den); return AVERROR_INVALIDDATA; } s->size = s->orientation == VERTICAL ? height / s->channels : width / s->channels; s->xend = s->orientation == VERTICAL ? width : height; for (fft_bits = 1; 1 << fft_bits < 2 * s->size; fft_bits++); s->win_size = 1 << fft_bits; s->nb_freq = 1 << (fft_bits - 1); s->fft = av_fft_init(fft_bits, 1); if (!s->fft) { av_log(ctx, AV_LOG_ERROR, "Unable to create FFT context. " "The window size might be too high.\n"); return AVERROR(EINVAL); } s->fft_data = av_calloc(s->channels, sizeof(*s->fft_data)); if (!s->fft_data) return AVERROR(ENOMEM); for (ch = 0; ch < s->channels; ch++) { s->fft_data[ch] = av_calloc(s->win_size, sizeof(**s->fft_data)); if (!s->fft_data[ch]) return AVERROR(ENOMEM); } s->buffer = ff_get_audio_buffer(outlink, s->win_size * 2); if (!s->buffer) return AVERROR(ENOMEM); /* pre-calc windowing function */ s->window_func_lut = av_realloc_f(s->window_func_lut, s->win_size, sizeof(*s->window_func_lut)); if (!s->window_func_lut) return AVERROR(ENOMEM); generate_window_func(s->window_func_lut, s->win_size, s->win_func, &overlap); if (s->overlap == 1) s->overlap = overlap; s->hop_size = (1 - s->overlap) * s->win_size; for (factor = 0, i = 0; i < s->win_size; i++) { factor += s->window_func_lut[i] * s->window_func_lut[i]; } s->factor = (factor / s->win_size) / FFMAX(1 / (1 - s->overlap) - 1, 1); return 0; } static int request_frame(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; SpectrumSynthContext *s = ctx->priv; int ret; if (!s->magnitude) { ret = ff_request_frame(ctx->inputs[0]); if (ret < 0) return ret; } if (!s->phase) { ret = ff_request_frame(ctx->inputs[1]); if (ret < 0) return ret; } return 0; } static void read16_fft_bin(SpectrumSynthContext *s, int x, int y, int f, int ch) { const int m_linesize = s->magnitude->linesize[0]; const int p_linesize = s->phase->linesize[0]; const uint16_t *m = (uint16_t *)(s->magnitude->data[0] + y * m_linesize); const uint16_t *p = (uint16_t *)(s->phase->data[0] + y * p_linesize); float magnitude, phase; switch (s->scale) { case LINEAR: magnitude = m[x] / (double)UINT16_MAX; break; case LOG: magnitude = ff_exp10(((m[x] / (double)UINT16_MAX) - 1.) * 6.); break; default: av_assert0(0); } phase = ((p[x] / (double)UINT16_MAX) * 2. - 1.) * M_PI; s->fft_data[ch][f].re = magnitude * cos(phase); s->fft_data[ch][f].im = magnitude * sin(phase); } static void read8_fft_bin(SpectrumSynthContext *s, int x, int y, int f, int ch) { const int m_linesize = s->magnitude->linesize[0]; const int p_linesize = s->phase->linesize[0]; const uint8_t *m = (uint8_t *)(s->magnitude->data[0] + y * m_linesize); const uint8_t *p = (uint8_t *)(s->phase->data[0] + y * p_linesize); float magnitude, phase; switch (s->scale) { case LINEAR: magnitude = m[x] / (double)UINT8_MAX; break; case LOG: magnitude = ff_exp10(((m[x] / (double)UINT8_MAX) - 1.) * 6.); break; default: av_assert0(0); } phase = ((p[x] / (double)UINT8_MAX) * 2. - 1.) * M_PI; s->fft_data[ch][f].re = magnitude * cos(phase); s->fft_data[ch][f].im = magnitude * sin(phase); } static void read_fft_data(AVFilterContext *ctx, int x, int h, int ch) { SpectrumSynthContext *s = ctx->priv; AVFilterLink *inlink = ctx->inputs[0]; int start = h * (s->channels - ch) - 1; int end = h * (s->channels - ch - 1); int y, f; switch (s->orientation) { case VERTICAL: switch (inlink->format) { case AV_PIX_FMT_YUV444P16: case AV_PIX_FMT_GRAY16: for (y = start, f = 0; y >= end; y--, f++) { read16_fft_bin(s, x, y, f, ch); } break; case AV_PIX_FMT_YUVJ444P: case AV_PIX_FMT_YUV444P: case AV_PIX_FMT_GRAY8: for (y = start, f = 0; y >= end; y--, f++) { read8_fft_bin(s, x, y, f, ch); } break; } break; case HORIZONTAL: switch (inlink->format) { case AV_PIX_FMT_YUV444P16: case AV_PIX_FMT_GRAY16: for (y = end, f = 0; y <= start; y++, f++) { read16_fft_bin(s, y, x, f, ch); } break; case AV_PIX_FMT_YUVJ444P: case AV_PIX_FMT_YUV444P: case AV_PIX_FMT_GRAY8: for (y = end, f = 0; y <= start; y++, f++) { read8_fft_bin(s, y, x, f, ch); } break; } break; } } static void synth_window(AVFilterContext *ctx, int x) { SpectrumSynthContext *s = ctx->priv; const int h = s->size; int nb = s->win_size; int y, f, ch; for (ch = 0; ch < s->channels; ch++) { read_fft_data(ctx, x, h, ch); for (y = h; y <= s->nb_freq; y++) { s->fft_data[ch][y].re = 0; s->fft_data[ch][y].im = 0; } for (y = s->nb_freq + 1, f = s->nb_freq - 1; y < nb; y++, f--) { s->fft_data[ch][y].re = s->fft_data[ch][f].re; s->fft_data[ch][y].im = -s->fft_data[ch][f].im; } av_fft_permute(s->fft, s->fft_data[ch]); av_fft_calc(s->fft, s->fft_data[ch]); } } static int try_push_frame(AVFilterContext *ctx, int x) { SpectrumSynthContext *s = ctx->priv; AVFilterLink *outlink = ctx->outputs[0]; const float factor = s->factor; int ch, n, i, ret; int start, end; AVFrame *out; synth_window(ctx, x); for (ch = 0; ch < s->channels; ch++) { float *buf = (float *)s->buffer->extended_data[ch]; int j, k; start = s->start; end = s->end; k = end; for (i = 0, j = start; j < k && i < s->win_size; i++, j++) { buf[j] += s->fft_data[ch][i].re; } for (; i < s->win_size; i++, j++) { buf[j] = s->fft_data[ch][i].re; } start += s->hop_size; end = j; if (start >= s->win_size) { start -= s->win_size; end -= s->win_size; if (ch == s->channels - 1) { float *dst; int c; out = ff_get_audio_buffer(outlink, s->win_size); if (!out) { av_frame_free(&s->magnitude); av_frame_free(&s->phase); return AVERROR(ENOMEM); } out->pts = s->pts; s->pts += s->win_size; for (c = 0; c < s->channels; c++) { dst = (float *)out->extended_data[c]; buf = (float *)s->buffer->extended_data[c]; for (n = 0; n < s->win_size; n++) { dst[n] = buf[n] * factor; } memmove(buf, buf + s->win_size, s->win_size * 4); } ret = ff_filter_frame(outlink, out); if (ret < 0) return ret; } } } s->start = start; s->end = end; return 0; } static int try_push_frames(AVFilterContext *ctx) { SpectrumSynthContext *s = ctx->priv; int ret, x; if (!(s->magnitude && s->phase)) return 0; switch (s->sliding) { case REPLACE: ret = try_push_frame(ctx, s->xpos); s->xpos++; if (s->xpos >= s->xend) s->xpos = 0; break; case SCROLL: s->xpos = s->xend - 1; ret = try_push_frame(ctx, s->xpos); break; case RSCROLL: s->xpos = 0; ret = try_push_frame(ctx, s->xpos); break; case FULLFRAME: for (x = 0; x < s->xend; x++) { ret = try_push_frame(ctx, x); if (ret < 0) break; } break; default: av_assert0(0); } av_frame_free(&s->magnitude); av_frame_free(&s->phase); return ret; } static int filter_frame_magnitude(AVFilterLink *inlink, AVFrame *magnitude) { AVFilterContext *ctx = inlink->dst; SpectrumSynthContext *s = ctx->priv; s->magnitude = magnitude; return try_push_frames(ctx); } static int filter_frame_phase(AVFilterLink *inlink, AVFrame *phase) { AVFilterContext *ctx = inlink->dst; SpectrumSynthContext *s = ctx->priv; s->phase = phase; return try_push_frames(ctx); } static av_cold void uninit(AVFilterContext *ctx) { SpectrumSynthContext *s = ctx->priv; int i; av_frame_free(&s->magnitude); av_frame_free(&s->phase); av_frame_free(&s->buffer); av_fft_end(s->fft); if (s->fft_data) { for (i = 0; i < s->channels; i++) av_freep(&s->fft_data[i]); } av_freep(&s->fft_data); av_freep(&s->window_func_lut); } static const AVFilterPad spectrumsynth_inputs[] = { { .name = "magnitude", .type = AVMEDIA_TYPE_VIDEO, .filter_frame = filter_frame_magnitude, .needs_fifo = 1, }, { .name = "phase", .type = AVMEDIA_TYPE_VIDEO, .filter_frame = filter_frame_phase, .needs_fifo = 1, }, { NULL } }; static const AVFilterPad spectrumsynth_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .config_props = config_output, .request_frame = request_frame, }, { NULL } }; AVFilter ff_vaf_spectrumsynth = { .name = "spectrumsynth", .description = NULL_IF_CONFIG_SMALL("Convert input spectrum videos to audio output."), .uninit = uninit, .query_formats = query_formats, .priv_size = sizeof(SpectrumSynthContext), .inputs = spectrumsynth_inputs, .outputs = spectrumsynth_outputs, .priv_class = &spectrumsynth_class, };