/* * Copyright (C) 2010 Georg Martius * Copyright (C) 2010 Daniel G. Taylor * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * transform input video */ #include "libavutil/common.h" #include "libavutil/avassert.h" #include "transform.h" #define INTERPOLATE_METHOD(name) \ static uint8_t name(float x, float y, const uint8_t *src, \ int width, int height, int stride, uint8_t def) #define PIXEL(img, x, y, w, h, stride, def) \ ((x) < 0 || (y) < 0) ? (def) : \ (((x) >= (w) || (y) >= (h)) ? (def) : \ img[(x) + (y) * (stride)]) /** * Nearest neighbor interpolation */ INTERPOLATE_METHOD(interpolate_nearest) { return PIXEL(src, (int)(x + 0.5), (int)(y + 0.5), width, height, stride, def); } /** * Bilinear interpolation */ INTERPOLATE_METHOD(interpolate_bilinear) { int x_c, x_f, y_c, y_f; int v1, v2, v3, v4; if (x < -1 || x > width || y < -1 || y > height) { return def; } else { x_f = (int)x; x_c = x_f + 1; y_f = (int)y; y_c = y_f + 1; v1 = PIXEL(src, x_c, y_c, width, height, stride, def); v2 = PIXEL(src, x_c, y_f, width, height, stride, def); v3 = PIXEL(src, x_f, y_c, width, height, stride, def); v4 = PIXEL(src, x_f, y_f, width, height, stride, def); return (v1*(x - x_f)*(y - y_f) + v2*((x - x_f)*(y_c - y)) + v3*(x_c - x)*(y - y_f) + v4*((x_c - x)*(y_c - y))); } } /** * Biquadratic interpolation */ INTERPOLATE_METHOD(interpolate_biquadratic) { int x_c, x_f, y_c, y_f; uint8_t v1, v2, v3, v4; float f1, f2, f3, f4; if (x < - 1 || x > width || y < -1 || y > height) return def; else { x_f = (int)x; x_c = x_f + 1; y_f = (int)y; y_c = y_f + 1; v1 = PIXEL(src, x_c, y_c, width, height, stride, def); v2 = PIXEL(src, x_c, y_f, width, height, stride, def); v3 = PIXEL(src, x_f, y_c, width, height, stride, def); v4 = PIXEL(src, x_f, y_f, width, height, stride, def); f1 = 1 - sqrt((x_c - x) * (y_c - y)); f2 = 1 - sqrt((x_c - x) * (y - y_f)); f3 = 1 - sqrt((x - x_f) * (y_c - y)); f4 = 1 - sqrt((x - x_f) * (y - y_f)); return (v1 * f1 + v2 * f2 + v3 * f3 + v4 * f4) / (f1 + f2 + f3 + f4); } } void ff_get_matrix( float x_shift, float y_shift, float angle, float scale_x, float scale_y, float *matrix ) { matrix[0] = scale_x * cos(angle); matrix[1] = -sin(angle); matrix[2] = x_shift; matrix[3] = -matrix[1]; matrix[4] = scale_y * cos(angle); matrix[5] = y_shift; matrix[6] = 0; matrix[7] = 0; matrix[8] = 1; } void avfilter_add_matrix(const float *m1, const float *m2, float *result) { int i; for (i = 0; i < 9; i++) result[i] = m1[i] + m2[i]; } void avfilter_sub_matrix(const float *m1, const float *m2, float *result) { int i; for (i = 0; i < 9; i++) result[i] = m1[i] - m2[i]; } void avfilter_mul_matrix(const float *m1, float scalar, float *result) { int i; for (i = 0; i < 9; i++) result[i] = m1[i] * scalar; } int avfilter_transform(const uint8_t *src, uint8_t *dst, int src_stride, int dst_stride, int width, int height, const float *matrix, enum InterpolateMethod interpolate, enum FillMethod fill) { int x, y; float x_s, y_s; uint8_t def = 0; uint8_t (*func)(float, float, const uint8_t *, int, int, int, uint8_t) = NULL; switch(interpolate) { case INTERPOLATE_NEAREST: func = interpolate_nearest; break; case INTERPOLATE_BILINEAR: func = interpolate_bilinear; break; case INTERPOLATE_BIQUADRATIC: func = interpolate_biquadratic; break; default: return AVERROR(EINVAL); } for (y = 0; y < height; y++) { for(x = 0; x < width; x++) { x_s = x * matrix[0] + y * matrix[1] + matrix[2]; y_s = x * matrix[3] + y * matrix[4] + matrix[5]; switch(fill) { case FILL_ORIGINAL: def = src[y * src_stride + x]; break; case FILL_CLAMP: y_s = av_clipf(y_s, 0, height - 1); x_s = av_clipf(x_s, 0, width - 1); def = src[(int)y_s * src_stride + (int)x_s]; break; case FILL_MIRROR: x_s = avpriv_mirror(x_s, width-1); y_s = avpriv_mirror(y_s, height-1); av_assert2(x_s >= 0 && y_s >= 0); av_assert2(x_s < width && y_s < height); def = src[(int)y_s * src_stride + (int)x_s]; } dst[y * dst_stride + x] = func(x_s, y_s, src, width, height, src_stride, def); } } return 0; }