/* * Copyright (C) 2017 Paul B Mahol * Copyright (C) 2013-2015 Andreas Fuchs, Wolfgang Hrauda * This file is part of FFmpeg. * * FFmpeg is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * FFmpeg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with FFmpeg; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include "libavutil/avstring.h" #include "libavutil/channel_layout.h" #include "libavutil/float_dsp.h" #include "libavutil/intmath.h" #include "libavutil/opt.h" #include "libavcodec/avfft.h" #include "avfilter.h" #include "filters.h" #include "internal.h" #include "audio.h" #define TIME_DOMAIN 0 #define FREQUENCY_DOMAIN 1 #define HRIR_STEREO 0 #define HRIR_MULTI 1 typedef struct HeadphoneContext { const AVClass *class; char *map; int type; int lfe_channel; int have_hrirs; int eof_hrirs; int ir_len; int air_len; int mapping[64]; int nb_inputs; int nb_irs; float gain; float lfe_gain, gain_lfe; float *ringbuffer[2]; int write[2]; int buffer_length; int n_fft; int size; int hrir_fmt; int *delay[2]; float *data_ir[2]; float *temp_src[2]; FFTComplex *temp_fft[2]; FFTComplex *temp_afft[2]; FFTContext *fft[2], *ifft[2]; FFTComplex *data_hrtf[2]; AVFloatDSPContext *fdsp; struct headphone_inputs { AVFrame *frame; int ir_len; int delay_l; int delay_r; int eof; } *in; } HeadphoneContext; static int parse_channel_name(HeadphoneContext *s, int x, char **arg, int *rchannel, char *buf) { int len, i, channel_id = 0; int64_t layout, layout0; if (sscanf(*arg, "%7[A-Z]%n", buf, &len)) { layout0 = layout = av_get_channel_layout(buf); if (layout == AV_CH_LOW_FREQUENCY) s->lfe_channel = x; for (i = 32; i > 0; i >>= 1) { if (layout >= 1LL << i) { channel_id += i; layout >>= i; } } if (channel_id >= 64 || layout0 != 1LL << channel_id) return AVERROR(EINVAL); *rchannel = channel_id; *arg += len; return 0; } return AVERROR(EINVAL); } static void parse_map(AVFilterContext *ctx) { HeadphoneContext *s = ctx->priv; char *arg, *tokenizer, *p, *args = av_strdup(s->map); int i; if (!args) return; p = args; s->lfe_channel = -1; s->nb_inputs = 1; for (i = 0; i < 64; i++) { s->mapping[i] = -1; } while ((arg = av_strtok(p, "|", &tokenizer))) { int out_ch_id; char buf[8]; p = NULL; if (parse_channel_name(s, s->nb_irs, &arg, &out_ch_id, buf)) { av_log(ctx, AV_LOG_WARNING, "Failed to parse \'%s\' as channel name.\n", buf); continue; } s->mapping[s->nb_irs] = out_ch_id; s->nb_irs++; } if (s->hrir_fmt == HRIR_MULTI) s->nb_inputs = 2; else s->nb_inputs = s->nb_irs + 1; av_free(args); } typedef struct ThreadData { AVFrame *in, *out; int *write; int **delay; float **ir; int *n_clippings; float **ringbuffer; float **temp_src; FFTComplex **temp_fft; FFTComplex **temp_afft; } ThreadData; static int headphone_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { HeadphoneContext *s = ctx->priv; ThreadData *td = arg; AVFrame *in = td->in, *out = td->out; int offset = jobnr; int *write = &td->write[jobnr]; const int *const delay = td->delay[jobnr]; const float *const ir = td->ir[jobnr]; int *n_clippings = &td->n_clippings[jobnr]; float *ringbuffer = td->ringbuffer[jobnr]; float *temp_src = td->temp_src[jobnr]; const int ir_len = s->ir_len; const int air_len = s->air_len; const float *src = (const float *)in->data[0]; float *dst = (float *)out->data[0]; const int in_channels = in->channels; const int buffer_length = s->buffer_length; const uint32_t modulo = (uint32_t)buffer_length - 1; float *buffer[16]; int wr = *write; int read; int i, l; dst += offset; for (l = 0; l < in_channels; l++) { buffer[l] = ringbuffer + l * buffer_length; } for (i = 0; i < in->nb_samples; i++) { const float *temp_ir = ir; *dst = 0; for (l = 0; l < in_channels; l++) { *(buffer[l] + wr) = src[l]; } for (l = 0; l < in_channels; l++) { const float *const bptr = buffer[l]; if (l == s->lfe_channel) { *dst += *(buffer[s->lfe_channel] + wr) * s->gain_lfe; temp_ir += air_len; continue; } read = (wr - *(delay + l) - (ir_len - 1) + buffer_length) & modulo; if (read + ir_len < buffer_length) { memcpy(temp_src, bptr + read, ir_len * sizeof(*temp_src)); } else { int len = FFMIN(air_len - (read % ir_len), buffer_length - read); memcpy(temp_src, bptr + read, len * sizeof(*temp_src)); memcpy(temp_src + len, bptr, (air_len - len) * sizeof(*temp_src)); } dst[0] += s->fdsp->scalarproduct_float(temp_ir, temp_src, FFALIGN(ir_len, 32)); temp_ir += air_len; } if (fabsf(dst[0]) > 1) n_clippings[0]++; dst += 2; src += in_channels; wr = (wr + 1) & modulo; } *write = wr; return 0; } static int headphone_fast_convolute(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) { HeadphoneContext *s = ctx->priv; ThreadData *td = arg; AVFrame *in = td->in, *out = td->out; int offset = jobnr; int *write = &td->write[jobnr]; FFTComplex *hrtf = s->data_hrtf[jobnr]; int *n_clippings = &td->n_clippings[jobnr]; float *ringbuffer = td->ringbuffer[jobnr]; const int ir_len = s->ir_len; const float *src = (const float *)in->data[0]; float *dst = (float *)out->data[0]; const int in_channels = in->channels; const int buffer_length = s->buffer_length; const uint32_t modulo = (uint32_t)buffer_length - 1; FFTComplex *fft_in = s->temp_fft[jobnr]; FFTComplex *fft_acc = s->temp_afft[jobnr]; FFTContext *ifft = s->ifft[jobnr]; FFTContext *fft = s->fft[jobnr]; const int n_fft = s->n_fft; const float fft_scale = 1.0f / s->n_fft; FFTComplex *hrtf_offset; int wr = *write; int n_read; int i, j; dst += offset; n_read = FFMIN(ir_len, in->nb_samples); for (j = 0; j < n_read; j++) { dst[2 * j] = ringbuffer[wr]; ringbuffer[wr] = 0.0; wr = (wr + 1) & modulo; } for (j = n_read; j < in->nb_samples; j++) { dst[2 * j] = 0; } memset(fft_acc, 0, sizeof(FFTComplex) * n_fft); for (i = 0; i < in_channels; i++) { if (i == s->lfe_channel) { for (j = 0; j < in->nb_samples; j++) { dst[2 * j] += src[i + j * in_channels] * s->gain_lfe; } continue; } offset = i * n_fft; hrtf_offset = hrtf + offset; memset(fft_in, 0, sizeof(FFTComplex) * n_fft); for (j = 0; j < in->nb_samples; j++) { fft_in[j].re = src[j * in_channels + i]; } av_fft_permute(fft, fft_in); av_fft_calc(fft, fft_in); for (j = 0; j < n_fft; j++) { const FFTComplex *hcomplex = hrtf_offset + j; const float re = fft_in[j].re; const float im = fft_in[j].im; fft_acc[j].re += re * hcomplex->re - im * hcomplex->im; fft_acc[j].im += re * hcomplex->im + im * hcomplex->re; } } av_fft_permute(ifft, fft_acc); av_fft_calc(ifft, fft_acc); for (j = 0; j < in->nb_samples; j++) { dst[2 * j] += fft_acc[j].re * fft_scale; } for (j = 0; j < ir_len - 1; j++) { int write_pos = (wr + j) & modulo; *(ringbuffer + write_pos) += fft_acc[in->nb_samples + j].re * fft_scale; } for (i = 0; i < out->nb_samples; i++) { if (fabsf(dst[0]) > 1) { n_clippings[0]++; } dst += 2; } *write = wr; return 0; } static int check_ir(AVFilterLink *inlink, int input_number) { AVFilterContext *ctx = inlink->dst; HeadphoneContext *s = ctx->priv; int ir_len, max_ir_len; ir_len = ff_inlink_queued_samples(inlink); max_ir_len = 65536; if (ir_len > max_ir_len) { av_log(ctx, AV_LOG_ERROR, "Too big length of IRs: %d > %d.\n", ir_len, max_ir_len); return AVERROR(EINVAL); } s->in[input_number].ir_len = ir_len; s->ir_len = FFMAX(ir_len, s->ir_len); return 0; } static int headphone_frame(HeadphoneContext *s, AVFrame *in, AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; int n_clippings[2] = { 0 }; ThreadData td; AVFrame *out; out = ff_get_audio_buffer(outlink, in->nb_samples); if (!out) { av_frame_free(&in); return AVERROR(ENOMEM); } out->pts = in->pts; td.in = in; td.out = out; td.write = s->write; td.delay = s->delay; td.ir = s->data_ir; td.n_clippings = n_clippings; td.ringbuffer = s->ringbuffer; td.temp_src = s->temp_src; td.temp_fft = s->temp_fft; td.temp_afft = s->temp_afft; if (s->type == TIME_DOMAIN) { ctx->internal->execute(ctx, headphone_convolute, &td, NULL, 2); } else { ctx->internal->execute(ctx, headphone_fast_convolute, &td, NULL, 2); } emms_c(); if (n_clippings[0] + n_clippings[1] > 0) { av_log(ctx, AV_LOG_WARNING, "%d of %d samples clipped. Please reduce gain.\n", n_clippings[0] + n_clippings[1], out->nb_samples * 2); } av_frame_free(&in); return ff_filter_frame(outlink, out); } static int convert_coeffs(AVFilterContext *ctx, AVFilterLink *inlink) { struct HeadphoneContext *s = ctx->priv; const int ir_len = s->ir_len; int nb_irs = s->nb_irs; int nb_input_channels = ctx->inputs[0]->channels; float gain_lin = expf((s->gain - 3 * nb_input_channels) / 20 * M_LN10); FFTComplex *data_hrtf_l = NULL; FFTComplex *data_hrtf_r = NULL; FFTComplex *fft_in_l = NULL; FFTComplex *fft_in_r = NULL; float *data_ir_l = NULL; float *data_ir_r = NULL; int offset = 0, ret = 0; int n_fft; int i, j, k; s->air_len = 1 << (32 - ff_clz(ir_len)); s->buffer_length = 1 << (32 - ff_clz(s->air_len)); s->n_fft = n_fft = 1 << (32 - ff_clz(ir_len + s->size)); if (s->type == FREQUENCY_DOMAIN) { fft_in_l = av_calloc(n_fft, sizeof(*fft_in_l)); fft_in_r = av_calloc(n_fft, sizeof(*fft_in_r)); if (!fft_in_l || !fft_in_r) { ret = AVERROR(ENOMEM); goto fail; } av_fft_end(s->fft[0]); av_fft_end(s->fft[1]); s->fft[0] = av_fft_init(av_log2(s->n_fft), 0); s->fft[1] = av_fft_init(av_log2(s->n_fft), 0); av_fft_end(s->ifft[0]); av_fft_end(s->ifft[1]); s->ifft[0] = av_fft_init(av_log2(s->n_fft), 1); s->ifft[1] = av_fft_init(av_log2(s->n_fft), 1); if (!s->fft[0] || !s->fft[1] || !s->ifft[0] || !s->ifft[1]) { av_log(ctx, AV_LOG_ERROR, "Unable to create FFT contexts of size %d.\n", s->n_fft); ret = AVERROR(ENOMEM); goto fail; } } s->data_ir[0] = av_calloc(s->air_len, sizeof(float) * s->nb_irs); s->data_ir[1] = av_calloc(s->air_len, sizeof(float) * s->nb_irs); s->delay[0] = av_calloc(s->nb_irs, sizeof(float)); s->delay[1] = av_calloc(s->nb_irs, sizeof(float)); if (s->type == TIME_DOMAIN) { s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels); s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float) * nb_input_channels); } else { s->ringbuffer[0] = av_calloc(s->buffer_length, sizeof(float)); s->ringbuffer[1] = av_calloc(s->buffer_length, sizeof(float)); s->temp_fft[0] = av_calloc(s->n_fft, sizeof(FFTComplex)); s->temp_fft[1] = av_calloc(s->n_fft, sizeof(FFTComplex)); s->temp_afft[0] = av_calloc(s->n_fft, sizeof(FFTComplex)); s->temp_afft[1] = av_calloc(s->n_fft, sizeof(FFTComplex)); if (!s->temp_fft[0] || !s->temp_fft[1] || !s->temp_afft[0] || !s->temp_afft[1]) { ret = AVERROR(ENOMEM); goto fail; } } if (!s->data_ir[0] || !s->data_ir[1] || !s->ringbuffer[0] || !s->ringbuffer[1]) { ret = AVERROR(ENOMEM); goto fail; } if (s->type == TIME_DOMAIN) { s->temp_src[0] = av_calloc(s->air_len, sizeof(float)); s->temp_src[1] = av_calloc(s->air_len, sizeof(float)); data_ir_l = av_calloc(nb_irs * s->air_len, sizeof(*data_ir_l)); data_ir_r = av_calloc(nb_irs * s->air_len, sizeof(*data_ir_r)); if (!data_ir_r || !data_ir_l || !s->temp_src[0] || !s->temp_src[1]) { ret = AVERROR(ENOMEM); goto fail; } } else { data_hrtf_l = av_calloc(n_fft, sizeof(*data_hrtf_l) * nb_irs); data_hrtf_r = av_calloc(n_fft, sizeof(*data_hrtf_r) * nb_irs); if (!data_hrtf_r || !data_hrtf_l) { ret = AVERROR(ENOMEM); goto fail; } } for (i = 0; i < s->nb_inputs - 1; i++) { int len = s->in[i + 1].ir_len; int delay_l = s->in[i + 1].delay_l; int delay_r = s->in[i + 1].delay_r; float *ptr; ret = ff_inlink_consume_samples(ctx->inputs[i + 1], len, len, &s->in[i + 1].frame); if (ret < 0) goto fail; ptr = (float *)s->in[i + 1].frame->extended_data[0]; if (s->hrir_fmt == HRIR_STEREO) { int idx = -1; for (j = 0; j < inlink->channels; j++) { if (s->mapping[i] < 0) { continue; } if ((av_channel_layout_extract_channel(inlink->channel_layout, j)) == (1LL << s->mapping[i])) { idx = i; break; } } if (idx == -1) continue; if (s->type == TIME_DOMAIN) { offset = idx * s->air_len; for (j = 0; j < len; j++) { data_ir_l[offset + j] = ptr[len * 2 - j * 2 - 2] * gain_lin; data_ir_r[offset + j] = ptr[len * 2 - j * 2 - 1] * gain_lin; } } else { memset(fft_in_l, 0, n_fft * sizeof(*fft_in_l)); memset(fft_in_r, 0, n_fft * sizeof(*fft_in_r)); offset = idx * n_fft; for (j = 0; j < len; j++) { fft_in_l[delay_l + j].re = ptr[j * 2 ] * gain_lin; fft_in_r[delay_r + j].re = ptr[j * 2 + 1] * gain_lin; } av_fft_permute(s->fft[0], fft_in_l); av_fft_calc(s->fft[0], fft_in_l); memcpy(data_hrtf_l + offset, fft_in_l, n_fft * sizeof(*fft_in_l)); av_fft_permute(s->fft[0], fft_in_r); av_fft_calc(s->fft[0], fft_in_r); memcpy(data_hrtf_r + offset, fft_in_r, n_fft * sizeof(*fft_in_r)); } } else { int I, N = ctx->inputs[1]->channels; for (k = 0; k < N / 2; k++) { int idx = -1; for (j = 0; j < inlink->channels; j++) { if (s->mapping[k] < 0) { continue; } if ((av_channel_layout_extract_channel(inlink->channel_layout, j)) == (1LL << s->mapping[k])) { idx = k; break; } } if (idx == -1) continue; I = idx * 2; if (s->type == TIME_DOMAIN) { offset = idx * s->air_len; for (j = 0; j < len; j++) { data_ir_l[offset + j] = ptr[len * N - j * N - N + I ] * gain_lin; data_ir_r[offset + j] = ptr[len * N - j * N - N + I + 1] * gain_lin; } } else { memset(fft_in_l, 0, n_fft * sizeof(*fft_in_l)); memset(fft_in_r, 0, n_fft * sizeof(*fft_in_r)); offset = idx * n_fft; for (j = 0; j < len; j++) { fft_in_l[delay_l + j].re = ptr[j * N + I ] * gain_lin; fft_in_r[delay_r + j].re = ptr[j * N + I + 1] * gain_lin; } av_fft_permute(s->fft[0], fft_in_l); av_fft_calc(s->fft[0], fft_in_l); memcpy(data_hrtf_l + offset, fft_in_l, n_fft * sizeof(*fft_in_l)); av_fft_permute(s->fft[0], fft_in_r); av_fft_calc(s->fft[0], fft_in_r); memcpy(data_hrtf_r + offset, fft_in_r, n_fft * sizeof(*fft_in_r)); } } } av_frame_free(&s->in[i + 1].frame); } if (s->type == TIME_DOMAIN) { memcpy(s->data_ir[0], data_ir_l, sizeof(float) * nb_irs * s->air_len); memcpy(s->data_ir[1], data_ir_r, sizeof(float) * nb_irs * s->air_len); } else { s->data_hrtf[0] = av_calloc(n_fft * s->nb_irs, sizeof(FFTComplex)); s->data_hrtf[1] = av_calloc(n_fft * s->nb_irs, sizeof(FFTComplex)); if (!s->data_hrtf[0] || !s->data_hrtf[1]) { ret = AVERROR(ENOMEM); goto fail; } memcpy(s->data_hrtf[0], data_hrtf_l, sizeof(FFTComplex) * nb_irs * n_fft); memcpy(s->data_hrtf[1], data_hrtf_r, sizeof(FFTComplex) * nb_irs * n_fft); } s->have_hrirs = 1; fail: for (i = 0; i < s->nb_inputs - 1; i++) av_frame_free(&s->in[i + 1].frame); av_freep(&data_ir_l); av_freep(&data_ir_r); av_freep(&data_hrtf_l); av_freep(&data_hrtf_r); av_freep(&fft_in_l); av_freep(&fft_in_r); return ret; } static int activate(AVFilterContext *ctx) { HeadphoneContext *s = ctx->priv; AVFilterLink *inlink = ctx->inputs[0]; AVFilterLink *outlink = ctx->outputs[0]; AVFrame *in = NULL; int i, ret; FF_FILTER_FORWARD_STATUS_BACK_ALL(ctx->outputs[0], ctx); if (!s->eof_hrirs) { for (i = 1; i < s->nb_inputs; i++) { if (s->in[i].eof) continue; if ((ret = check_ir(ctx->inputs[i], i)) < 0) return ret; if (!s->in[i].eof) { if (ff_outlink_get_status(ctx->inputs[i]) == AVERROR_EOF) s->in[i].eof = 1; } } for (i = 1; i < s->nb_inputs; i++) { if (!s->in[i].eof) break; } if (i != s->nb_inputs) { if (ff_outlink_frame_wanted(ctx->outputs[0])) { for (i = 1; i < s->nb_inputs; i++) { if (!s->in[i].eof) ff_inlink_request_frame(ctx->inputs[i]); } } return 0; } else { s->eof_hrirs = 1; } } if (!s->have_hrirs && s->eof_hrirs) { ret = convert_coeffs(ctx, inlink); if (ret < 0) return ret; } if ((ret = ff_inlink_consume_samples(ctx->inputs[0], s->size, s->size, &in)) > 0) { ret = headphone_frame(s, in, outlink); if (ret < 0) return ret; } if (ret < 0) return ret; FF_FILTER_FORWARD_STATUS(ctx->inputs[0], ctx->outputs[0]); if (ff_outlink_frame_wanted(ctx->outputs[0])) ff_inlink_request_frame(ctx->inputs[0]); return 0; } static int query_formats(AVFilterContext *ctx) { struct HeadphoneContext *s = ctx->priv; AVFilterFormats *formats = NULL; AVFilterChannelLayouts *layouts = NULL; AVFilterChannelLayouts *stereo_layout = NULL; AVFilterChannelLayouts *hrir_layouts = NULL; int ret, i; ret = ff_add_format(&formats, AV_SAMPLE_FMT_FLT); if (ret) return ret; ret = ff_set_common_formats(ctx, formats); if (ret) return ret; layouts = ff_all_channel_layouts(); if (!layouts) return AVERROR(ENOMEM); ret = ff_channel_layouts_ref(layouts, &ctx->inputs[0]->out_channel_layouts); if (ret) return ret; ret = ff_add_channel_layout(&stereo_layout, AV_CH_LAYOUT_STEREO); if (ret) return ret; if (s->hrir_fmt == HRIR_MULTI) { hrir_layouts = ff_all_channel_counts(); if (!hrir_layouts) return AVERROR(ENOMEM); ret = ff_channel_layouts_ref(hrir_layouts, &ctx->inputs[1]->out_channel_layouts); if (ret) return ret; } else { for (i = 1; i < s->nb_inputs; i++) { ret = ff_channel_layouts_ref(stereo_layout, &ctx->inputs[i]->out_channel_layouts); if (ret) return ret; } } ret = ff_channel_layouts_ref(stereo_layout, &ctx->outputs[0]->in_channel_layouts); if (ret) return ret; formats = ff_all_samplerates(); if (!formats) return AVERROR(ENOMEM); return ff_set_common_samplerates(ctx, formats); } static int config_input(AVFilterLink *inlink) { AVFilterContext *ctx = inlink->dst; HeadphoneContext *s = ctx->priv; if (s->nb_irs < inlink->channels) { av_log(ctx, AV_LOG_ERROR, "Number of HRIRs must be >= %d.\n", inlink->channels); return AVERROR(EINVAL); } return 0; } static av_cold int init(AVFilterContext *ctx) { HeadphoneContext *s = ctx->priv; int i, ret; AVFilterPad pad = { .name = "in0", .type = AVMEDIA_TYPE_AUDIO, .config_props = config_input, }; if ((ret = ff_insert_inpad(ctx, 0, &pad)) < 0) return ret; if (!s->map) { av_log(ctx, AV_LOG_ERROR, "Valid mapping must be set.\n"); return AVERROR(EINVAL); } parse_map(ctx); s->in = av_calloc(s->nb_inputs, sizeof(*s->in)); if (!s->in) return AVERROR(ENOMEM); for (i = 1; i < s->nb_inputs; i++) { char *name = av_asprintf("hrir%d", i - 1); AVFilterPad pad = { .name = name, .type = AVMEDIA_TYPE_AUDIO, }; if (!name) return AVERROR(ENOMEM); if ((ret = ff_insert_inpad(ctx, i, &pad)) < 0) { av_freep(&pad.name); return ret; } } s->fdsp = avpriv_float_dsp_alloc(0); if (!s->fdsp) return AVERROR(ENOMEM); return 0; } static int config_output(AVFilterLink *outlink) { AVFilterContext *ctx = outlink->src; HeadphoneContext *s = ctx->priv; AVFilterLink *inlink = ctx->inputs[0]; if (s->hrir_fmt == HRIR_MULTI) { AVFilterLink *hrir_link = ctx->inputs[1]; if (hrir_link->channels < inlink->channels * 2) { av_log(ctx, AV_LOG_ERROR, "Number of channels in HRIR stream must be >= %d.\n", inlink->channels * 2); return AVERROR(EINVAL); } } s->gain_lfe = expf((s->gain - 3 * inlink->channels + s->lfe_gain) / 20 * M_LN10); return 0; } static av_cold void uninit(AVFilterContext *ctx) { HeadphoneContext *s = ctx->priv; int i; av_fft_end(s->ifft[0]); av_fft_end(s->ifft[1]); av_fft_end(s->fft[0]); av_fft_end(s->fft[1]); av_freep(&s->delay[0]); av_freep(&s->delay[1]); av_freep(&s->data_ir[0]); av_freep(&s->data_ir[1]); av_freep(&s->ringbuffer[0]); av_freep(&s->ringbuffer[1]); av_freep(&s->temp_src[0]); av_freep(&s->temp_src[1]); av_freep(&s->temp_fft[0]); av_freep(&s->temp_fft[1]); av_freep(&s->temp_afft[0]); av_freep(&s->temp_afft[1]); av_freep(&s->data_hrtf[0]); av_freep(&s->data_hrtf[1]); av_freep(&s->fdsp); for (i = 0; i < s->nb_inputs; i++) { if (ctx->input_pads && i) av_freep(&ctx->input_pads[i].name); } av_freep(&s->in); } #define OFFSET(x) offsetof(HeadphoneContext, x) #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM static const AVOption headphone_options[] = { { "map", "set channels convolution mappings", OFFSET(map), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS }, { "gain", "set gain in dB", OFFSET(gain), AV_OPT_TYPE_FLOAT, {.dbl=0}, -20, 40, .flags = FLAGS }, { "lfe", "set lfe gain in dB", OFFSET(lfe_gain), AV_OPT_TYPE_FLOAT, {.dbl=0}, -20, 40, .flags = FLAGS }, { "type", "set processing", OFFSET(type), AV_OPT_TYPE_INT, {.i64=1}, 0, 1, .flags = FLAGS, "type" }, { "time", "time domain", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, .flags = FLAGS, "type" }, { "freq", "frequency domain", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, .flags = FLAGS, "type" }, { "size", "set frame size", OFFSET(size), AV_OPT_TYPE_INT, {.i64=1024},1024,96000, .flags = FLAGS }, { "hrir", "set hrir format", OFFSET(hrir_fmt), AV_OPT_TYPE_INT, {.i64=HRIR_STEREO}, 0, 1, .flags = FLAGS, "hrir" }, { "stereo", "hrir files have exactly 2 channels", 0, AV_OPT_TYPE_CONST, {.i64=HRIR_STEREO}, 0, 0, .flags = FLAGS, "hrir" }, { "multich", "single multichannel hrir file", 0, AV_OPT_TYPE_CONST, {.i64=HRIR_MULTI}, 0, 0, .flags = FLAGS, "hrir" }, { NULL } }; AVFILTER_DEFINE_CLASS(headphone); static const AVFilterPad outputs[] = { { .name = "default", .type = AVMEDIA_TYPE_AUDIO, .config_props = config_output, }, { NULL } }; AVFilter ff_af_headphone = { .name = "headphone", .description = NULL_IF_CONFIG_SMALL("Apply headphone binaural spatialization with HRTFs in additional streams."), .priv_size = sizeof(HeadphoneContext), .priv_class = &headphone_class, .init = init, .uninit = uninit, .query_formats = query_formats, .activate = activate, .inputs = NULL, .outputs = outputs, .flags = AVFILTER_FLAG_SLICE_THREADS | AVFILTER_FLAG_DYNAMIC_INPUTS, };