/* * Copyright (c) 2012-2013 Clément Bœsch * Copyright (c) 2013 Rudolf Polzer * Copyright (c) 2015 Paul B Mahol * * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file * audio to spectrum (video) transmedia filter, based on ffplay rdft showmode * (by Michael Niedermayer) and lavfi/avf_showwaves (by Stefano Sabatini). */ #include #include "libavcodec/avfft.h" #include "libavutil/audio_fifo.h" #include "libavutil/avassert.h" #include "libavutil/avstring.h" #include "libavutil/channel_layout.h" #include "libavutil/opt.h" #include "libavutil/parseutils.h" #include "libavutil/xga_font_data.h" #include "audio.h" #include "video.h" #include "avfilter.h" #include "filters.h" #include "internal.h" #include "window_func.h" enum DisplayMode { COMBINED, SEPARATE, NB_MODES }; enum DataMode { D_MAGNITUDE, D_PHASE, NB_DMODES }; enum FrequencyScale { F_LINEAR, F_LOG, NB_FSCALES }; enum DisplayScale { LINEAR, SQRT, CBRT, LOG, FOURTHRT, FIFTHRT, NB_SCALES }; enum ColorMode { CHANNEL, INTENSITY, RAINBOW, MORELAND, NEBULAE, FIRE, FIERY, FRUIT, COOL, MAGMA, GREEN, VIRIDIS, PLASMA, CIVIDIS, TERRAIN, NB_CLMODES }; enum SlideMode { REPLACE, SCROLL, FULLFRAME, RSCROLL, NB_SLIDES }; enum Orientation { VERTICAL, HORIZONTAL, NB_ORIENTATIONS }; typedef struct ShowSpectrumContext { const AVClass *class; int w, h; char *rate_str; AVRational auto_frame_rate; AVRational frame_rate; AVFrame *outpicref; int nb_display_channels; int orientation; int channel_width; int channel_height; int sliding; ///< 1 if sliding mode, 0 otherwise int mode; ///< channel display mode int color_mode; ///< display color scheme int scale; int fscale; float saturation; ///< color saturation multiplier float rotation; ///< color rotation int start, stop; ///< zoom mode int data; int xpos; ///< x position (current column) FFTContext **fft; ///< Fast Fourier Transform context FFTContext **ifft; ///< Inverse Fast Fourier Transform context int fft_bits; ///< number of bits (FFT window size = 1<priv; int i; av_freep(&s->combine_buffer); if (s->fft) { for (i = 0; i < s->nb_display_channels; i++) av_fft_end(s->fft[i]); } av_freep(&s->fft); if (s->ifft) { for (i = 0; i < s->nb_display_channels; i++) av_fft_end(s->ifft[i]); } av_freep(&s->ifft); if (s->fft_data) { for (i = 0; i < s->nb_display_channels; i++) av_freep(&s->fft_data[i]); } av_freep(&s->fft_data); if (s->fft_scratch) { for (i = 0; i < s->nb_display_channels; i++) av_freep(&s->fft_scratch[i]); } av_freep(&s->fft_scratch); if (s->color_buffer) { for (i = 0; i < s->nb_display_channels; i++) av_freep(&s->color_buffer[i]); } av_freep(&s->color_buffer); av_freep(&s->window_func_lut); if (s->magnitudes) { for (i = 0; i < s->nb_display_channels; i++) av_freep(&s->magnitudes[i]); } av_freep(&s->magnitudes); av_frame_free(&s->outpicref); av_audio_fifo_free(s->fifo); if (s->phases) { for (i = 0; i < s->nb_display_channels; i++) av_freep(&s->phases[i]); } av_freep(&s->phases); } static int query_formats(AVFilterContext *ctx) { AVFilterFormats *formats = NULL; AVFilterChannelLayouts *layouts = NULL; AVFilterLink *inlink = ctx->inputs[0]; AVFilterLink *outlink = ctx->outputs[0]; static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE }; static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_NONE }; int ret; /* set input audio formats */ formats = ff_make_format_list(sample_fmts); if ((ret = ff_formats_ref(formats, &inlink->out_formats)) < 0) return ret; layouts = ff_all_channel_layouts(); if ((ret = ff_channel_layouts_ref(layouts, &inlink->out_channel_layouts)) < 0) return ret; formats = ff_all_samplerates(); if ((ret = ff_formats_ref(formats, &inlink->out_samplerates)) < 0) return ret; /* set output video format */ formats = ff_make_format_list(pix_fmts); if ((ret = ff_formats_ref(formats, &outlink->in_formats)) < 0) return ret; return 0; } static int run_channel_fft(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ShowSpectrumContext *s = ctx->priv; AVFilterLink *inlink = ctx->inputs[0]; const float *window_func_lut = s->window_func_lut; AVFrame *fin = arg; const int ch = jobnr; int n; /* fill FFT input with the number of samples available */ const float *p = (float *)fin->extended_data[ch]; for (n = 0; n < s->win_size; n++) { s->fft_data[ch][n].re = p[n] * window_func_lut[n]; s->fft_data[ch][n].im = 0; } if (s->stop) { float theta, phi, psi, a, b, S, c; FFTComplex *g = s->fft_data[ch]; FFTComplex *h = s->fft_scratch[ch]; int L = s->buf_size; int N = s->win_size; int M = s->win_size / 2; phi = 2.f * M_PI * (s->stop - s->start) / (float)inlink->sample_rate / (M - 1); theta = 2.f * M_PI * s->start / (float)inlink->sample_rate; for (int n = 0; n < M; n++) { h[n].re = cosf(n * n / 2.f * phi); h[n].im = sinf(n * n / 2.f * phi); } for (int n = M; n < L; n++) { h[n].re = 0.f; h[n].im = 0.f; } for (int n = L - N; n < L; n++) { h[n].re = cosf((L - n) * (L - n) / 2.f * phi); h[n].im = sinf((L - n) * (L - n) / 2.f * phi); } for (int n = 0; n < N; n++) { g[n].re = s->fft_data[ch][n].re; g[n].im = s->fft_data[ch][n].im; } for (int n = N; n < L; n++) { g[n].re = 0.f; g[n].im = 0.f; } for (int n = 0; n < N; n++) { psi = n * theta + n * n / 2.f * phi; c = cosf(psi); S = -sinf(psi); a = c * g[n].re - S * g[n].im; b = S * g[n].re + c * g[n].im; g[n].re = a; g[n].im = b; } av_fft_permute(s->fft[ch], h); av_fft_calc(s->fft[ch], h); av_fft_permute(s->fft[ch], g); av_fft_calc(s->fft[ch], g); for (int n = 0; n < L; n++) { c = g[n].re; S = g[n].im; a = c * h[n].re - S * h[n].im; b = S * h[n].re + c * h[n].im; g[n].re = a / L; g[n].im = b / L; } av_fft_permute(s->ifft[ch], g); av_fft_calc(s->ifft[ch], g); for (int k = 0; k < M; k++) { psi = k * k / 2.f * phi; c = cosf(psi); S = -sinf(psi); a = c * g[k].re - S * g[k].im; b = S * g[k].re + c * g[k].im; s->fft_data[ch][k].re = a; s->fft_data[ch][k].im = b; } } else { /* run FFT on each samples set */ av_fft_permute(s->fft[ch], s->fft_data[ch]); av_fft_calc(s->fft[ch], s->fft_data[ch]); } return 0; } static void drawtext(AVFrame *pic, int x, int y, const char *txt, int o) { const uint8_t *font; int font_height; int i; font = avpriv_cga_font, font_height = 8; for (i = 0; txt[i]; i++) { int char_y, mask; if (o) { for (char_y = font_height - 1; char_y >= 0; char_y--) { uint8_t *p = pic->data[0] + (y + i * 10) * pic->linesize[0] + x; for (mask = 0x80; mask; mask >>= 1) { if (font[txt[i] * font_height + font_height - 1 - char_y] & mask) p[char_y] = ~p[char_y]; p += pic->linesize[0]; } } } else { uint8_t *p = pic->data[0] + y*pic->linesize[0] + (x + i*8); for (char_y = 0; char_y < font_height; char_y++) { for (mask = 0x80; mask; mask >>= 1) { if (font[txt[i] * font_height + char_y] & mask) *p = ~(*p); p++; } p += pic->linesize[0] - 8; } } } } static void color_range(ShowSpectrumContext *s, int ch, float *yf, float *uf, float *vf) { switch (s->mode) { case COMBINED: // reduce range by channel count *yf = 256.0f / s->nb_display_channels; switch (s->color_mode) { case RAINBOW: case MORELAND: case NEBULAE: case FIRE: case FIERY: case FRUIT: case COOL: case GREEN: case VIRIDIS: case PLASMA: case CIVIDIS: case TERRAIN: case MAGMA: case INTENSITY: *uf = *yf; *vf = *yf; break; case CHANNEL: /* adjust saturation for mixed UV coloring */ /* this factor is correct for infinite channels, an approximation otherwise */ *uf = *yf * M_PI; *vf = *yf * M_PI; break; default: av_assert0(0); } break; case SEPARATE: // full range *yf = 256.0f; *uf = 256.0f; *vf = 256.0f; break; default: av_assert0(0); } if (s->color_mode == CHANNEL) { if (s->nb_display_channels > 1) { *uf *= 0.5f * sinf((2 * M_PI * ch) / s->nb_display_channels + M_PI * s->rotation); *vf *= 0.5f * cosf((2 * M_PI * ch) / s->nb_display_channels + M_PI * s->rotation); } else { *uf *= 0.5f * sinf(M_PI * s->rotation); *vf *= 0.5f * cosf(M_PI * s->rotation + M_PI_2); } } else { *uf += *uf * sinf(M_PI * s->rotation); *vf += *vf * cosf(M_PI * s->rotation + M_PI_2); } *uf *= s->saturation; *vf *= s->saturation; } static void pick_color(ShowSpectrumContext *s, float yf, float uf, float vf, float a, float *out) { if (s->color_mode > CHANNEL) { const int cm = s->color_mode; float y, u, v; int i; for (i = 1; i < FF_ARRAY_ELEMS(color_table[cm]) - 1; i++) if (color_table[cm][i].a >= a) break; // i now is the first item >= the color // now we know to interpolate between item i - 1 and i if (a <= color_table[cm][i - 1].a) { y = color_table[cm][i - 1].y; u = color_table[cm][i - 1].u; v = color_table[cm][i - 1].v; } else if (a >= color_table[cm][i].a) { y = color_table[cm][i].y; u = color_table[cm][i].u; v = color_table[cm][i].v; } else { float start = color_table[cm][i - 1].a; float end = color_table[cm][i].a; float lerpfrac = (a - start) / (end - start); y = color_table[cm][i - 1].y * (1.0f - lerpfrac) + color_table[cm][i].y * lerpfrac; u = color_table[cm][i - 1].u * (1.0f - lerpfrac) + color_table[cm][i].u * lerpfrac; v = color_table[cm][i - 1].v * (1.0f - lerpfrac) + color_table[cm][i].v * lerpfrac; } out[0] = y * yf; out[1] = u * uf; out[2] = v * vf; } else { out[0] = a * yf; out[1] = a * uf; out[2] = a * vf; } } static char *get_time(AVFilterContext *ctx, float seconds, int x) { char *units; if (x == 0) units = av_asprintf("0"); else if (log10(seconds) > 6) units = av_asprintf("%.2fh", seconds / (60 * 60)); else if (log10(seconds) > 3) units = av_asprintf("%.2fm", seconds / 60); else units = av_asprintf("%.2fs", seconds); return units; } static float log_scale(const float value, const float min, const float max) { if (value < min) return min; if (value > max) return max; { const float b = logf(max / min) / (max - min); const float a = max / expf(max * b); return expf(value * b) * a; } } static float get_log_hz(const int bin, const int num_bins, const float sample_rate) { const float max_freq = sample_rate / 2; const float hz_per_bin = max_freq / num_bins; const float freq = hz_per_bin * bin; const float scaled_freq = log_scale(freq + 1, 21, max_freq) - 1; return num_bins * scaled_freq / max_freq; } static float inv_log_scale(const float value, const float min, const float max) { if (value < min) return min; if (value > max) return max; { const float b = logf(max / min) / (max - min); const float a = max / expf(max * b); return logf(value / a) / b; } } static float bin_pos(const int bin, const int num_bins, const float sample_rate) { const float max_freq = sample_rate / 2; const float hz_per_bin = max_freq / num_bins; const float freq = hz_per_bin * bin; const float scaled_freq = inv_log_scale(freq + 1, 21, max_freq) - 1; return num_bins * scaled_freq / max_freq; } static int draw_legend(AVFilterContext *ctx, int samples) { ShowSpectrumContext *s = ctx->priv; AVFilterLink *inlink = ctx->inputs[0]; AVFilterLink *outlink = ctx->outputs[0]; int ch, y, x = 0, sz = s->orientation == VERTICAL ? s->w : s->h; int multi = (s->mode == SEPARATE && s->color_mode == CHANNEL); float spp = samples / (float)sz; char *text; uint8_t *dst; char chlayout_str[128]; av_get_channel_layout_string(chlayout_str, sizeof(chlayout_str), inlink->channels, inlink->channel_layout); text = av_asprintf("%d Hz | %s", inlink->sample_rate, chlayout_str); if (!text) return AVERROR(ENOMEM); drawtext(s->outpicref, 2, outlink->h - 10, "CREATED BY LIBAVFILTER", 0); drawtext(s->outpicref, outlink->w - 2 - strlen(text) * 10, outlink->h - 10, text, 0); if (s->stop) { char *text = av_asprintf("Zoom: %d Hz - %d Hz", s->start, s->stop); if (!text) return AVERROR(ENOMEM); drawtext(s->outpicref, outlink->w - 2 - strlen(text) * 10, 3, text, 0); av_freep(&text); } av_freep(&text); dst = s->outpicref->data[0] + (s->start_y - 1) * s->outpicref->linesize[0] + s->start_x - 1; for (x = 0; x < s->w + 1; x++) dst[x] = 200; dst = s->outpicref->data[0] + (s->start_y + s->h) * s->outpicref->linesize[0] + s->start_x - 1; for (x = 0; x < s->w + 1; x++) dst[x] = 200; for (y = 0; y < s->h + 2; y++) { dst = s->outpicref->data[0] + (y + s->start_y - 1) * s->outpicref->linesize[0]; dst[s->start_x - 1] = 200; dst[s->start_x + s->w] = 200; } if (s->orientation == VERTICAL) { int h = s->mode == SEPARATE ? s->h / s->nb_display_channels : s->h; int hh = s->mode == SEPARATE ? -(s->h % s->nb_display_channels) + 1 : 1; for (ch = 0; ch < (s->mode == SEPARATE ? s->nb_display_channels : 1); ch++) { for (y = 0; y < h; y += 20) { dst = s->outpicref->data[0] + (s->start_y + h * (ch + 1) - y - hh) * s->outpicref->linesize[0]; dst[s->start_x - 2] = 200; dst[s->start_x + s->w + 1] = 200; } for (y = 0; y < h; y += 40) { dst = s->outpicref->data[0] + (s->start_y + h * (ch + 1) - y - hh) * s->outpicref->linesize[0]; dst[s->start_x - 3] = 200; dst[s->start_x + s->w + 2] = 200; } dst = s->outpicref->data[0] + (s->start_y - 2) * s->outpicref->linesize[0] + s->start_x; for (x = 0; x < s->w; x+=40) dst[x] = 200; dst = s->outpicref->data[0] + (s->start_y - 3) * s->outpicref->linesize[0] + s->start_x; for (x = 0; x < s->w; x+=80) dst[x] = 200; dst = s->outpicref->data[0] + (s->h + s->start_y + 1) * s->outpicref->linesize[0] + s->start_x; for (x = 0; x < s->w; x+=40) { dst[x] = 200; } dst = s->outpicref->data[0] + (s->h + s->start_y + 2) * s->outpicref->linesize[0] + s->start_x; for (x = 0; x < s->w; x+=80) { dst[x] = 200; } for (y = 0; y < h; y += 40) { float range = s->stop ? s->stop - s->start : inlink->sample_rate / 2; float bin = s->fscale == F_LINEAR ? y : get_log_hz(y, h, inlink->sample_rate); float hertz = s->start + bin * range / (float)(1 << (int)ceil(log2(h))); char *units; if (hertz == 0) units = av_asprintf("DC"); else units = av_asprintf("%.2f", hertz); if (!units) return AVERROR(ENOMEM); drawtext(s->outpicref, s->start_x - 8 * strlen(units) - 4, h * (ch + 1) + s->start_y - y - 4 - hh, units, 0); av_free(units); } } for (x = 0; x < s->w && s->single_pic; x+=80) { float seconds = x * spp / inlink->sample_rate; char *units = get_time(ctx, seconds, x); if (!units) return AVERROR(ENOMEM); drawtext(s->outpicref, s->start_x + x - 4 * strlen(units), s->h + s->start_y + 6, units, 0); drawtext(s->outpicref, s->start_x + x - 4 * strlen(units), s->start_y - 12, units, 0); av_free(units); } drawtext(s->outpicref, outlink->w / 2 - 4 * 4, outlink->h - s->start_y / 2, "TIME", 0); drawtext(s->outpicref, s->start_x / 7, outlink->h / 2 - 14 * 4, "FREQUENCY (Hz)", 1); } else { int w = s->mode == SEPARATE ? s->w / s->nb_display_channels : s->w; for (y = 0; y < s->h; y += 20) { dst = s->outpicref->data[0] + (s->start_y + y) * s->outpicref->linesize[0]; dst[s->start_x - 2] = 200; dst[s->start_x + s->w + 1] = 200; } for (y = 0; y < s->h; y += 40) { dst = s->outpicref->data[0] + (s->start_y + y) * s->outpicref->linesize[0]; dst[s->start_x - 3] = 200; dst[s->start_x + s->w + 2] = 200; } for (ch = 0; ch < (s->mode == SEPARATE ? s->nb_display_channels : 1); ch++) { dst = s->outpicref->data[0] + (s->start_y - 2) * s->outpicref->linesize[0] + s->start_x + w * ch; for (x = 0; x < w; x+=40) dst[x] = 200; dst = s->outpicref->data[0] + (s->start_y - 3) * s->outpicref->linesize[0] + s->start_x + w * ch; for (x = 0; x < w; x+=80) dst[x] = 200; dst = s->outpicref->data[0] + (s->h + s->start_y + 1) * s->outpicref->linesize[0] + s->start_x + w * ch; for (x = 0; x < w; x+=40) { dst[x] = 200; } dst = s->outpicref->data[0] + (s->h + s->start_y + 2) * s->outpicref->linesize[0] + s->start_x + w * ch; for (x = 0; x < w; x+=80) { dst[x] = 200; } for (x = 0; x < w - 79; x += 80) { float range = s->stop ? s->stop - s->start : inlink->sample_rate / 2; float bin = s->fscale == F_LINEAR ? x : get_log_hz(x, w, inlink->sample_rate); float hertz = s->start + bin * range / (float)(1 << (int)ceil(log2(w))); char *units; if (hertz == 0) units = av_asprintf("DC"); else units = av_asprintf("%.2f", hertz); if (!units) return AVERROR(ENOMEM); drawtext(s->outpicref, s->start_x - 4 * strlen(units) + x + w * ch, s->start_y - 12, units, 0); drawtext(s->outpicref, s->start_x - 4 * strlen(units) + x + w * ch, s->h + s->start_y + 6, units, 0); av_free(units); } } for (y = 0; y < s->h && s->single_pic; y+=40) { float seconds = y * spp / inlink->sample_rate; char *units = get_time(ctx, seconds, x); if (!units) return AVERROR(ENOMEM); drawtext(s->outpicref, s->start_x - 8 * strlen(units) - 4, s->start_y + y - 4, units, 0); av_free(units); } drawtext(s->outpicref, s->start_x / 7, outlink->h / 2 - 4 * 4, "TIME", 1); drawtext(s->outpicref, outlink->w / 2 - 14 * 4, outlink->h - s->start_y / 2, "FREQUENCY (Hz)", 0); } for (ch = 0; ch < (multi ? s->nb_display_channels : 1); ch++) { int h = multi ? s->h / s->nb_display_channels : s->h; for (y = 0; y < h; y++) { float out[3] = { 0., 127.5, 127.5}; int chn; for (chn = 0; chn < (s->mode == SEPARATE ? 1 : s->nb_display_channels); chn++) { float yf, uf, vf; int channel = (multi) ? s->nb_display_channels - ch - 1 : chn; float lout[3]; color_range(s, channel, &yf, &uf, &vf); pick_color(s, yf, uf, vf, y / (float)h, lout); out[0] += lout[0]; out[1] += lout[1]; out[2] += lout[2]; } memset(s->outpicref->data[0]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[0] + s->w + s->start_x + 20, av_clip_uint8(out[0]), 10); memset(s->outpicref->data[1]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[1] + s->w + s->start_x + 20, av_clip_uint8(out[1]), 10); memset(s->outpicref->data[2]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[2] + s->w + s->start_x + 20, av_clip_uint8(out[2]), 10); } for (y = 0; ch == 0 && y < h; y += h / 10) { float value = 120.f * log10f(1.f - y / (float)h); char *text; if (value < -120) break; text = av_asprintf("%.0f dB", value); if (!text) continue; drawtext(s->outpicref, s->w + s->start_x + 35, s->start_y + y - 5, text, 0); av_free(text); } } return 0; } static float get_value(AVFilterContext *ctx, int ch, int y) { ShowSpectrumContext *s = ctx->priv; float *magnitudes = s->magnitudes[ch]; float *phases = s->phases[ch]; float a; switch (s->data) { case D_MAGNITUDE: /* get magnitude */ a = magnitudes[y]; break; case D_PHASE: /* get phase */ a = phases[y]; break; default: av_assert0(0); } /* apply scale */ switch (s->scale) { case LINEAR: a = av_clipf(a, 0, 1); break; case SQRT: a = av_clipf(sqrtf(a), 0, 1); break; case CBRT: a = av_clipf(cbrtf(a), 0, 1); break; case FOURTHRT: a = av_clipf(sqrtf(sqrtf(a)), 0, 1); break; case FIFTHRT: a = av_clipf(powf(a, 0.20), 0, 1); break; case LOG: a = 1.f + log10f(av_clipf(a, 1e-6, 1)) / 6.f; // zero = -120dBFS break; default: av_assert0(0); } return a; } static int plot_channel_lin(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ShowSpectrumContext *s = ctx->priv; const int h = s->orientation == VERTICAL ? s->channel_height : s->channel_width; const int ch = jobnr; float yf, uf, vf; int y; /* decide color range */ color_range(s, ch, &yf, &uf, &vf); /* draw the channel */ for (y = 0; y < h; y++) { int row = (s->mode == COMBINED) ? y : ch * h + y; float *out = &s->color_buffer[ch][3 * row]; float a = get_value(ctx, ch, y); pick_color(s, yf, uf, vf, a, out); } return 0; } static int plot_channel_log(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ShowSpectrumContext *s = ctx->priv; AVFilterLink *inlink = ctx->inputs[0]; const int h = s->orientation == VERTICAL ? s->channel_height : s->channel_width; const int ch = jobnr; float y, yf, uf, vf; int yy = 0; /* decide color range */ color_range(s, ch, &yf, &uf, &vf); /* draw the channel */ for (y = 0; y < h && yy < h; yy++) { float pos0 = bin_pos(yy+0, h, inlink->sample_rate); float pos1 = bin_pos(yy+1, h, inlink->sample_rate); float delta = pos1 - pos0; float a0, a1; a0 = get_value(ctx, ch, yy+0); a1 = get_value(ctx, ch, FFMIN(yy+1, h-1)); for (float j = pos0; j < pos1 && y + j - pos0 < h; j++) { float row = (s->mode == COMBINED) ? y + j - pos0 : ch * h + y + j - pos0; float *out = &s->color_buffer[ch][3 * FFMIN(lrintf(row), h-1)]; float lerpfrac = (j - pos0) / delta; pick_color(s, yf, uf, vf, lerpfrac * a1 + (1.f-lerpfrac) * a0, out); } y += delta; } return 0; } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; AVFilterLink *inlink = ctx->inputs[0]; ShowSpectrumContext *s = ctx->priv; int i, fft_bits, h, w; float overlap; switch (s->fscale) { case F_LINEAR: s->plot_channel = plot_channel_lin; break; case F_LOG: s->plot_channel = plot_channel_log; break; default: return AVERROR_BUG; } s->stop = FFMIN(s->stop, inlink->sample_rate / 2); if (s->stop && s->stop <= s->start) { av_log(ctx, AV_LOG_ERROR, "Stop frequency should be greater than start.\n"); return AVERROR(EINVAL); } if (!strcmp(ctx->filter->name, "showspectrumpic")) s->single_pic = 1; outlink->w = s->w; outlink->h = s->h; outlink->sample_aspect_ratio = (AVRational){1,1}; if (s->legend) { s->start_x = (log10(inlink->sample_rate) + 1) * 25; s->start_y = 64; outlink->w += s->start_x * 2; outlink->h += s->start_y * 2; } h = (s->mode == COMBINED || s->orientation == HORIZONTAL) ? s->h : s->h / inlink->channels; w = (s->mode == COMBINED || s->orientation == VERTICAL) ? s->w : s->w / inlink->channels; s->channel_height = h; s->channel_width = w; if (s->orientation == VERTICAL) { /* FFT window size (precision) according to the requested output frame height */ for (fft_bits = 1; 1 << fft_bits < 2 * h; fft_bits++); } else { /* FFT window size (precision) according to the requested output frame width */ for (fft_bits = 1; 1 << fft_bits < 2 * w; fft_bits++); } s->win_size = 1 << fft_bits; s->buf_size = s->win_size << !!s->stop; if (!s->fft) { s->fft = av_calloc(inlink->channels, sizeof(*s->fft)); if (!s->fft) return AVERROR(ENOMEM); } if (s->stop) { if (!s->ifft) { s->ifft = av_calloc(inlink->channels, sizeof(*s->ifft)); if (!s->ifft) return AVERROR(ENOMEM); } } /* (re-)configuration if the video output changed (or first init) */ if (fft_bits != s->fft_bits) { AVFrame *outpicref; s->fft_bits = fft_bits; /* FFT buffers: x2 for each (display) channel buffer. * Note: we use free and malloc instead of a realloc-like function to * make sure the buffer is aligned in memory for the FFT functions. */ for (i = 0; i < s->nb_display_channels; i++) { if (s->stop) { av_fft_end(s->ifft[i]); av_freep(&s->fft_scratch[i]); } av_fft_end(s->fft[i]); av_freep(&s->fft_data[i]); } av_freep(&s->fft_data); s->nb_display_channels = inlink->channels; for (i = 0; i < s->nb_display_channels; i++) { s->fft[i] = av_fft_init(fft_bits + !!s->stop, 0); if (s->stop) { s->ifft[i] = av_fft_init(fft_bits + !!s->stop, 1); if (!s->ifft[i]) { av_log(ctx, AV_LOG_ERROR, "Unable to create Inverse FFT context. " "The window size might be too high.\n"); return AVERROR(EINVAL); } } if (!s->fft[i]) { av_log(ctx, AV_LOG_ERROR, "Unable to create FFT context. " "The window size might be too high.\n"); return AVERROR(EINVAL); } } s->magnitudes = av_calloc(s->nb_display_channels, sizeof(*s->magnitudes)); if (!s->magnitudes) return AVERROR(ENOMEM); for (i = 0; i < s->nb_display_channels; i++) { s->magnitudes[i] = av_calloc(s->orientation == VERTICAL ? s->h : s->w, sizeof(**s->magnitudes)); if (!s->magnitudes[i]) return AVERROR(ENOMEM); } s->phases = av_calloc(s->nb_display_channels, sizeof(*s->phases)); if (!s->phases) return AVERROR(ENOMEM); for (i = 0; i < s->nb_display_channels; i++) { s->phases[i] = av_calloc(s->orientation == VERTICAL ? s->h : s->w, sizeof(**s->phases)); if (!s->phases[i]) return AVERROR(ENOMEM); } av_freep(&s->color_buffer); s->color_buffer = av_calloc(s->nb_display_channels, sizeof(*s->color_buffer)); if (!s->color_buffer) return AVERROR(ENOMEM); for (i = 0; i < s->nb_display_channels; i++) { s->color_buffer[i] = av_calloc(s->orientation == VERTICAL ? s->h * 3 : s->w * 3, sizeof(**s->color_buffer)); if (!s->color_buffer[i]) return AVERROR(ENOMEM); } s->fft_data = av_calloc(s->nb_display_channels, sizeof(*s->fft_data)); if (!s->fft_data) return AVERROR(ENOMEM); s->fft_scratch = av_calloc(s->nb_display_channels, sizeof(*s->fft_scratch)); if (!s->fft_scratch) return AVERROR(ENOMEM); for (i = 0; i < s->nb_display_channels; i++) { s->fft_data[i] = av_calloc(s->buf_size, sizeof(**s->fft_data)); if (!s->fft_data[i]) return AVERROR(ENOMEM); s->fft_scratch[i] = av_calloc(s->buf_size, sizeof(**s->fft_scratch)); if (!s->fft_scratch[i]) return AVERROR(ENOMEM); } /* pre-calc windowing function */ s->window_func_lut = av_realloc_f(s->window_func_lut, s->win_size, sizeof(*s->window_func_lut)); if (!s->window_func_lut) return AVERROR(ENOMEM); generate_window_func(s->window_func_lut, s->win_size, s->win_func, &overlap); if (s->overlap == 1) s->overlap = overlap; s->hop_size = (1.f - s->overlap) * s->win_size; if (s->hop_size < 1) { av_log(ctx, AV_LOG_ERROR, "overlap %f too big\n", s->overlap); return AVERROR(EINVAL); } for (s->win_scale = 0, i = 0; i < s->win_size; i++) { s->win_scale += s->window_func_lut[i] * s->window_func_lut[i]; } s->win_scale = 1.f / sqrtf(s->win_scale); /* prepare the initial picref buffer (black frame) */ av_frame_free(&s->outpicref); s->outpicref = outpicref = ff_get_video_buffer(outlink, outlink->w, outlink->h); if (!outpicref) return AVERROR(ENOMEM); outpicref->sample_aspect_ratio = (AVRational){1,1}; for (i = 0; i < outlink->h; i++) { memset(outpicref->data[0] + i * outpicref->linesize[0], 0, outlink->w); memset(outpicref->data[1] + i * outpicref->linesize[1], 128, outlink->w); memset(outpicref->data[2] + i * outpicref->linesize[2], 128, outlink->w); } outpicref->color_range = AVCOL_RANGE_JPEG; if (!s->single_pic && s->legend) draw_legend(ctx, 0); } if ((s->orientation == VERTICAL && s->xpos >= s->w) || (s->orientation == HORIZONTAL && s->xpos >= s->h)) s->xpos = 0; s->auto_frame_rate = av_make_q(inlink->sample_rate, s->hop_size); if (s->orientation == VERTICAL && s->sliding == FULLFRAME) s->auto_frame_rate.den *= s->w; if (s->orientation == HORIZONTAL && s->sliding == FULLFRAME) s->auto_frame_rate.den *= s->h; if (!s->single_pic && strcmp(s->rate_str, "auto")) { int ret = av_parse_video_rate(&s->frame_rate, s->rate_str); if (ret < 0) return ret; } else { s->frame_rate = s->auto_frame_rate; } outlink->frame_rate = s->frame_rate; outlink->time_base = av_inv_q(outlink->frame_rate); if (s->orientation == VERTICAL) { s->combine_buffer = av_realloc_f(s->combine_buffer, s->h * 3, sizeof(*s->combine_buffer)); } else { s->combine_buffer = av_realloc_f(s->combine_buffer, s->w * 3, sizeof(*s->combine_buffer)); } av_log(ctx, AV_LOG_VERBOSE, "s:%dx%d FFT window size:%d\n", s->w, s->h, s->win_size); av_audio_fifo_free(s->fifo); s->fifo = av_audio_fifo_alloc(inlink->format, inlink->channels, s->win_size); if (!s->fifo) return AVERROR(ENOMEM); return 0; } #define RE(y, ch) s->fft_data[ch][y].re #define IM(y, ch) s->fft_data[ch][y].im #define MAGNITUDE(y, ch) hypotf(RE(y, ch), IM(y, ch)) #define PHASE(y, ch) atan2f(IM(y, ch), RE(y, ch)) static int calc_channel_magnitudes(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ShowSpectrumContext *s = ctx->priv; const double w = s->win_scale * (s->scale == LOG ? s->win_scale : 1); int y, h = s->orientation == VERTICAL ? s->h : s->w; const float f = s->gain * w; const int ch = jobnr; float *magnitudes = s->magnitudes[ch]; for (y = 0; y < h; y++) magnitudes[y] = MAGNITUDE(y, ch) * f; return 0; } static int calc_channel_phases(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { ShowSpectrumContext *s = ctx->priv; const int h = s->orientation == VERTICAL ? s->h : s->w; const int ch = jobnr; float *phases = s->phases[ch]; int y; for (y = 0; y < h; y++) phases[y] = (PHASE(y, ch) / M_PI + 1) / 2; return 0; } static void acalc_magnitudes(ShowSpectrumContext *s) { const double w = s->win_scale * (s->scale == LOG ? s->win_scale : 1); int ch, y, h = s->orientation == VERTICAL ? s->h : s->w; const float f = s->gain * w; for (ch = 0; ch < s->nb_display_channels; ch++) { float *magnitudes = s->magnitudes[ch]; for (y = 0; y < h; y++) magnitudes[y] += MAGNITUDE(y, ch) * f; } } static void scale_magnitudes(ShowSpectrumContext *s, float scale) { int ch, y, h = s->orientation == VERTICAL ? s->h : s->w; for (ch = 0; ch < s->nb_display_channels; ch++) { float *magnitudes = s->magnitudes[ch]; for (y = 0; y < h; y++) magnitudes[y] *= scale; } } static void clear_combine_buffer(ShowSpectrumContext *s, int size) { int y; for (y = 0; y < size; y++) { s->combine_buffer[3 * y ] = 0; s->combine_buffer[3 * y + 1] = 127.5; s->combine_buffer[3 * y + 2] = 127.5; } } static int plot_spectrum_column(AVFilterLink *inlink, AVFrame *insamples) { AVFilterContext *ctx = inlink->dst; AVFilterLink *outlink = ctx->outputs[0]; ShowSpectrumContext *s = ctx->priv; AVFrame *outpicref = s->outpicref; int ret, plane, x, y, z = s->orientation == VERTICAL ? s->h : s->w; /* fill a new spectrum column */ /* initialize buffer for combining to black */ clear_combine_buffer(s, z); ctx->internal->execute(ctx, s->plot_channel, NULL, NULL, s->nb_display_channels); for (y = 0; y < z * 3; y++) { for (x = 0; x < s->nb_display_channels; x++) { s->combine_buffer[y] += s->color_buffer[x][y]; } } av_frame_make_writable(s->outpicref); /* copy to output */ if (s->orientation == VERTICAL) { if (s->sliding == SCROLL) { for (plane = 0; plane < 3; plane++) { for (y = 0; y < s->h; y++) { uint8_t *p = outpicref->data[plane] + s->start_x + (y + s->start_y) * outpicref->linesize[plane]; memmove(p, p + 1, s->w - 1); } } s->xpos = s->w - 1; } else if (s->sliding == RSCROLL) { for (plane = 0; plane < 3; plane++) { for (y = 0; y < s->h; y++) { uint8_t *p = outpicref->data[plane] + s->start_x + (y + s->start_y) * outpicref->linesize[plane]; memmove(p + 1, p, s->w - 1); } } s->xpos = 0; } for (plane = 0; plane < 3; plane++) { uint8_t *p = outpicref->data[plane] + s->start_x + (outlink->h - 1 - s->start_y) * outpicref->linesize[plane] + s->xpos; for (y = 0; y < s->h; y++) { *p = lrintf(av_clipf(s->combine_buffer[3 * y + plane], 0, 255)); p -= outpicref->linesize[plane]; } } } else { if (s->sliding == SCROLL) { for (plane = 0; plane < 3; plane++) { for (y = 1; y < s->h; y++) { memmove(outpicref->data[plane] + (y-1 + s->start_y) * outpicref->linesize[plane] + s->start_x, outpicref->data[plane] + (y + s->start_y) * outpicref->linesize[plane] + s->start_x, s->w); } } s->xpos = s->h - 1; } else if (s->sliding == RSCROLL) { for (plane = 0; plane < 3; plane++) { for (y = s->h - 1; y >= 1; y--) { memmove(outpicref->data[plane] + (y + s->start_y) * outpicref->linesize[plane] + s->start_x, outpicref->data[plane] + (y-1 + s->start_y) * outpicref->linesize[plane] + s->start_x, s->w); } } s->xpos = 0; } for (plane = 0; plane < 3; plane++) { uint8_t *p = outpicref->data[plane] + s->start_x + (s->xpos + s->start_y) * outpicref->linesize[plane]; for (x = 0; x < s->w; x++) { *p = lrintf(av_clipf(s->combine_buffer[3 * x + plane], 0, 255)); p++; } } } if (s->sliding != FULLFRAME || s->xpos == 0) outpicref->pts = av_rescale_q(insamples->pts, inlink->time_base, outlink->time_base); s->xpos++; if (s->orientation == VERTICAL && s->xpos >= s->w) s->xpos = 0; if (s->orientation == HORIZONTAL && s->xpos >= s->h) s->xpos = 0; if (!s->single_pic && (s->sliding != FULLFRAME || s->xpos == 0)) { if (s->old_pts < outpicref->pts) { if (s->legend) { char *units = get_time(ctx, insamples->pts /(float)inlink->sample_rate, x); if (!units) return AVERROR(ENOMEM); if (s->orientation == VERTICAL) { for (y = 0; y < 10; y++) { memset(s->outpicref->data[0] + outlink->w / 2 - 4 * s->old_len + (outlink->h - s->start_y / 2 - 20 + y) * s->outpicref->linesize[0], 0, 10 * s->old_len); } drawtext(s->outpicref, outlink->w / 2 - 4 * strlen(units), outlink->h - s->start_y / 2 - 20, units, 0); } else { for (y = 0; y < 10 * s->old_len; y++) { memset(s->outpicref->data[0] + s->start_x / 7 + 20 + (outlink->h / 2 - 4 * s->old_len + y) * s->outpicref->linesize[0], 0, 10); } drawtext(s->outpicref, s->start_x / 7 + 20, outlink->h / 2 - 4 * strlen(units), units, 1); } s->old_len = strlen(units); av_free(units); } s->old_pts = outpicref->pts; ret = ff_filter_frame(outlink, av_frame_clone(s->outpicref)); if (ret < 0) return ret; return 0; } } return 1; } #if CONFIG_SHOWSPECTRUM_FILTER static int activate(AVFilterContext *ctx) { AVFilterLink *inlink = ctx->inputs[0]; AVFilterLink *outlink = ctx->outputs[0]; ShowSpectrumContext *s = ctx->priv; int ret; FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink); if (av_audio_fifo_size(s->fifo) < s->win_size) { AVFrame *frame = NULL; ret = ff_inlink_consume_frame(inlink, &frame); if (ret < 0) return ret; if (ret > 0) { s->pts = frame->pts; s->consumed = 0; av_audio_fifo_write(s->fifo, (void **)frame->extended_data, frame->nb_samples); av_frame_free(&frame); } } if (s->outpicref && av_audio_fifo_size(s->fifo) >= s->win_size) { AVFrame *fin = ff_get_audio_buffer(inlink, s->win_size); if (!fin) return AVERROR(ENOMEM); fin->pts = s->pts + s->consumed; s->consumed += s->hop_size; ret = av_audio_fifo_peek(s->fifo, (void **)fin->extended_data, FFMIN(s->win_size, av_audio_fifo_size(s->fifo))); if (ret < 0) { av_frame_free(&fin); return ret; } av_assert0(fin->nb_samples == s->win_size); ctx->internal->execute(ctx, run_channel_fft, fin, NULL, s->nb_display_channels); if (s->data == D_MAGNITUDE) ctx->internal->execute(ctx, calc_channel_magnitudes, NULL, NULL, s->nb_display_channels); if (s->data == D_PHASE) ctx->internal->execute(ctx, calc_channel_phases, NULL, NULL, s->nb_display_channels); ret = plot_spectrum_column(inlink, fin); av_frame_free(&fin); av_audio_fifo_drain(s->fifo, s->hop_size); if (ret <= 0) return ret; } if (ff_outlink_get_status(inlink) == AVERROR_EOF && s->sliding == FULLFRAME && s->xpos > 0 && s->outpicref) { int64_t pts; if (s->orientation == VERTICAL) { for (int i = 0; i < outlink->h; i++) { memset(s->outpicref->data[0] + i * s->outpicref->linesize[0] + s->xpos, 0, outlink->w - s->xpos); memset(s->outpicref->data[1] + i * s->outpicref->linesize[1] + s->xpos, 128, outlink->w - s->xpos); memset(s->outpicref->data[2] + i * s->outpicref->linesize[2] + s->xpos, 128, outlink->w - s->xpos); } } else { for (int i = s->xpos; i < outlink->h; i++) { memset(s->outpicref->data[0] + i * s->outpicref->linesize[0], 0, outlink->w); memset(s->outpicref->data[1] + i * s->outpicref->linesize[1], 128, outlink->w); memset(s->outpicref->data[2] + i * s->outpicref->linesize[2], 128, outlink->w); } } s->outpicref->pts += s->consumed; pts = s->outpicref->pts; ret = ff_filter_frame(outlink, s->outpicref); s->outpicref = NULL; ff_outlink_set_status(outlink, AVERROR_EOF, pts); return 0; } FF_FILTER_FORWARD_STATUS(inlink, outlink); if (ff_outlink_frame_wanted(outlink) && av_audio_fifo_size(s->fifo) < s->win_size) { ff_inlink_request_frame(inlink); return 0; } if (av_audio_fifo_size(s->fifo) >= s->win_size) { ff_filter_set_ready(ctx, 10); return 0; } return FFERROR_NOT_READY; } static const AVFilterPad showspectrum_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, }, { NULL } }; static const AVFilterPad showspectrum_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_output, }, { NULL } }; AVFilter ff_avf_showspectrum = { .name = "showspectrum", .description = NULL_IF_CONFIG_SMALL("Convert input audio to a spectrum video output."), .uninit = uninit, .query_formats = query_formats, .priv_size = sizeof(ShowSpectrumContext), .inputs = showspectrum_inputs, .outputs = showspectrum_outputs, .activate = activate, .priv_class = &showspectrum_class, .flags = AVFILTER_FLAG_SLICE_THREADS, }; #endif // CONFIG_SHOWSPECTRUM_FILTER #if CONFIG_SHOWSPECTRUMPIC_FILTER static const AVOption showspectrumpic_options[] = { { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "4096x2048"}, 0, 0, FLAGS }, { "s", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "4096x2048"}, 0, 0, FLAGS }, { "mode", "set channel display mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=COMBINED}, 0, NB_MODES-1, FLAGS, "mode" }, { "combined", "combined mode", 0, AV_OPT_TYPE_CONST, {.i64=COMBINED}, 0, 0, FLAGS, "mode" }, { "separate", "separate mode", 0, AV_OPT_TYPE_CONST, {.i64=SEPARATE}, 0, 0, FLAGS, "mode" }, { "color", "set channel coloring", OFFSET(color_mode), AV_OPT_TYPE_INT, {.i64=INTENSITY}, 0, NB_CLMODES-1, FLAGS, "color" }, { "channel", "separate color for each channel", 0, AV_OPT_TYPE_CONST, {.i64=CHANNEL}, 0, 0, FLAGS, "color" }, { "intensity", "intensity based coloring", 0, AV_OPT_TYPE_CONST, {.i64=INTENSITY}, 0, 0, FLAGS, "color" }, { "rainbow", "rainbow based coloring", 0, AV_OPT_TYPE_CONST, {.i64=RAINBOW}, 0, 0, FLAGS, "color" }, { "moreland", "moreland based coloring", 0, AV_OPT_TYPE_CONST, {.i64=MORELAND}, 0, 0, FLAGS, "color" }, { "nebulae", "nebulae based coloring", 0, AV_OPT_TYPE_CONST, {.i64=NEBULAE}, 0, 0, FLAGS, "color" }, { "fire", "fire based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FIRE}, 0, 0, FLAGS, "color" }, { "fiery", "fiery based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FIERY}, 0, 0, FLAGS, "color" }, { "fruit", "fruit based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FRUIT}, 0, 0, FLAGS, "color" }, { "cool", "cool based coloring", 0, AV_OPT_TYPE_CONST, {.i64=COOL}, 0, 0, FLAGS, "color" }, { "magma", "magma based coloring", 0, AV_OPT_TYPE_CONST, {.i64=MAGMA}, 0, 0, FLAGS, "color" }, { "green", "green based coloring", 0, AV_OPT_TYPE_CONST, {.i64=GREEN}, 0, 0, FLAGS, "color" }, { "viridis", "viridis based coloring", 0, AV_OPT_TYPE_CONST, {.i64=VIRIDIS}, 0, 0, FLAGS, "color" }, { "plasma", "plasma based coloring", 0, AV_OPT_TYPE_CONST, {.i64=PLASMA}, 0, 0, FLAGS, "color" }, { "cividis", "cividis based coloring", 0, AV_OPT_TYPE_CONST, {.i64=CIVIDIS}, 0, 0, FLAGS, "color" }, { "terrain", "terrain based coloring", 0, AV_OPT_TYPE_CONST, {.i64=TERRAIN}, 0, 0, FLAGS, "color" }, { "scale", "set display scale", OFFSET(scale), AV_OPT_TYPE_INT, {.i64=LOG}, 0, NB_SCALES-1, FLAGS, "scale" }, { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=LINEAR}, 0, 0, FLAGS, "scale" }, { "sqrt", "square root", 0, AV_OPT_TYPE_CONST, {.i64=SQRT}, 0, 0, FLAGS, "scale" }, { "cbrt", "cubic root", 0, AV_OPT_TYPE_CONST, {.i64=CBRT}, 0, 0, FLAGS, "scale" }, { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=LOG}, 0, 0, FLAGS, "scale" }, { "4thrt","4th root", 0, AV_OPT_TYPE_CONST, {.i64=FOURTHRT}, 0, 0, FLAGS, "scale" }, { "5thrt","5th root", 0, AV_OPT_TYPE_CONST, {.i64=FIFTHRT}, 0, 0, FLAGS, "scale" }, { "fscale", "set frequency scale", OFFSET(fscale), AV_OPT_TYPE_INT, {.i64=F_LINEAR}, 0, NB_FSCALES-1, FLAGS, "fscale" }, { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=F_LINEAR}, 0, 0, FLAGS, "fscale" }, { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=F_LOG}, 0, 0, FLAGS, "fscale" }, { "saturation", "color saturation multiplier", OFFSET(saturation), AV_OPT_TYPE_FLOAT, {.dbl = 1}, -10, 10, FLAGS }, { "win_func", "set window function", OFFSET(win_func), AV_OPT_TYPE_INT, {.i64 = WFUNC_HANNING}, 0, NB_WFUNC-1, FLAGS, "win_func" }, { "rect", "Rectangular", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_RECT}, 0, 0, FLAGS, "win_func" }, { "bartlett", "Bartlett", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BARTLETT}, 0, 0, FLAGS, "win_func" }, { "hann", "Hann", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING}, 0, 0, FLAGS, "win_func" }, { "hanning", "Hanning", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HANNING}, 0, 0, FLAGS, "win_func" }, { "hamming", "Hamming", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_HAMMING}, 0, 0, FLAGS, "win_func" }, { "blackman", "Blackman", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BLACKMAN}, 0, 0, FLAGS, "win_func" }, { "welch", "Welch", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_WELCH}, 0, 0, FLAGS, "win_func" }, { "flattop", "Flat-top", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_FLATTOP}, 0, 0, FLAGS, "win_func" }, { "bharris", "Blackman-Harris", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHARRIS}, 0, 0, FLAGS, "win_func" }, { "bnuttall", "Blackman-Nuttall", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BNUTTALL}, 0, 0, FLAGS, "win_func" }, { "bhann", "Bartlett-Hann", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BHANN}, 0, 0, FLAGS, "win_func" }, { "sine", "Sine", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_SINE}, 0, 0, FLAGS, "win_func" }, { "nuttall", "Nuttall", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_NUTTALL}, 0, 0, FLAGS, "win_func" }, { "lanczos", "Lanczos", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_LANCZOS}, 0, 0, FLAGS, "win_func" }, { "gauss", "Gauss", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_GAUSS}, 0, 0, FLAGS, "win_func" }, { "tukey", "Tukey", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_TUKEY}, 0, 0, FLAGS, "win_func" }, { "dolph", "Dolph-Chebyshev", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_DOLPH}, 0, 0, FLAGS, "win_func" }, { "cauchy", "Cauchy", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_CAUCHY}, 0, 0, FLAGS, "win_func" }, { "parzen", "Parzen", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_PARZEN}, 0, 0, FLAGS, "win_func" }, { "poisson", "Poisson", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_POISSON}, 0, 0, FLAGS, "win_func" }, { "bohman", "Bohman", 0, AV_OPT_TYPE_CONST, {.i64=WFUNC_BOHMAN}, 0, 0, FLAGS, "win_func" }, { "orientation", "set orientation", OFFSET(orientation), AV_OPT_TYPE_INT, {.i64=VERTICAL}, 0, NB_ORIENTATIONS-1, FLAGS, "orientation" }, { "vertical", NULL, 0, AV_OPT_TYPE_CONST, {.i64=VERTICAL}, 0, 0, FLAGS, "orientation" }, { "horizontal", NULL, 0, AV_OPT_TYPE_CONST, {.i64=HORIZONTAL}, 0, 0, FLAGS, "orientation" }, { "gain", "set scale gain", OFFSET(gain), AV_OPT_TYPE_FLOAT, {.dbl = 1}, 0, 128, FLAGS }, { "legend", "draw legend", OFFSET(legend), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, FLAGS }, { "rotation", "color rotation", OFFSET(rotation), AV_OPT_TYPE_FLOAT, {.dbl = 0}, -1, 1, FLAGS }, { "start", "start frequency", OFFSET(start), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS }, { "stop", "stop frequency", OFFSET(stop), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(showspectrumpic); static int showspectrumpic_request_frame(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; ShowSpectrumContext *s = ctx->priv; AVFilterLink *inlink = ctx->inputs[0]; int ret, samples; ret = ff_request_frame(inlink); samples = av_audio_fifo_size(s->fifo); if (ret == AVERROR_EOF && s->outpicref && samples > 0) { int consumed = 0; int x = 0, sz = s->orientation == VERTICAL ? s->w : s->h; int ch, spf, spb; AVFrame *fin; spf = s->win_size * (samples / ((s->win_size * sz) * ceil(samples / (float)(s->win_size * sz)))); spf = FFMAX(1, spf); spb = (samples / (spf * sz)) * spf; fin = ff_get_audio_buffer(inlink, s->win_size); if (!fin) return AVERROR(ENOMEM); while (x < sz) { ret = av_audio_fifo_peek(s->fifo, (void **)fin->extended_data, s->win_size); if (ret < 0) { av_frame_free(&fin); return ret; } av_audio_fifo_drain(s->fifo, spf); if (ret < s->win_size) { for (ch = 0; ch < s->nb_display_channels; ch++) { memset(fin->extended_data[ch] + ret * sizeof(float), 0, (s->win_size - ret) * sizeof(float)); } } ctx->internal->execute(ctx, run_channel_fft, fin, NULL, s->nb_display_channels); acalc_magnitudes(s); consumed += spf; if (consumed >= spb) { int h = s->orientation == VERTICAL ? s->h : s->w; scale_magnitudes(s, 1.f / (consumed / spf)); plot_spectrum_column(inlink, fin); consumed = 0; x++; for (ch = 0; ch < s->nb_display_channels; ch++) memset(s->magnitudes[ch], 0, h * sizeof(float)); } } av_frame_free(&fin); s->outpicref->pts = 0; if (s->legend) draw_legend(ctx, samples); ret = ff_filter_frame(outlink, s->outpicref); s->outpicref = NULL; } return ret; } static int showspectrumpic_filter_frame(AVFilterLink *inlink, AVFrame *insamples) { AVFilterContext *ctx = inlink->dst; ShowSpectrumContext *s = ctx->priv; int ret; ret = av_audio_fifo_write(s->fifo, (void **)insamples->extended_data, insamples->nb_samples); av_frame_free(&insamples); return ret; } static const AVFilterPad showspectrumpic_inputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .filter_frame = showspectrumpic_filter_frame, }, { NULL } }; static const AVFilterPad showspectrumpic_outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_VIDEO, .config_props = config_output, .request_frame = showspectrumpic_request_frame, }, { NULL } }; AVFilter ff_avf_showspectrumpic = { .name = "showspectrumpic", .description = NULL_IF_CONFIG_SMALL("Convert input audio to a spectrum video output single picture."), .uninit = uninit, .query_formats = query_formats, .priv_size = sizeof(ShowSpectrumContext), .inputs = showspectrumpic_inputs, .outputs = showspectrumpic_outputs, .priv_class = &showspectrumpic_class, .flags = AVFILTER_FLAG_SLICE_THREADS, }; #endif // CONFIG_SHOWSPECTRUMPIC_FILTER